• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    2017-11-01 23:03:55HeXiantaoDingYouqiangZhangDongxingYangLiCuiTaoWeiJiantaoLiuQuanweiYanBingxinZhaoDongyue
    農(nóng)業(yè)工程學報 2017年17期
    關(guān)鍵詞:排種電驅(qū)種器

    He Xiantao, Ding Youqiang, Zhang Dongxing,2, Yang Li,2, Cui Tao,2, Wei Jiantao, Liu Quanwei, Yan Bingxin, Zhao Dongyue

    ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    He Xiantao1, Ding Youqiang1, Zhang Dongxing1,2, Yang Li1,2※, Cui Tao1,2, Wei Jiantao3, Liu Quanwei1, Yan Bingxin1, Zhao Dongyue1

    (1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China; 3. CNH Industrial, Chicago 60527, USA)

    A proportional-integral-derivative (PID) electronic control system for seed meters was developed to improve the planting quality and operation efficiency of conventional planters with ground wheel and chain driven system. A PID algorithm was used for controlling seed plate rotation speed. In addition, the PID controller incorporated integral separation of the integral term to increase the response time and reduce the occurrence of overshoot when the set point was far away from the current rotation rate. The final tuned PID parameter values wereK=16,K=0.05, andK=36. The response time, overshoot, and steady error for a seed plate rotation speed step response from 0 to 24 r/min were 0.4 s, 1.56%, and 0.75%, respectively. Experiment results showed that the Singulation index (SI) of seed meter could receive to 98.4%, and the Multiple index (UI) and Miss index (MI) were not more than 1% even at the highest planting speed of 12 km/h, which indicated that the seed meter with the developed control system and tuned PID parameters could obtain better planting quality and higher planting speed.

    agricultural machinery; electronic control; performance; PID parameter tuning; integral separation

    0 Introduction

    Precision planters are used widely in China, and the performance of seed meter, which is a key component of precision planter, affects the uniformity of seed distribution directly[1]. However, conventional precision planters with ground wheels and chains driven system bring poor planting quality due to slippage between wheel and ground, and chain instability during the process[2]. Adopting electric motor to replace conventional mechanical driving system to drive seed meters is one of methods to solve the problems.

    The agricultural machinery companies in the world, e.g. John Deere[3]and Horsch[4], have developed their characteristic driving seed meters for precision planter by using electric motors, and the high-technology agricultural machinery companies, e.g. Precision Planting[5]and Ag Leader[6], have also developed corresponding control system for precision planters equipped with electric-driven seed meters in recently years. The planters with technology above significantly improve the planting speed to 15 km/h and singulation to about 98%, but their prices are very high. In addition, Chaney et al.[7]designed a kind of electronic control system for a sugarcane planter. He et al.[8]developed a type of seed meter based on electromagnetic vibrating mode, and also designed its PLC controller. Tang et al.[9]designed a driving system for seed meters to control the speed of seed plate based on the planting speed. Zhai et al.[10-11]developed an automated driving system of seed metering according to sensor signal. But these researches are at testing stage and not applied in the market.

    To solve issues above, this study developed a PID electronic control system for seed meters and conducted experiments to test the performance of the control system in the lab.

    1 Material and methods

    1.1 Components of the electronic control system

    The system consisted of five components: control box, touch screen display (MT4414T, Kinco Automation company, China), incremental encoder (TRD-2T500BF, Koyo Electrical Company, Japan), seed plate driving motor (57BL55S06, Times Brilliant Electrical Company, China), seed meter, as in Fig. 1.

    Fig.1 Components of electronic control system

    A twelve volt power supply provides power for the entire control system. The seed meter adopted in this study was an air-pressure precision corn meter developed by Shi et al.[12-13], which was modified to be driven by seed plate driving motor. The motors are DC brushless motors, and each motor’s back is embedded by three Hall-effect sensors to measure the positions of the rotors and realize current switching for the rotors electronically, which eliminates brush maintenance of DC brush motor[14-16]. In the meantime, the Hall-effect sensors were used by the study to measure the motor rotation speed in real time for achieving closed-loop control[17]. The planting speed was measured by an incremental encoder that was mounted on the shaft of a ground wheel.

    Whereis the planting speed, km/h;is diameter of the ground wheel, cm;is the sample period, s;is the number of pulses received within the period of;is the wheel slip ratio, %;is resolution of the encoder, pulses/r.

    A touch screen display as interface of data input/output used to enter planting parameters such as number of seed holes per disk seed spacing,and, and also display planting speed and rotation speed of seed plate. The touch screen display was communicated with the controller by RS485. The controller is the core of the system, which was designed to receive input data from incremental encoder and touch screen display and output a signal pulse with a certain frequency and duty cycle to adjust seed plate rotation speed for achieving desired seed spacing as planned. The seed plate rotation speed is calculated as

    Whereis the seed plate rotation speed, r/min;is the number of seed holes per disk;is the seed spacing, cm.

