江 偉,陳帝伊,秦鈺祺,王玉川
?
半高導(dǎo)葉端面間隙對(duì)離心泵水力性能影響的數(shù)值模擬與驗(yàn)證
江 偉,陳帝伊※,秦鈺祺,王玉川
(西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
離心泵中存在各種間隙,其間隙流動(dòng)極其復(fù)雜,易出現(xiàn)泄漏流、間隙渦等復(fù)雜湍流,影響離心泵的水力性能及運(yùn)行穩(wěn)定性。該文結(jié)合數(shù)值模擬與試驗(yàn)方法,采用SST湍流模型,研究半高導(dǎo)葉端面間隙對(duì)離心泵水力性能及內(nèi)部流場(chǎng)的影響規(guī)律,重點(diǎn)探討半高導(dǎo)葉端面間隙對(duì)離心泵水力性能的影響機(jī)理。結(jié)果表明,適當(dāng)?shù)陌敫邔?dǎo)葉端面間隙能有效改善離心泵水力性能,拓寬其高效區(qū),導(dǎo)葉葉高為1.0時(shí),最高效率點(diǎn)流量37.5 m3/h處,而導(dǎo)葉葉高為0~0.8時(shí),其最高效率點(diǎn)流量42.5 m3/h處;導(dǎo)葉端面間隙為0.4~0.6導(dǎo)葉葉高時(shí),離心泵的效率與揚(yáng)程最優(yōu),且最大效率為57.5%;在0.6倍設(shè)計(jì)工況、0.8倍設(shè)計(jì)工況和1.0倍設(shè)計(jì)工況時(shí),帶半高導(dǎo)葉端面間隙的離心泵中葉輪做功和導(dǎo)葉內(nèi)總壓損失均高于普通導(dǎo)葉式離心泵,在0.6倍設(shè)計(jì)工況,導(dǎo)葉葉高為1.0時(shí)葉輪做功比導(dǎo)葉葉高為0~0.8時(shí)葉輪做功低將近7 m水頭,且在0.6倍設(shè)計(jì)工況和0.8倍設(shè)計(jì)工況下,導(dǎo)葉葉高為0時(shí)導(dǎo)葉內(nèi)總壓損失平均值比導(dǎo)葉葉高為1.0時(shí)分別高6.66 m、4.62 m水頭;在1.2倍設(shè)計(jì)工況和1.4倍設(shè)計(jì)工況時(shí),其葉輪做功和導(dǎo)葉內(nèi)總壓損失均低于普通導(dǎo)葉式離心泵;在各流量工況下,帶導(dǎo)葉端面間隙的離心泵中蝸殼內(nèi)總壓損失均小于普通導(dǎo)葉式離心泵;隨著流量增加,帶半高導(dǎo)葉端面間隙的離心泵中葉輪-導(dǎo)葉動(dòng)靜干涉作用在逐漸減弱,葉輪-蝸殼動(dòng)靜干涉作用逐漸凸顯。研究結(jié)果為離心泵導(dǎo)葉優(yōu)化設(shè)計(jì)提供參考。
離心泵;水力模型;性能;總壓損失;動(dòng)靜干涉
離心泵廣泛的應(yīng)用于化工、核電、石油、航天等領(lǐng)域。隨著社會(huì)進(jìn)步與科技發(fā)展,離心泵水力性能與運(yùn)行穩(wěn)定性的要求越來(lái)越高[1]。離心泵中存在各種間隙,如口環(huán)間隙、葉頂間隙及平衡盤(pán)間隙等。間隙流動(dòng)極其復(fù)雜,易發(fā)生間隙渦、間隙汽蝕等現(xiàn)象,導(dǎo)致泄漏損失與流體激振,降低離心泵的水力效率,影響其穩(wěn)定運(yùn)行[2-3]。
目前國(guó)內(nèi)外許多學(xué)者多集中研究葉頂間隙、口環(huán)間隙及平衡盤(pán)間隙對(duì)離心泵性能的影響。葉頂間隙內(nèi)部泄漏流與二次流影響離心泵流體傳輸、內(nèi)部非定常流場(chǎng)和汽蝕等性能[4-6]。適當(dāng)?shù)娜~頂間隙可有效地提高離心泵水力性能、改善其穩(wěn)定運(yùn)行,但過(guò)大的葉頂間隙易產(chǎn)生湍振、旋轉(zhuǎn)失速等現(xiàn)象,從而影響離心泵的性能[7-9]。Wu等[10-11]采用數(shù)值模擬的方法對(duì)葉頂間隙渦及其運(yùn)動(dòng)軌跡進(jìn)行了分析,建立了泄漏堵塞量與泄漏損失的計(jì)算理論式??诃h(huán)間隙不僅導(dǎo)致離心泵產(chǎn)生容積損失,降低其水力效率,且改變泵內(nèi)部流場(chǎng),引起離心泵不穩(wěn)定運(yùn)行[12-14]??诃h(huán)間隙使葉輪受力不均,并誘導(dǎo)其內(nèi)部流動(dòng)產(chǎn)生周期性的激勵(lì)特性[15-17];不同流量工況時(shí),口環(huán)間隙處泄漏流體與葉輪進(jìn)口處流體混合,影響葉輪前蓋板區(qū)域渦量分布[18-19]。離心泵葉輪前口環(huán)與后口環(huán)對(duì)其內(nèi)部非穩(wěn)態(tài)流動(dòng)與水力性能的影響程度不同,其中葉輪前口環(huán)間隙流對(duì)泵的水力效率與泄漏損失的影響大于后口環(huán)間隙對(duì)其影響[20-23]。平衡盤(pán)主要應(yīng)用于多級(jí)離心泵中,利用其軸向與徑向間隙產(chǎn)生的壓力差來(lái)平衡葉輪上軸向力,但其間隙會(huì)導(dǎo)致級(jí)間泄漏,降低離心泵的水力效率[24-26]。針對(duì)半高導(dǎo)葉端面間隙對(duì)葉輪機(jī)械性能的影響研究主要集中于壓縮機(jī)或風(fēng)機(jī)[27-29]。Sitaram等[30-33]采用數(shù)值模擬與試驗(yàn)方法通過(guò)對(duì)蓋側(cè)半高導(dǎo)葉擴(kuò)壓器內(nèi)部流動(dòng)進(jìn)行了研究,表明半高導(dǎo)葉擴(kuò)壓器能使流動(dòng)在軸向更均勻,提高擴(kuò)壓器的壓力恢復(fù)系數(shù);半高導(dǎo)葉擴(kuò)壓器葉片的最佳高度為0.4~0.5倍的擴(kuò)壓器通道寬度。
離心泵中葉頂間隙、口環(huán)間隙及平衡盤(pán)間隙研究比較多,其間隙流動(dòng)機(jī)理和間隙對(duì)離心泵性能的影響規(guī)律比較清晰,而針對(duì)半高導(dǎo)葉端面間隙對(duì)離心泵水力性能與內(nèi)部流場(chǎng)的影響研究極少,對(duì)離心泵整體性能的影響規(guī)律并不是明確。本文把半高導(dǎo)葉擴(kuò)壓器引進(jìn)于離心泵中,采用數(shù)值模擬與試驗(yàn)的方法深入分析半高導(dǎo)葉端面間隙對(duì)離心泵水力性能及內(nèi)部流場(chǎng)的影響規(guī)律,為離心泵導(dǎo)葉優(yōu)化設(shè)計(jì)提供理論依據(jù)與參考。
離心泵基本參數(shù):流量=40 m3/h,揚(yáng)程=60 m,轉(zhuǎn)速=2 900 r/min,比轉(zhuǎn)速N=53。設(shè)計(jì)參數(shù):葉輪外徑2=223 mm、葉輪葉片出口寬度2=8 mm、葉輪葉片數(shù)=6;導(dǎo)葉進(jìn)口直徑3=228 mm、導(dǎo)葉葉片寬度3=10 mm、導(dǎo)葉出口直徑4=283 mm、導(dǎo)葉葉片數(shù)=5;蝸殼基圓直徑5=284 mm、蝸殼進(jìn)口寬度4=19 mm。半高導(dǎo)葉擴(kuò)壓器是無(wú)葉擴(kuò)壓器到有葉擴(kuò)壓器的過(guò)渡形式,如圖1所示,為葉片寬度、為導(dǎo)葉葉高。保證導(dǎo)葉流道寬度不變,對(duì)導(dǎo)葉葉片寬度進(jìn)行切割,表1為半高導(dǎo)葉端面間隙數(shù)值分析方案。
注:B為導(dǎo)葉葉高;b為導(dǎo)葉寬度。
表1 導(dǎo)葉端面間隙數(shù)值分析方案
注:B/b為離心泵導(dǎo)葉葉高與導(dǎo)葉葉片寬度比值。
Note: B/b refers to ratio of centrifugal pump guide blade height to blade width.
采用ICEM對(duì)模型泵進(jìn)行前處理得到結(jié)構(gòu)化網(wǎng)格,如圖2所示,其中葉輪、導(dǎo)葉與蝸殼網(wǎng)格數(shù)分別為468 761、465 337、581 295,前后泵腔網(wǎng)格分別為321 802、348 013。湍流模型采用SST模型,穩(wěn)態(tài)數(shù)值計(jì)算邊界條件采用壓力進(jìn)口,質(zhì)量流量出口邊界條件,壁面無(wú)滑移邊界條件。以穩(wěn)態(tài)計(jì)算做為瞬態(tài)數(shù)值計(jì)算的初始條件,葉輪每轉(zhuǎn)過(guò)3°為1時(shí)間步,其時(shí)間步長(zhǎng)0.000 172 414,1個(gè)周期迭代120步,迭代6個(gè)周期,選最后1周期進(jìn)行流場(chǎng)分析。
a. 過(guò)流部件a. Flow passage componentb. 后泵腔b. Rear pump chamberc. 前泵腔c. Front pump chamber
圖3為模型試驗(yàn)泵。模型泵中蝸殼、導(dǎo)葉、葉輪采用3D打印技術(shù)進(jìn)行加工制造。為與普通導(dǎo)葉式離心泵性能進(jìn)行對(duì)比,在對(duì)半高導(dǎo)葉擴(kuò)壓器離心泵性能進(jìn)行試驗(yàn)研究時(shí),保證半高導(dǎo)葉擴(kuò)壓器中導(dǎo)葉的安裝位置、導(dǎo)葉與蝸殼內(nèi)各監(jiān)測(cè)點(diǎn)位置都一樣,且試驗(yàn)采用的方案與數(shù)值模擬方案相同。采用JN338 型扭矩傳感器對(duì)扭矩進(jìn)行測(cè)量,量程為0.01~100 N·m,測(cè)量精度為±0.2 N·m;運(yùn)用AE215型流量計(jì)測(cè)量試驗(yàn)回路流量,量程為0~100 m3/h,測(cè)量精度為±0.5 m3/h;采用EJA510A型壓力傳感器對(duì)模型泵進(jìn)出口壓力進(jìn)行測(cè)量,量程分別為0~300 kPa和0~1 MPa,測(cè)量精度分別為±0.0225和±0.075 kPa。
注:P1~P4為試驗(yàn)時(shí)壓力脈動(dòng)監(jiān)測(cè)點(diǎn)。