    1.2 PID control of seed plate rotation speed

    As PID control is a simple algorithm with high reliability, and commonly used in various control systems[18-21], a closed-loop PID is used in this study to control the seed plate rotation speed for improving the seed plate’s dynamic performance. The PID control principle was illustrated in Fig.2.

    Fig.2 Schematic diagram of PID control principle

    The controller computes the error between the target values and actual values of seed plate rotation speed at time t, then control the motor speed by adjusting the signal duty cycle. A basic PID controller in continuous time[22-23]is described by

    WhereP() is the signal duty cycle;() is the error between the target values ((), r/min) and actual values ((), r/min) of seed plate rotation speed at time t, r/min;K, KandKare the proportional, integral, and differential gain constant, respectively. Equation (3) is discretized as follows for reducing computational cost[22-23].

    Here,(),p() (r/min) are the discrete error and control signal’s duty cycle, respectively;is sampling points.

    1.3 Setting PID parameters via step response analysis

    The present study employed a trial-and-error method to estimate the PID parameters by laboratory experiments. Given a step response in, the step response curve was plotted, and the impact of each PID parameter was analyzed in turn through trial and error to obtain a response curve that provided a rapid response time and a small stable error within a small overshoot. The overshoot was set here to be within 2%, and PID parameter selection providing the optimal performance of the control response was based on an appropriate tradeoff between the minimum response time and the minimum stable error.

    The laboratory setup employed for tuning is illustrated in Fig.3. The encoder (1 in Fig.3) was mounted on the shaft of a meter that measures the actual value ofin real time, and the rotation speed signal was sent to a data acquisition card (2 in Fig. 3; National Instrument USB-6009). LabView software was installed on a PC (3 in Fig. 3) to read the signal from the data acquisition card, calculate the meter’s rotation speed, and then display it to obtain the step response of. Planting parameters are entered through the touch screen display with=25 cm and=9 km/h, resulting a target value of in=24 r/min, thus, registering a step response from 0 to 24 r/min. Zhengdan 958 maize hybrid seeds were employed in the calibration, and the air pressure was set at 3.0 kPa. The encoder’s resolution was 2 500 pulses/r, and the data acquisition rate was 10 Hz.

    1.Incremental encoder 2.Data acquisition card 3.PC interface for LabView software

    Fig.3. Test setup employed for tuning PID parameters

    1.3.1 Setting the proportional gain constant (K)

    To determineK, we considered only proportional control in the trial and error experiments (i.e.,K=K=0). The proportional term produces an output value at sampling pointthat is proportional to(). The proportional response can be adjusted by multiplying() byK. A high proportional gain results in a large change in the output for a given change in() (i.e.,()?(?1)), and an overly high gain can make the system unstable. In the tuning process shown in Fig. 4, settingK=5 responded too slow, andKwas then incrementally increased to 10, 15 and 20. The response plot forK=15 exhibits the beginning of overshoot, which is greatly increased whenK=20. Therefore,Kshould be between 15 and 20. Further fine tuning obtained an optimal value ofK=16, which, shown in Table 1, provides minimum values for both the response time and stable error.

    Note: Kp is the proportional gain constant. Same as below.

    Table 1 Step response results for tuning Kp (proportional controller only, i.e., Ki=Kd=0)

    Note:Kis the integral gain constant;Kis the differential gain constant, Same as below.

    1.3.2 Setting the integral gain constant (K)

    To determineK, we considered only proportional- integral control in the trial and error experiments (i.e.,K= 0), and the previously optimized valueK=16 is employed as a constant. The integral term can eliminate the residual steady-state error that occurs with a pure proportional controller. However, it may slow down the system response and cause additional overshoot. Fig.5 presents the step response curves obtained forKvalues of 0.01 and 0.1 (red and green curves, respectively), where we observe that integral accumulation for even a small value ofK=0.01 delays the response time and increases system overshoot due to the initially large overshoot of 1.37% associated with proportional control alone. While the overshoot caused by the integral term would be reduced by decreasingKappropriately, this would also further increase the response time. Therefore, we retain a constantK, and employ integral separation[24-27]to reduce the overshoot and slow response caused by the integral term. This method employs a switching variableXto omit the integral term when() is large, and to include the integral term when() is small. The switching variable is defined as follows[28-29].

    The overall PID equation after introducingX[28-29]is given as

    Employing only the first 2 terms of Equation 6, a comparison between the results with and without integral separation given in Fig.5 showed that the added delay is eliminated and no overshoot occurs forK=0.01. However,K=0.1 induces a minor degree of overshoot, indicating thatKshould be between 0.01 and 0.1. The tuning results are listed in Table 2. Fine tuning of the integral term yields an optimal valueK=0.05. Here, compared withK=0.01, the steady error is reduced to 32.5% while the response time is increased to only 16.7%, indicating that the performance withK=0.05 is better. Compared with proportional control only, the steady error is reduced to 0.56% (i.e., a 34% reduction).

    Fig.5 Step response curves from Ki tuning

    Table 2 Step response results with integral-separation method (proportional-integral controller only, i.e., Kd=0)

    1.3.3 Setting the differential gain constant (K)

    The derivative of the error predicts system behavior, and thus improves the settling time and stability of the system, but it is sensitive to system noise, and can cause oscillation. Holding the other values constant atK=16 andK=0.05 during tuning,Kis initially selected as 10, 20, 30, 40, and 50, and the response curves obtained are shown in Fig.6a. The response times tend to decrease over the initial range forK, achieving a minimum value at 40 and 50. However, consideration of the tuning results listed in Table 3 indicates that the steady error also increases over the initial range forK, indicating thatKshould be less than 40. Through fine tuning, the optimal value ofK=36 was determined. Here, compared withK=20, the response time is reduced by 20% while the steady error is increased by only 17.2%, indicating a better response performance withK=36. The final parameters obtained by tuning areK=16,K=0.05, andK=36. The response time, overshoot, and steady error obtained with these parameters are 0.4 s, 1.56%, and 0.75%, respectively. Compared with the PI controller, the response time is reduced by 0.3 s, as shown in Fig.6b.

    Note: Kd is gain constant and same as below.

    Table 3 Step response results for tuning Kd (full PID controller)

    1.3.4 System step response under different planting speeds

    The proposed control system is mainly employed for high speed planting. To validate the performance at high speed, step response testing for values ofof 8 km/h to 14 km/h was conducted with=25 cm, and the results are shown in Fig.7.

    Fig.7 Step response curves under different planting speeds

    The target values ofassociated with each value ofare given in the chart legend. At 14 km/h, the step response exhibits instability and the actual value of(i.e., 35 r/min) did not attain the target value of 37.33 r/min . This may have caused by an inability of the motor to reach the target speed at the twelve volt power supply, which was applied based on the power supply voltage of the tractor. Adopting a power converter to transfer twelve volt to twenty-four volt is a way to increase speed of seed plate, but this raises the energy consumption and cost of the control system. But forless than 14 km/h, the step response was very stable. Therefore, the maximum working speed of the control system can reach at 13 km/h, which is much too high than the working speeds of conventional planters.

    2 Results and discussion

    2.1 The performance of the control system

    The performance of the proposed control system was tested in laboratory with three replications. Zhengdan 958 maize hybrid seeds were employed, and the air pressure was set at 3.0 kPa. Planting parameters were entered through the touch screen display with=25 cm,=50 cm and three planting speeds (6, 9 and 12 km/h, respectively).Using a camera to record planting condition, as in Fig.8.

    1.Control box 2.Touch screen display 3.Seed meter 4.Light source 5.Camera

    Basing on China National Standard of Test Methods of Single Seed Driller (GB/T 6973-2005)[30], the performance indexes is calculated as follows.

    Where1is the number of singles,2is the number of multiples,3is the number of skips, and′ is the number of theoretical planting seeds. SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter.

    The results of experiment is shown in Table 4 and Fig.9.

    Table 4 Results of experiment

    Note: SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter. The same below.

    Note: Columns labeled with same letters are not significantly different.

    As shown in the Table 4, with the increase of the planting speed, the SI, UI and MI didn’t change significantly. The data also showed that SI increased at first and then decreased with the planting speed increasing, and the best value was 99.47% at speed of 9 km/h. UI decreased at first and then increased with the speed increasing, and the worst value was 0.93% at speed of 6 km/h. MI were both zero at speed of 6, 9 km/h, but the value reached 0.8% at the speed of 12 km/h. Analyses above showed that UI was the determinant factor lead to SI decreasing when at low planting speed (6, 9 km/h), then MI became determinant instead of UI at the high planting speed (12 km/h). The best planting performance was got at speed of 9 km/h with SI of 99.47%, UI of 0.53% and MI of 0%. However, even at the highest planting speed of 12 km/h, the SI of seed meter can also be 98.4%, meanwhile the UI and MI were not more than 1%, which are far better than China National Standard[31]. Further analysis shown in Fig. 9 indicates that, when planting speed increased from 6 km/h to 9 km/h, the SI, UI, and MI changed only moderately. However when planting speed changed from 9 km/h to 12 km/h, the SI and MI changed appreciably. This change was possibly caused by the requirement of higher air pressure at higher planting speed. Results indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    2.2 The cost and market expectation of the control system

    Most of the components used in the control system are locally manufactured in China, and their costs are listed in the Table 5. The table indicates that, the cost of expanding one planting row that includes a seed plate driving motor and a seed meter is $321, and the control system has a higher performance-price ratio with the number of planting row increasing. The total cost of the control system for a four-row planter is $1800, which is considerably less than similar systems from abroad (for example, the cost of the controller alone from Precision Planting LLC is greater than $5000 in the Chinese market), making the system accessible to precision planters in developing countries and be largely used in the market.