圖4為不同導(dǎo)葉端面間隙的離心泵外特性曲線(xiàn)。由圖可知,當(dāng)/=1.0時(shí),離心泵揚(yáng)程曲線(xiàn)較陡,下降較快,其中=37.5 m3/h時(shí),效率最大,為55.5%;當(dāng)/=0~0.8時(shí),離心泵揚(yáng)程曲線(xiàn)較平緩,下降較慢,效率最高點(diǎn)向大流量偏移,且按/從1.0、0.8、0、0.6、0.5的順序逐漸向大流量偏移,其中效率最高點(diǎn)位于=42.5 m3/h,為57.5%,主要原因是導(dǎo)葉端面間隙增加其喉部面積,使其高效點(diǎn)向大流量工況偏移。在各流量工況下,當(dāng)/=0.8時(shí),離心泵的揚(yáng)程與效率最小。在小流量工況(=18~37 m3/h)下,當(dāng)/=1.0時(shí),離心泵的揚(yáng)程、效率最高;在大流量工況(>37 m3/h)下,當(dāng)/=1.0時(shí),離心泵的揚(yáng)程與效率遠(yuǎn)低于其它導(dǎo)葉端面間隙下泵的揚(yáng)程與效率,其中=0.5~0.6時(shí)離心泵的水力性能最好,表明適當(dāng)?shù)膶?dǎo)葉葉片與蓋板之間的端面間隙能改善離心泵水力性能。
圖4 不同導(dǎo)葉端面間隙離心泵外特性試驗(yàn)
圖5為不同導(dǎo)葉端面間隙時(shí)離心泵外特性數(shù)值模擬與試驗(yàn)對(duì)比。由圖5可知,數(shù)值模擬與試驗(yàn)值吻合較好,尤其在/des=1.0工況附近時(shí),其揚(yáng)程與效率誤差在5%以?xún)?nèi),說(shuō)明數(shù)值模擬在設(shè)計(jì)工況附近存在一定的準(zhǔn)確性;在遠(yuǎn)離設(shè)計(jì)工況時(shí)(/des=0.6、/des=1.4),其誤差較大,主要原因是在小流量或大流量工況時(shí),泵內(nèi)部流場(chǎng)易出現(xiàn)劇烈的湍流、回流現(xiàn)象,從而導(dǎo)致數(shù)值模擬與試驗(yàn)結(jié)果相差較大。
注:Qdes為離心泵設(shè)計(jì)工況下的流量。
圖6分別為不同導(dǎo)葉端面間隙時(shí)葉輪瞬時(shí)做功和導(dǎo)葉與蝸殼內(nèi)總壓損失瞬態(tài)分布。由圖6 a-圖6c可知,在整個(gè)導(dǎo)葉端面間隙幾何參數(shù)的變化范圍內(nèi),葉輪做功隨著流量增加而逐漸降低。當(dāng)=1.0時(shí),葉輪做功波動(dòng)幅值(波峰與波谷差值)隨著流量增加而逐漸增加,在/des=0.8、/des=1.0、/des=1.2工況時(shí),波峰與波谷差值分別為1.4、1.7、2 m水頭;當(dāng)/=0~0.8時(shí),在各流量工況下,葉輪做功波動(dòng)幅值隨著流量改變而幾乎不變,在各流量工況下,其差值均不超過(guò)1 m水頭。在同一流量工況下,當(dāng)=1.0時(shí),葉輪做功的波動(dòng)相對(duì)于=0~0.8時(shí)的波動(dòng)更劇烈,兩波峰之間出現(xiàn)多個(gè)波峰與波谷,并且隨著導(dǎo)葉葉片與蓋板端面間隙的增加,呈現(xiàn)出多個(gè)波峰與波谷現(xiàn)象逐漸消失,波動(dòng)較平緩,由此表明導(dǎo)葉端面間隙可降低葉輪與導(dǎo)葉動(dòng)靜干涉作用影響,但葉輪與蝸殼隔舍動(dòng)靜干涉作用影響逐漸凸顯。不同流量工況時(shí),不同的導(dǎo)葉端面間隙對(duì)葉輪做功的影響不同。隨著流量的增加,導(dǎo)葉間隙增加對(duì)葉輪做功的影響程度在逐漸降低。由表2可知,在des=0.6工況下,=1.0時(shí)葉輪做功比=0~0.8時(shí)葉輪做功低將近3.87~5.32 m水頭;在des=0.8~1.4工況下,不同時(shí),葉輪做功差值不超過(guò)1.5 m水頭,表明在小流量工況下,葉輪做功對(duì)不同導(dǎo)葉端面間隙的離心泵中揚(yáng)程與效率存在一定影響,而在較大流量工況時(shí),葉輪做功對(duì)其離心泵揚(yáng)程與效率影響甚微。
表2 不同流量工況下,葉輪做功瞬時(shí)平均值
由圖6d-圖6f可知,隨著流量增加,當(dāng)=1.0時(shí),導(dǎo)葉內(nèi)總壓損失在逐漸增加,且各流量工況下波動(dòng)幅值幾乎相同,即波峰與波谷差值為3.5 m水頭,而當(dāng)=0~0.8時(shí),導(dǎo)葉內(nèi)總壓損失隨著流量增加而逐漸減小,在各流量工況時(shí),波峰與波谷差值不超過(guò)0.5 m水頭,波峰與波峰之間不存在二次波動(dòng),因此當(dāng)導(dǎo)葉端面間隙減小時(shí),導(dǎo)葉內(nèi)總壓損失受葉輪與導(dǎo)葉之間動(dòng)靜干涉作用影響逐漸減弱,葉輪與蝸殼動(dòng)靜干涉作用影響逐漸增強(qiáng)。不同流量工況時(shí),不同導(dǎo)葉端面間隙對(duì)導(dǎo)葉內(nèi)總壓損失的影響程度不同。由表3可知,在des=0.6和des=0.8工況下,當(dāng)=0~0.8時(shí)導(dǎo)葉內(nèi)總壓損失平均值明顯大于=1.0,其中在des=0.6工況下,/=0.3時(shí)總壓損失平均值最大,與=1.0時(shí)總壓損失差值為6.66 m水頭,在des=0.8工況時(shí)=0.8時(shí)總壓損失平均值最大,其差值4.62 m水頭;在des=1.0流量工況下,=0.4~0.6與=1.0時(shí)導(dǎo)葉內(nèi)總壓損失平均值幾乎相等,分別為7.54 m、7.33 m、7.23 m和7.43 m水頭,而=0.8與=0~0.3時(shí)導(dǎo)葉內(nèi)總壓損失平均值高于其它間隙系數(shù)下導(dǎo)葉內(nèi)的總壓損失,其中=0.8時(shí)總壓損失平均值最大,與=0.6相比,其差值為1.96 m水頭;在des=1.2與des=1.4工況下,當(dāng)=0~0.8時(shí),導(dǎo)葉內(nèi)總壓損失均小于=1.0。在各流量工況下,隨著導(dǎo)葉端面間隙的增加,導(dǎo)葉內(nèi)總壓損失先逐漸減小而后逐漸增加,其中當(dāng)=0.8時(shí)導(dǎo)葉內(nèi)總壓損失最大,=0.4~0.6時(shí)導(dǎo)葉內(nèi)總壓損失最小,表明適當(dāng)?shù)膶?dǎo)葉端面間隙能改善其水力性能。
注:im=(tout-tin)/,loss=(tin-tout)/;im、dloss、vloss分別為葉輪做功、導(dǎo)葉內(nèi)總壓損失、蝸殼內(nèi)總壓損失,tin和tout分別為進(jìn)口和出口平均總壓。
Note:im=(tout-tin)/,loss=(tin-tout)/;im,dlossandvlossare power of impeller, total pressure in diffuser or volute, respectively. Andtin,toutare the average total pressure in inlet and outlet.
圖6 不同流量工況,不同導(dǎo)葉端面間隙時(shí)葉輪瞬時(shí)做功及導(dǎo)葉和蝸殼內(nèi)總壓損失分布
Fig.6 Instantaneous impeller power and total pressure loss in diffuser or volute under different flow rates and guide vane end clearance
表3 不同流量工況下,導(dǎo)葉瞬時(shí)總壓損失平均值
由圖6g-圖6i可知,隨著流量增加,不同導(dǎo)葉端面間隙下蝸殼內(nèi)的總壓損失在逐漸增加,呈現(xiàn)出較好的周期性,兩波峰之間不存在二次波動(dòng),說(shuō)明蝸殼內(nèi)部流場(chǎng)主要受葉輪與蝸殼隔舍動(dòng)靜干涉作用影響,而受葉輪與導(dǎo)葉動(dòng)靜干涉作用影響甚小。在各流量下,當(dāng)=1.0時(shí)蝸殼內(nèi)總壓損失明顯大于=0~0.8時(shí),且隨著流量增加,最大與最小總壓損失差值在明顯增加。由表4可知,在des=0.6、des=0.8工況時(shí),最大(=1.0)與最小(=0.8)總壓損失差值分別為1 m、1.9 m水頭,在des=1.0、des=1.2、des=1.4工況時(shí),最大(=1.0)與最小(=0)總壓損失差值分別為2.6、3.7、3.5 m水頭(如表4所示)。在=0~0.8時(shí),在不同流量工況下,導(dǎo)葉端面間隙幾何參數(shù)大小對(duì)蝸殼內(nèi)總壓損失的影響程度有所不同,并且其影響程度隨著流量增加更加明顯,在des=0.6和des=0.8工況時(shí),蝸殼內(nèi)總壓損失最大為=0,最小為=0.8,差值分別為0.47、0.57 m水頭,而在des=1.0~1.4工況時(shí),蝸殼內(nèi)總壓損失最大為=0.8時(shí),最小為=0時(shí),其差值分別為1.28、1.64、2.79 m。
表4 不同流量工況下,蝸殼瞬時(shí)總壓損失平均值
圖7分別為不同導(dǎo)葉端面間隙時(shí)導(dǎo)葉和蝸殼擴(kuò)壓瞬時(shí)分布。由圖可知,在不同流量工況下,當(dāng)/=1.0時(shí),離心泵中擴(kuò)壓作用主要由導(dǎo)葉完成,蝸殼幾乎不存在擴(kuò)壓作用,而/=0~0.8時(shí),導(dǎo)葉與蝸殼共同起擴(kuò)壓作用。隨著流量增加,導(dǎo)葉與蝸殼擴(kuò)壓作用在逐漸降低,但當(dāng)/=1.0時(shí)其擴(kuò)壓作用的降低程度明顯大于/=0~0.8。在des=0.8、des=1.0工況下,當(dāng)/=1.0時(shí)導(dǎo)葉擴(kuò)壓作用大于/=0~0.8,而在des=1.2流量工況下,當(dāng)/=0~0.8時(shí),其導(dǎo)葉擴(kuò)壓作用優(yōu)于=1.0;在各流量工況下,當(dāng)/=0~0.8時(shí)蝸殼擴(kuò)壓作用均高于/=1.0。
注:dd和dv分別為導(dǎo)葉與蝸殼擴(kuò)壓,且計(jì)算公式相同.dd=(out-in)/;in和out分別為進(jìn)口和出口平均靜壓。
Note:dd,dvare the diffuser in guide and volute respectively, and the calculation formula can be the same;dd=(out-in)/Andin,outare the average pressure in inlet and outlet.