    Table 5 Cost of control system for a four-row planter

    3 Conclusions

    A PID electronic control system for seed meters was designed and evaluated in this study. Conclusions of this research were as follows.

    1) Using integral separation in the PID control algorithm reduced the issues of overshoot and delayed response time associated with the integral component under conditions when the error is large. After tuning, the final PID parameters obtained wereK=16,K=0.05, andK=36. Under a step response infrom 0 to 24 r/min, the response time, overshoot, and steady error were 0.4 s, 1.56%, 0.75%, respectively.

    2) The experiment data showed that the SI of seed meter can be 98.4%, meanwhile the UI and MI are not more than 1% even at the highest planting speed of 12 km/h, which indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    3) Most of the components used in the electronic control system are locally manufactured in China, which is considerably less expensive than the similar systems abroad, making the system accessible to precision planters in developing countries.

    [1] Zhang Junchang, Yan Xiaoli, Xue Shaoping, et al. Design of no-tillage maize planter with straw smashing and fertilizing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 51-55.

    [2] Saadat K, Mohammad J E, Mohammad M M. Design, development and evaluation of a mechatronic transmission system to improve the performance of a conventional row crop planter[J]. International journal of Agronomy and Plant Production, 2013, 4(3): 480-487.

    [3] Deere & Company (brand name John Deere). John deere Exact Emerge row unit[EB/OL]. [2016-08-05]. https://www. deere.com/en/planting-equipment/row-units/exactemerge-row- unit/

    [4] Horsch Maschinen GmbH. Maestro CC Technical Data [EB/OL]. [2016-08-17]. http://www.horsch.com/produkte/ saemaschinen/einzelkornsaemaschinen/maestro/maestro-cc/

    [5] Precision Planting LLC. Precision Planting vSet Select meter[EB/OL].[2016-09-21]. http://www.precisionplanting.com/#products/vset_select/.

    [6] Ag Leader Technology. Ag Leader SureDrive[EB/OL]. [2016-09-10]. http://www.agleader.com/products/seedcommand/sure-drives/.

    [7] Chaney P P, Parish R L, Sistler F E. Automatic control system for a sugarcane planter[J]. Applied Engineering in Agriculture, 1986, 2(2): 51-54.

    [8] He Peixiang, Yang Mingjin, Chen Zhonghui. Study on photoelectric controlled precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 47-49.

    [9] Tang Yaohua, Zhang Jinguo. Seed sowing driving system based on non-contact speed measuring[J]. Agri Mech Research, 2009(3): 21-23.

    [10] Zhai Jianbo, Gao Haizhou, Zheng Xiaolong, et al. Research on automatical seed metering drive system based on sensor technology[J]. Hubei Agricultural Sciences, 2011, 50(17): 3619-3621.

    [11] Zhai Jianbo, Xia Junfang, Zhou Yong, et al. Design and experimental study of the control system for precision seed-metering device[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(3): 13-18.

    [12] Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18.

    [13] Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance ofpneumatic- combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69.

    [14] Xun Qian, Wu Yong, Wang Peiliang, et al. Starting control strategy of brushless DC motor based on Hall rotor position sensor[J]. China Measurement & Test, 2016, 42(8): 118-122.

    [15] Chen Yonghua. Application of Hall Effect in the control of brushless DC motor [J]. Experiment Science and Technology, 2011, 9(2): 34-36.

    [16] Zhang Qingchao, Ma Ruiqing, Zhang Zhen, et al. Electromagnetic torque observation of brushless DC motor based on hall position signals[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 187-195.

    [17] Guo Wei, Wang Mingming. A modified speed measurement method using frequency multiplication to the hall signal of BLDC motor[J]. Micromotors, 2012, 45(1): 74-84.

    [18] Knospe C. PID control[J]. IEEE Control Systems Magazine, 2006, 26(1): 30-31.

    [19] Sigurd S. Simple analytic rules for model reduction and PID controller tuning[J]. Journal of Process Control, 2003, 13(4): 291-309.

    [20] Bucz ?, Kozáková A, Vesely V. Easy Tuning of pid controllers for specified performance[J]. IFAC Proceedings Volumes, 2012, 45(3): 733-738.

    [21] Yun Li, Ang K H, Chong G. PID control system analysis and design[J]. Control Systems IEEE, 2006, 26(1): 32-41.

    [22] Ang K H, Chong G, Li Y. PID control system analysis, design, and technology[J]. IEEE transactions on control systems technology, 2005, 13(4): 559-76.

    [23] Al-Mashakbeh A S. Proportional integral and derivative control of brushless dc motor[J]. European Journal of Scientific Research, 2009, 35(2): 198-203.