圖7 不同流量工況,不同導(dǎo)葉端面間隙時(shí)導(dǎo)葉與蝸殼擴(kuò)壓性能
Fig.7 Effect of boosting pressure in diffuser and volute under different flow rates and guide vane end clearance
圖8分別為/des=1.0流量工況下,不同導(dǎo)葉端面間隙時(shí)離心泵葉輪、導(dǎo)葉、蝸殼中截面靜壓分布。由圖8a-圖8c可知,隨著導(dǎo)葉端面間隙增加,葉輪出口高壓區(qū)域分布位置在變化,當(dāng)/1.0時(shí),葉輪出口高壓區(qū)域主要集中于靠近蝸殼隔舌處的葉輪流道區(qū)域,而當(dāng)/0~0.8時(shí),其高壓區(qū)域主要集中于靠近蝸殼較小過(guò)流斷面處葉輪流道;隨著導(dǎo)葉端面間隙增加減小,位于導(dǎo)葉前緣附近葉輪出口區(qū)域壓力在逐漸降低,表明葉輪出口處?kù)o壓分布受葉輪尾緣與導(dǎo)葉前緣共同影響逐漸減弱。由圖8d-圖8f可知,在各導(dǎo)葉端面間隙下,導(dǎo)葉進(jìn)口至出口,靜壓在逐漸增加,且位于蝸殼較小過(guò)流斷面處導(dǎo)葉流道靜壓高于其區(qū)域,因動(dòng)靜干涉作用影響,導(dǎo)葉前緣處?kù)o壓梯度變化最大,分布不均。當(dāng)/=1.0時(shí),導(dǎo)葉流道中靜壓大于其它位置,且分布極其不均;隨著導(dǎo)葉端面間隙增加,導(dǎo)葉前緣與位于葉輪尾緣區(qū)域的靜壓在逐漸降低,梯度變化逐漸更均勻,由此表明葉輪與導(dǎo)葉動(dòng)靜干涉作用影響在逐漸減弱。由圖8g-圖8i可知,不同導(dǎo)葉端面間隙對(duì)蝸殼內(nèi)靜壓分布影響很大,且規(guī)律性不明顯,當(dāng)/=1.0時(shí),蝸殼整個(gè)流道內(nèi)靜壓最大,而/=0.8時(shí)靜壓最小,且靜壓梯度變化最大,尤其位于蝸殼較大過(guò)流斷面處;當(dāng)/=0~0.6時(shí),除蝸殼出口區(qū)域外,其它過(guò)流斷面處?kù)o壓分布類(lèi)似,即位于導(dǎo)葉尾緣附近、蝸殼較大過(guò)流斷面處?kù)o壓較小,梯度變化較大。
注:a′~e′為導(dǎo)葉葉片;1~6為葉輪葉片。
Note: a′-e′ are diffuser vanes; 1-6 are impeller blades.
圖8 設(shè)計(jì)流量工況,不同導(dǎo)葉端面間隙時(shí)葉輪、導(dǎo)葉及蝸殼內(nèi)靜壓分布
Fig.8 Static pressure distribution in impeller, diffuser and volute under design flow with different guide vane end clearance
圖9分別為不同導(dǎo)葉端面間隙時(shí)葉輪葉片和導(dǎo)葉葉片中截面靜壓分布。由圖9a-圖9c可知,不同流量,不同導(dǎo)葉端面間隙時(shí),葉輪葉片中截面靜壓分布相似,即葉片表面靜壓沿流動(dòng)方向逐漸增加,同時(shí),因葉輪出口尾跡流-射流與動(dòng)靜干涉作用共同影響,靠近葉輪出口附近區(qū)域葉片壓力面靜壓突然低于吸力面;隨著流量增加,壓力面與吸力面靜壓差值在逐漸增加,且吸力面大于壓力面靜壓位置逐漸向葉輪出口移動(dòng),說(shuō)明隨著流量增加,葉輪出口附近流場(chǎng)漸穩(wěn)定,受尾跡流-射流影響逐漸減弱。在各流量工況下,當(dāng)/=1.0時(shí)葉片壓力面大于吸力面壓力差值遠(yuǎn)小于其它/,由此說(shuō)明當(dāng)/=1.0時(shí)葉輪內(nèi)流場(chǎng)較穩(wěn)定,葉輪受力較小;在des=0.8、des=1.0、des=1.2工況,=1.0時(shí)葉片吸力面大于壓力面靜壓位置分布位于=0.93、0.97、0.1 m,而其它/時(shí)其位于葉片出口附近,因此隨著導(dǎo)葉端面間隙減小,葉輪出口附近區(qū)域流動(dòng)受尾跡流-射流影響在逐漸減弱,間接表明葉輪出口附近區(qū)域流場(chǎng)分布逐漸更均勻,改善葉輪的水力性能。
由圖9d-圖9f可知在不同流量工況下,不同導(dǎo)葉端面間隙時(shí),導(dǎo)葉葉片進(jìn)口至導(dǎo)葉出口,壓力在逐漸增加,導(dǎo)葉將葉輪中流出的高速液體動(dòng)能逐漸轉(zhuǎn)化為壓力能,但在導(dǎo)葉前緣附近,壓力突然增加,流動(dòng)比較混亂,可能導(dǎo)致導(dǎo)葉內(nèi)存在較大流動(dòng)損失。隨著流量增加,當(dāng)/=1.0時(shí)導(dǎo)葉葉片表面壓力在逐漸降低,且葉片壓力面與吸力面靜壓差值逐漸增加,由此可間接說(shuō)明導(dǎo)葉擴(kuò)壓作用在逐漸降低,導(dǎo)葉內(nèi)部流場(chǎng)逐漸不穩(wěn)定,葉片受流體的作用力在增加,但當(dāng)/=0.8、0.6、0.5、0.3時(shí),導(dǎo)葉葉片壓力面與工作面靜壓差值幾乎不變,因此說(shuō)明導(dǎo)葉擴(kuò)壓作用隨著流量的增加而不變。
本文結(jié)合數(shù)值模擬與試驗(yàn)方法,采用SST湍流模型,研究了半高導(dǎo)葉端面間隙對(duì)離心泵水力性能及內(nèi)部流場(chǎng)的影響規(guī)律,主要結(jié)論有:
1)隨著導(dǎo)葉端面間隙增加,離心泵的揚(yáng)程與效率先逐漸增加而后逐漸減小。當(dāng)導(dǎo)葉端面間隙在0.4~0.6導(dǎo)葉葉高時(shí),離心泵中揚(yáng)程曲線(xiàn)較平緩,下降較慢,效率較高,其中導(dǎo)葉葉高為1.0時(shí),最高效率點(diǎn)位于流量37.5 m3/h處,導(dǎo)葉葉高為0~0.8時(shí),其最高效率點(diǎn)位于流量42.5 m3/h處,并且導(dǎo)葉端面間隙為0.4~0.6導(dǎo)葉葉高時(shí),離心泵的效率最大,為57.5%,因此適當(dāng)?shù)陌敫邔?dǎo)葉間隙能改善離心泵水力性能。
2)隨著導(dǎo)葉端面間隙逐漸減小,葉輪-導(dǎo)葉動(dòng)靜干涉作用影響逐漸降低,離心泵中葉輪做功、導(dǎo)葉及蝸殼內(nèi)能量損失瞬時(shí)波動(dòng)更平緩,且普通導(dǎo)葉式離心泵葉輪做功、導(dǎo)葉內(nèi)能量損失逐漸高于帶導(dǎo)葉端面間隙的離心泵;在各流量工況時(shí),導(dǎo)葉端面間隙能降低離心泵蝸殼內(nèi)能量損失,改善蝸殼的水力性能。
3)動(dòng)靜干涉作用是影響普通導(dǎo)葉式離心泵內(nèi)部流場(chǎng)的主要原因,而蝸殼不對(duì)稱(chēng)幾何形狀是影響含導(dǎo)葉端面間隙的離心泵內(nèi)部流場(chǎng)的主要因素,遠(yuǎn)超過(guò)葉輪-導(dǎo)葉動(dòng)靜干涉作用影響。
4)普通導(dǎo)葉式離心泵中葉輪葉片載荷受尾跡流-射流影響較大,葉片壓力面載荷低于吸力面的位置位于葉片出口前段處,而存在導(dǎo)葉端面間隙時(shí)此類(lèi)現(xiàn)象主要發(fā)生在葉片出口。
[1] 劉厚林,崔建保,談明高,等. 離心泵內(nèi)部流動(dòng)時(shí)序效應(yīng)的CFD計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):67-73.
Liu Houlin, Cui Jianbao, Tan Minggao, et al. CFD calculation of clocking effect on centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 67-73. (in Chinese with English abstract)
[2] 高波,王震,楊麗,等. 不同口環(huán)間隙離心泵性能及水力激勵(lì)特性分析及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,34(7):79-85.
Gao Bo, Wang Zhen, Yang Li, et al. Analysis and test of performance and hydraulic excitation characteristics of centrifugal pump with different seal ring clearances [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 34(7): 79-85. (in Chinese) With English abstract.
[3] 黎義斌,胡鵬林,李仁年,等. 不同葉頂間隙對(duì)斜流泵性能影響的數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):86-93.
Li Yibin, Hu Penglin, Li Rennian, et al. Numerical analysis for effects of different blade tip clearance on performance in mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 86-93. (in Chinese with English abstract)
[4] Gao X F, Shi W D, Zhang D S, et al. Calculation and analysis of submersible well pump clearance leakage loss[J]. Applied Mechanics & Materials, 2013, 456(21): 225-229.
[5] Zhang D, Shi L, Zhao R, et al. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model[J]. Journal of Mechanical Science & Technology, 2017, 31(2): 659-667.
[6] Li W, Shi W D, Xu Y D, et al. Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station[J]. Journal of Vibroengineering, 2013, 15(3): 1177-1185.
[7] Liu H, Ding J, Dai H, et al. Investigation into transient flow in a centrifugal pump with wear ring clearance variation[J]. Advances in Mechanical Engineering, 2014, 2014(2): 693097.