    [24] Jiang Weirong, Huang Haibo, Lan Jianping. Simulation and design of integral separation fuzzy control system for brushless DC motor[C]//International Conference on Computational and Information Sciences, 2013: 1194-1197.

    [25] Theorin A, H?gglund T. Derivative backoff: The other saturation problem for PID controllers[J]. Journal of Process Control, 2015, 33: 155-160.

    [26] Guo Xuyang, Qi Xiaohui, Tian Lizhuang. AC servo system based on integral partition PID control[J]. Modern Electronics Technique, 2007, (19): 163-164.

    [27] Wang Xiaodong. A kind of integration separation pid controller's designing[J]. Shanxi Science and Technology, 2006(6): 104-106.

    [28] Li Ge, Jia Yuanwu, Zhang Hua, et al. Application of integral-separation PID control algorithm in PLC-based tension control system[J]. Journal of Textile Research, 2008, 29(8): 109-112.

    [29] Ye Shuliang, Wang Keqi. The design of digital PID control with separated integral for an ultra-precision positioning system[J]. Techniques of Automation and Applications, 2003, 22(10): 65-67.

    [30] Standardization Administration of the People’s Republic of China. Testing Methods of Single Seed Drills (precision drills): GB/T 6973-2005[S]. Beijing: Standards Press of China, 2005.

    [31] Standardization Administration of the People’s Republic of China. Specifications for single seed drills (precision drills): JB/T 10293-2001[S]. Beijing: Standards Press of China, 2001.

    玉米精量排種器電驅(qū)PID控制系統(tǒng)設(shè)計與性能評價

    和賢桃1,丁友強1,張東興1,2,楊 麗1,2※,崔 濤1,2,魏劍濤3,劉全威1,顏丙新1,趙東岳1

    (1. 中國農(nóng)業(yè)大學工學院,北京 100083; 2. 農(nóng)業(yè)部土壤-機器-植物系統(tǒng)技術(shù)重點實驗室,北京 100083;3. 凱斯紐荷蘭公司,芝加哥 60527)

    本文研究了一種基于PID的排種器電驅(qū)控制系統(tǒng),取消了播種機采用地輪和鏈條驅(qū)動的方式,提高了播種機的播種質(zhì)量和作業(yè)速度。采用PID算法控制排種盤轉(zhuǎn)速,在目標轉(zhuǎn)速與當前轉(zhuǎn)速差異較大時,加入PID積分分離算法,以減少轉(zhuǎn)速的超調(diào)量。通過整定后的PID參數(shù)為:K= 16、K= 0.05、K= 36,在其排種盤轉(zhuǎn)速范圍為0~24 r/min時,響應(yīng)時間、超調(diào)量、穩(wěn)態(tài)誤差分別為0.4秒,1.56%和0.75%。試驗結(jié)果表明,在12 km/h的高速播種作業(yè)條件下,采用該電驅(qū)控制系統(tǒng)的排種器排種單粒率仍然可達到98.4%,其重播率和漏播率小于1%。采用本文研究的基于PID算法的排種控制系統(tǒng)可以獲得良好的排種質(zhì)量和更高的排種速度,使排種器更適宜高速精量播種。

    農(nóng)業(yè)機械;電驅(qū)控制;性能;PID整定;積分分離

    10.11975/j.issn.1002-6819.2017.17.004

    TP273

    A

    1002-6819(2017)-17-0028-06

    2017-04-07

    2017-08-02

    the National Key Research and Development Program of China (No.2017YFD0700703); the National Natural Science Foundation of China(51575515); China Agriculture Research System (CARS-02).

    He Xiantao, Doctor, major research direction is intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: hxt@cau.edu.cn

    Yang Li, Professor, Doctoral supervisor, major research direction is modern agricultural machinery and intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: yangli@cau.edu.cn