[8] Zhang D, Shi L, Shi W, et al. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side- perpendicular cavitation vortices in an axial flow pump[J]. International Journal of Multiphase Flow, 2015, 77: 244-259.
[9] Ahmadi-Baloutaki M, Carriveau R, Ting S K. An experimental study on the interaction between free-stream turbulence and a wing-tip vortex in the near-field[J]. Aerospace Science & Technology, 2015, 43(1): 395-405.
[10] Wu H X, Miorini R L, Katz J. Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump[J]. Experiments in Fluids, 2011, 50(4): 989-1003.
[11] Zhang D S, Shi W D, Esch B P M V, et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump[J]. Computers & Fluids, 2015, 112(1): 61-71.
[12] 賈曉奇,聶小林,涂必成,等. 半開(kāi)式離心泵變工況葉頂間隙的流動(dòng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):91-96.
Jia Xiaoqi, Nie Xiaolin, Tu Bicheng, et al. Flow characteristics of blade tip clearance in semi-open centrifugal pump in variable condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 91-96. (in Chinese with English abstract)
[13] Guo X M, Zhu Z C, Cui B L, et al. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump[J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3173-3181.
[14] Zhao W G, Li Y B, Wang X Y, et al. Research on the effect of wear-ring clearances to the performance of centrifugal pump[J]. Iop Conference, 2012, 15(7): 1-7.
[15] Li W G. An Experimental study on the effect of oil viscosity and wear-ring clearance on the performance of an Industrial centrifugal pump[J]. Journal of Fluids Engineering, 2012, 134(1): 014501.
[16] 馬波,朱俊,張明. 多級(jí)離心泵葉輪口環(huán)磨損監(jiān)測(cè)方法研究[J]. 中國(guó)機(jī)械工程,2016,27(21):2909-2914.
Ma Bo, Zhu Jun, Zhang Ming. Monitoring method analysis of multistage centrifugal pump seal ring wear[J]. China Mechanical Engineering, 2016, 27(21): 2909-2914. (in Chinese with English abstract)
[17] Baragetti S, Villa F. Effects of geometrical clearances, supports friction, and wear rings on hydraulic actuators bending behavior[J]. Mathematical Problems in Engineering, 2016, 2016: 1-17.
[18] 劉在倫,許立中,賈曉,等. 離心泵浮動(dòng)葉輪軸向間隙的液體流動(dòng)分析及軸向力計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):79-85.
Liu Zailun, Xu Lizhong, Jia Xiao, et al. Analysis of liquid flow and axial force calculation in axial clearance for floating impeller of centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 79-85. (in Chinese with English abstract)
[19] Li W G. Impeller trimming of an industrial centrifugal viscous oil pump[J]. Majlesi Journal of Mechanical Engineering, 2013(1): 1-10.
[20] 吳大轉(zhuǎn),許斌杰,武鵬,等. 多級(jí)離心泵內(nèi)部間隙流動(dòng)與泄漏損失[J]. 浙江大學(xué)學(xué)報(bào):工學(xué)版,2011,45(8):1393-1398.
Wu Dazhuan, Xu Binjie, Wu Peng, et al. Internal clearance flow and leakage loss in multi-stage centrifugal pump[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(8): 1393-1398. (in Chinese with English abstract)
[21] Coutier-Delgosha O, Fortes-Patella R, Reboud J L, et al. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitation condition[J]. Postgraduate Medical Journal, 2003, 51(598): 492-497.
[22] Barrio R, Parrondo J, Blanco E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers & Fluids, 2010, 39(5): 859-870.
[23] 黃先北,劉竹青,楊魏. 離心泵口環(huán)間隙附近的空化特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):59-63.
Huang Xianbei, Liu Zhuqing, Yang Wei. Cavitation characteristics of centrifugal pump near wear-ring clearance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 59-63. (in Chinese with English abstract)
[24] 趙萬(wàn)勇,王釗,王磊,等. 多級(jí)泵平衡盤(pán)動(dòng)態(tài)平衡研究與數(shù)值仿真[J]. 機(jī)械工程學(xué)報(bào),2013,49(4):163-167.
Zhao Wanyong, Wang Zhao, Wang Lei, et al. Study and numerical simulation on dynamic equilibrium of balance disc in multi-stage centrifugal pump[J]. Journal of Mechanical Engineering, 2013, 49(4): 163-167. (in Chinese with English abstract)
[25] 李景悅,嚴(yán)敬,賴(lài)喜德,等. 離心葉輪平衡機(jī)構(gòu)軸向力的計(jì)算與分析[J]. 西華大學(xué)學(xué)報(bào):自然科學(xué)版,2015,34(3):73-76.
Li Jingyue, Yan Jing, Lai Xide, et al. Calculation and analysis of axial thrust due to balance mechanics of centrifugal impellers[J]. Journal of Xihua University: Natural Science Edition, 2015, 34(3): 73-76. (in Chinese with English abstract)
[26] 劉在倫,魏烈江,齊學(xué)義,等. 新型軸向力平衡裝置間隙泄漏量的計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(12):74-76.
Liu Zailun, Wei Liejiang, Qi Xueyi, et al. Calculation of gap leakage flow rate in new axial trust device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 36(12): 74-76. (in Chinese with English abstract)
[27] Takao M, Kuma H, Maeda T, et al. A straight-bladed vertical axis wind turbine with a directed guide vane row effect of guide vane geometry on the performance[J]. Journal of Thermal Science, 2009, 3(1): 54-57.