    猜你喜歡
    排種電驅(qū)種器
    玉米擾動輔助充種高速氣吸式排種器設(shè)計與試驗
    一種排種盤傳動結(jié)構(gòu)的設(shè)計與應(yīng)用
    油冷多合一電驅(qū)總成油堵密封分析
    四桿平移式大豆小區(qū)育種排種器設(shè)計與試驗
    基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
    某大容量電驅(qū)系統(tǒng)配套同步電機電磁分析與計算
    新型電驅(qū)壓裂變頻調(diào)速六相異步電動機的研制
    精量排種器現(xiàn)狀及發(fā)展分析
    氣力托勺式馬鈴薯精量排種器設(shè)計
    PCL803電驅(qū)壓縮機起升泵高溫故障
    变态另类成人亚洲欧美熟女| 亚洲一级一片aⅴ在线观看| 色5月婷婷丁香| 成人精品一区二区免费| 久久久久免费精品人妻一区二区| 波野结衣二区三区在线| 又粗又爽又猛毛片免费看| 婷婷色综合大香蕉| 亚洲精品色激情综合| 男女边吃奶边做爰视频| 欧美成人一区二区免费高清观看| 成人性生交大片免费视频hd| 好男人在线观看高清免费视频| 国产日本99.免费观看| 国产久久久一区二区三区| 国产精品不卡视频一区二区| 亚洲国产日韩欧美精品在线观看| 日韩,欧美,国产一区二区三区 | 国内精品久久久久精免费| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产鲁丝片午夜精品 | 国产精品人妻久久久影院| 久久精品国产自在天天线| 欧美一区二区国产精品久久精品| 精品免费久久久久久久清纯| 成人无遮挡网站| 国产精品精品国产色婷婷| 国产高清有码在线观看视频| 国产人妻一区二区三区在| 黄色丝袜av网址大全| 成人精品一区二区免费| 白带黄色成豆腐渣| 久久精品91蜜桃| 国产一区二区三区av在线 | 不卡视频在线观看欧美| 国产乱人视频| avwww免费| 亚洲熟妇熟女久久| 国产国拍精品亚洲av在线观看| 免费大片18禁| 国产精品久久久久久av不卡| 99在线视频只有这里精品首页| x7x7x7水蜜桃| 久久人人精品亚洲av| 精品久久久久久久人妻蜜臀av| 国产精品国产高清国产av| 波多野结衣高清无吗| 国产91精品成人一区二区三区| 在线免费观看的www视频| 91久久精品国产一区二区成人| 精品欧美国产一区二区三| 国产精品伦人一区二区| 亚洲三级黄色毛片| 少妇的逼水好多| 国产精品亚洲一级av第二区| 成人国产综合亚洲| 99久久精品一区二区三区| 亚洲欧美日韩东京热| 可以在线观看毛片的网站| 亚洲,欧美,日韩| 22中文网久久字幕| 久久精品国产亚洲av香蕉五月| 美女黄网站色视频| 观看美女的网站| 一个人观看的视频www高清免费观看| 一级毛片久久久久久久久女| 99精品久久久久人妻精品| 色视频www国产| 女人被狂操c到高潮| 麻豆一二三区av精品| 亚洲国产精品久久男人天堂| 蜜桃亚洲精品一区二区三区| 性欧美人与动物交配| 免费黄网站久久成人精品| 久久人妻av系列| 国产激情偷乱视频一区二区| 伦精品一区二区三区| 国产高清不卡午夜福利| 国产一区二区三区视频了| 人人妻,人人澡人人爽秒播| 少妇丰满av| 变态另类丝袜制服| 综合色av麻豆| 韩国av在线不卡| 日日摸夜夜添夜夜添av毛片 | 两人在一起打扑克的视频| 日日摸夜夜添夜夜添av毛片 | 亚洲天堂国产精品一区在线| 国产高潮美女av| 国产精品爽爽va在线观看网站| 国产视频内射| 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 老师上课跳d突然被开到最大视频| 麻豆成人av在线观看| 久久久久久久久大av| 高清毛片免费观看视频网站| 国产在线男女| 国产一区二区在线观看日韩| 亚洲四区av| 中文字幕久久专区| 精品人妻1区二区| 欧美性感艳星| 久久精品国产亚洲av天美| 免费av不卡在线播放| 久久久久久久久大av| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| av中文乱码字幕在线| 超碰av人人做人人爽久久| 久久草成人影院| 一个人看的www免费观看视频| 99久久中文字幕三级久久日本| 美女cb高潮喷水在线观看| 亚洲在线观看片| 一进一出抽搐gif免费好疼| a级毛片免费高清观看在线播放| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 国产精品,欧美在线| 日本一二三区视频观看| 国产探花在线观看一区二区| 国产午夜精品久久久久久一区二区三区 | 久久热精品热| а√天堂www在线а√下载| 亚洲人成网站在线播| 在线观看66精品国产| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 国产精品免费一区二区三区在线| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 婷婷色综合大香蕉| 简卡轻食公司| 欧美不卡视频在线免费观看| 久久人人爽人人爽人人片va| 男人狂女人下面高潮的视频| 成人特级黄色片久久久久久久| 亚洲国产欧美人成| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| 国产男人的电影天堂91| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 色综合站精品国产| 欧美高清性xxxxhd video| 在线天堂最新版资源| 精品久久国产蜜桃| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 听说在线观看完整版免费高清| 在线看三级毛片| 不卡视频在线观看欧美| 久久精品影院6| 啦啦啦啦在线视频资源| 日韩中文字幕欧美一区二区| 日本爱情动作片www.在线观看 | 精品不卡国产一区二区三区| 十八禁网站免费在线| 99热6这里只有精品| 婷婷亚洲欧美| 色哟哟·www| 成人鲁丝片一二三区免费| 国产白丝娇喘喷水9色精品| 精品乱码久久久久久99久播| 欧美3d第一页| 国产一级毛片七仙女欲春2| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 国产精品不卡视频一区二区| 欧美黑人欧美精品刺激| 成人鲁丝片一二三区免费| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 亚洲av电影不卡..在线观看| 国产爱豆传媒在线观看| 国产一区二区亚洲精品在线观看| 黄色丝袜av网址大全| 日本免费一区二区三区高清不卡| 一夜夜www| 亚洲天堂国产精品一区在线| 美女大奶头视频| 美女cb高潮喷水在线观看| 国产亚洲精品综合一区在线观看| 国产私拍福利视频在线观看| 国产v大片淫在线免费观看| 久久香蕉精品热| 精品午夜福利在线看| 很黄的视频免费| 搡老熟女国产l中国老女人| 嫩草影视91久久| 五月伊人婷婷丁香| 国产精品电影一区二区三区| 成人美女网站在线观看视频| 色综合色国产| 日本色播在线视频| 我要搜黄色片| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 天堂√8在线中文| 如何舔出高潮| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频 | 亚洲最大成人手机在线| 日本熟妇午夜| 久久久精品欧美日韩精品| 在线播放国产精品三级| 无遮挡黄片免费观看| 俺也久久电影网| 亚洲性久久影院| 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在 | 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 天堂av国产一区二区熟女人妻| 国产一区二区在线观看日韩| 一进一出抽搐动态| 亚洲中文字幕日韩| 亚洲欧美日韩卡通动漫| 在线国产一区二区在线| 美女高潮喷水抽搐中文字幕| 亚洲图色成人| av国产免费在线观看| 久久午夜亚洲精品久久| 网址你懂的国产日韩在线| 亚洲精品国产成人久久av| 99久久成人亚洲精品观看| av在线观看视频网站免费| videossex国产| 色综合婷婷激情| 免费av毛片视频| 美女高潮的动态| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看| 国产在线男女| 亚州av有码| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 午夜福利视频1000在线观看| 国产精品不卡视频一区二区| 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 欧美bdsm另类| 日本黄色片子视频| 91午夜精品亚洲一区二区三区 | 日本免费一区二区三区高清不卡| 亚洲最大成人手机在线| 女同久久另类99精品国产91| 一级毛片久久久久久久久女| 日韩在线高清观看一区二区三区 | 校园春色视频在线观看| 少妇人妻一区二区三区视频| 少妇人妻精品综合一区二区 | 中文字幕久久专区| 99热只有精品国产| 亚洲精品乱码久久久v下载方式| 97碰自拍视频| 亚洲成人久久爱视频| 99视频精品全部免费 在线| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 国产免费av片在线观看野外av| 久久久久性生活片| 男人舔奶头视频| 亚洲最大成人手机在线| 全区人妻精品视频| 色精品久久人妻99蜜桃| 日韩国内少妇激情av| a级毛片免费高清观看在线播放| 国产 一区 欧美 日韩| 亚洲国产精品sss在线观看| 国产精品美女特级片免费视频播放器| 99视频精品全部免费 在线| 日日干狠狠操夜夜爽| 日韩一区二区视频免费看| 久久99热这里只有精品18| 男人狂女人下面高潮的视频| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 午夜日韩欧美国产| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 色综合亚洲欧美另类图片| 国产精品伦人一区二区| 精品人妻视频免费看| 午夜爱爱视频在线播放| 91久久精品电影网| 男人和女人高潮做爰伦理| 在线a可以看的网站| 免费观看人在逋| 午夜视频国产福利| 国产成人福利小说| 啦啦啦观看免费观看视频高清| 99热网站在线观看| 亚洲av不卡在线观看| 人人妻,人人澡人人爽秒播| av女优亚洲男人天堂| 麻豆成人av在线观看| 69av精品久久久久久| 中文资源天堂在线| 狂野欧美激情性xxxx在线观看| 淫妇啪啪啪对白视频| 久久久成人免费电影| 校园春色视频在线观看| 久久精品久久久久久噜噜老黄 | 天堂动漫精品| 国产精品一区二区免费欧美| 国产精品一及| 一本精品99久久精品77| 一进一出好大好爽视频| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 中出人妻视频一区二区| 国产一区二区三区av在线 | 精品人妻熟女av久视频| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 欧美最新免费一区二区三区| 夜夜爽天天搞| 亚洲专区国产一区二区| 国产精品久久视频播放| 婷婷亚洲欧美| 欧美黑人巨大hd| 天天一区二区日本电影三级| 搡老妇女老女人老熟妇| 又黄又爽又免费观看的视频| 亚洲黑人精品在线| .