[28] Hoshino M, Ohki H, Yoshinaga Y. The effect of guide vane height on the diffuser flow in centrifugal compressors[J]. Transactions of the Japan Society of Mechanical Engineers B, 1985, 51(470): 3366-3369.
[29] Oshinaga Y, Kaneki T, Kobayashi H, et al. A study of performance improvement for high specific speed centrifugal compressors by using diffusers with half guide vanes[J]. Journal of Fluids Engineering, 1987, 109(4): 359-367.
[30] Sitaram N, Issac JM, Sitaram N, et al. An experimental investigation of a centrifugal compressor with hub vane diffusers[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 1997, 211(5): 411-427.
[31] 劉寶軍,賀利生,雷明洋,等. 低稠度半高葉片擴(kuò)壓器的模型級(jí)性能研究[J]. 風(fēng)機(jī)技術(shù),2011(2):10-14.
[32] Issac J M, Sitaram N, Govardhan M, et al. Effect of diffuser vane height and position on the performance of a centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 2004, 218(8): 647-654.
[33] Zhang W, Gong W, Fan X, et al. The Effect of half vane diffuser on the noise generated from a centrifugal Fan[J]. Experimental Techniques, 2012, 36(3): 5-13.
Numerical simulation and validation of influence of end clearance in half vane diffuser on hydraulic performance for centrifugal pump
Jiang Wei, Chen Diyi※, Qin Yuqi, Wang Yuchuan
(712100)
Centrifugal pumps are widely used in general machines and the demand of the efficiency and the stable operation can be higher. All kinds of clearances appear easily in the centrifugal pump, such as the tip clearance and wear-ring clearance. Meantime, the gap flow of tip clearance and wear-ring clearance results in the complicated turbulent flow and clearance vortex easily which has a great effect on the hydraulic performance and operation stability of a centrifugal pump. Thus, the study on mechanism of the gap clearance flow in the centrifugal pump is important. The half-height diffuser can be widely used in compressors and fans and can improve the performance of the compressors and fans. However, the application of the half-height diffuser in the centrifugal pump is seldom and the influence law of the clearance of the half-height guide vane on the hydraulic performance of the centrifugal pump is not clear. For the first time, the half-height diffuser is introduced into the centrifugal pump in this paper. Based on the numerical simulation and experimental methods, using SST-model, research on effect of the half-height guide vane end clearance on the hydraulic performance and the internal flow field of centrifugal pump was conducted. The results show that the appropriate half-height guide vane end clearance can effectively improve the centrifugal pump’s hydraulic performance, and broaden its high efficient area. When the guide vane height is 1.0, the maximum efficiency occurs at the position with the flow of 37.5 m3/h, however, it can be at 42.5 m3/h when the guide vane height is 0-0.8. The effect of the interaction between rotor and stator can be the main reason for the internal flow field of the general guide vane centrifugal pump, and the high pressure zone of the impeller outlet channel occurs when the impeller blade is near the leading edge of the guide vane. The asymmetric geometry of the volute is the main factor, which influences the internal flow field of the centrifugal pump with the end face gap. The impeller blade load in the conventional guide vane centrifugal pump is affected by the wake flow-jet flow and is higher than that of the centrifugal pump with the half-height guide vane. With guide vane end gap of 0.4-0.6 guide vane height, the efficiency and the head of the centrifugal pump are the optimal, and the maximum efficiency is 57.5%. In low flow condition, the hydraulic performance of impeller and diffuser is the key influence factor to hydraulic performance of centrifugal pump. The total pressure loss of the impeller in the centrifugal pump with the half-height guide vane end gap is higher than that of the ordinary diffuser centrifugal pump at the flow condition of 0.6, 0.8 and 1.0 time, however, the total pressure loss of the impeller in the centrifugal pump with the half-height guide vane end gap is lower than that of the ordinary guide vane centrifugal pump at 1.2 and 1.4 times flow condition. The performance of the impeller when guide vane height is 1.0 can be 7 m lower than that when guide vane height is 0-0.8 at the 0.6 flow condition. Meantime, the total pressure loss of diffuser while guide vane height is 0 can be 6.66 and 4.47 m higher than those with 1.0 guide vane height at the 0.6 and 0.8 flow condition, respectively. The total pressure loss of the volute in the centrifugal pump with the end clearance of the guide vane is less than that of the ordinary guide vane centrifugal pump. With the flow rate increasing, the influence of the interaction between impeller and diffuser on the centrifugal pump with the half-height guide vane decreases gradually, and the effect of the interaction between impeller and volute tongue on the centrifugal pump with the half-height guide vane increases gradually. The results provide theoretical basis and new ideas for the design and reconstruction of the guide vanes in centrifugal pumps.
centrifugal pump; hydraulic model; performance; total pressure loss; rotor-stator interaction
10.11975/j.issn.1002-6819.2017.17.010
TK311
A
1002-6819(2017)-17-0073-09
2017-04-24
2017-08-24
國(guó)家自然基金(51479173,51509209);西北農(nóng)林科技大學(xué)科研啟動(dòng)經(jīng)費(fèi)(Z109021642);陜西水利科技計(jì)劃項(xiàng)目(2017slkj-5);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(Z109021705)
江偉,講師,博士,主要從事流體機(jī)械內(nèi)部流動(dòng)特性研究。楊凌 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。 Email:weijianglut@126.com
陳帝伊,教授,博士生導(dǎo)師,主要從事水力機(jī)械系統(tǒng)運(yùn)行穩(wěn)定性分析。楊凌 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。Email:nwsuafdychen@163.com
農(nóng)業(yè)工程學(xué)報(bào)2017年17期