国产精品久久| 免费搜索国产男女视频| av福利片在线观看| 久久午夜福利片| 国产毛片a区久久久久| 国内毛片毛片毛片毛片毛片| 色5月婷婷丁香| 久久久久久久午夜电影| 亚洲精华国产精华液的使用体验 | 热99在线观看视频| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 桃红色精品国产亚洲av| 国产午夜精品论理片| 日本黄色视频三级网站网址| 成人av一区二区三区在线看| 日本a在线网址| 99久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 中国美女看黄片| 国产成人一区二区在线| 国产高清视频在线观看网站| 九九爱精品视频在线观看| 国产精品福利在线免费观看| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 国产精品无大码| 国产麻豆成人av免费视频| 麻豆成人av在线观看| 国产精品女同一区二区软件 | 91狼人影院| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲 | 一进一出抽搐gif免费好疼| 啪啪无遮挡十八禁网站| av在线亚洲专区| 日本精品一区二区三区蜜桃| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 久久亚洲真实| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 美女 人体艺术 gogo| 国产三级中文精品| 啦啦啦啦在线视频资源| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 亚洲精品日韩av片在线观看| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影| 直男gayav资源| 高清日韩中文字幕在线| 精品久久久久久久久久免费视频| 久久人人爽人人爽人人片va| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 亚洲午夜理论影院| 少妇裸体淫交视频免费看高清| 欧美日韩国产亚洲二区| 免费人成视频x8x8入口观看| 在线a可以看的网站| 嫁个100分男人电影在线观看| 波野结衣二区三区在线| 男插女下体视频免费在线播放| 欧美日韩黄片免| 1024手机看黄色片| 嫩草影视91久久| 两人在一起打扑克的视频| 少妇人妻一区二区三区视频| 亚洲不卡免费看| 国产91精品成人一区二区三区| 十八禁国产超污无遮挡网站| 久久久久久国产a免费观看| 亚洲精华国产精华液的使用体验 | 成人特级av手机在线观看| 少妇的逼水好多| av在线天堂中文字幕| 亚洲,欧美,日韩| 99国产精品一区二区蜜桃av| 三级男女做爰猛烈吃奶摸视频| videossex国产| 永久网站在线| 非洲黑人性xxxx精品又粗又长| 午夜影院日韩av| 国产精品伦人一区二区| 色综合亚洲欧美另类图片| 又黄又爽又刺激的免费视频.| 哪里可以看免费的av片| 尾随美女入室| 男女视频在线观看网站免费| 亚洲第一区二区三区不卡| 1024手机看黄色片| 亚洲真实伦在线观看| 干丝袜人妻中文字幕| 少妇丰满av| 中文在线观看免费www的网站| 色吧在线观看| 精品久久久久久久人妻蜜臀av| 深爱激情五月婷婷| 亚洲精品一卡2卡三卡4卡5卡| 美女cb高潮喷水在线观看| ponron亚洲| 成年免费大片在线观看| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 人妻制服诱惑在线中文字幕| 午夜福利在线观看吧| 久久香蕉精品热| 国产真实乱freesex| 精品人妻1区二区| 老司机福利观看| 99热网站在线观看| 免费一级毛片在线播放高清视频| 精品免费久久久久久久清纯| 国产熟女欧美一区二区| 午夜激情福利司机影院| 男女下面进入的视频免费午夜| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 亚洲精华国产精华液的使用体验 | 欧美一区二区亚洲| 免费av不卡在线播放| 久久久色成人| 日本与韩国留学比较| 人妻久久中文字幕网| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 制服丝袜大香蕉在线| 欧美不卡视频在线免费观看| 日韩亚洲欧美综合| 日韩欧美精品v在线| 免费黄网站久久成人精品| 日本精品一区二区三区蜜桃| 搡老熟女国产l中国老女人| 男女视频在线观看网站免费| 成人av一区二区三区在线看| 免费看日本二区| 黄色女人牲交| 欧美最黄视频在线播放免费| 免费大片18禁| 中文亚洲av片在线观看爽| 国产人妻一区二区三区在| 国产精品久久久久久亚洲av鲁大| 99热6这里只有精品| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 婷婷丁香在线五月| 国产精品av视频在线免费观看| 精品人妻一区二区三区麻豆 | 日韩一本色道免费dvd| 亚洲国产色片| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 热99在线观看视频| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6 | 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 一进一出抽搐动态| 国产主播在线观看一区二区| 中文字幕久久专区| 狠狠狠狠99中文字幕| 欧美xxxx黑人xx丫x性爽| 一进一出抽搐gif免费好疼| 国产v大片淫在线免费观看| 日韩欧美三级三区| 91狼人影院| 日韩高清综合在线| 亚洲真实伦在线观看| 在线播放国产精品三级| 露出奶头的视频| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| 欧美日韩精品成人综合77777| 久久久精品大字幕| 九九热线精品视视频播放| 亚洲最大成人中文| 欧美色视频一区免费| 村上凉子中文字幕在线| 亚洲天堂国产精品一区在线| av在线天堂中文字幕| 亚洲经典国产精华液单| 国产麻豆成人av免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产在线精品亚洲第一网站| 欧美性猛交╳xxx乱大交人| 国产老妇女一区| 在线看三级毛片| 99久久精品热视频| 成人精品一区二区免费| 色精品久久人妻99蜜桃| 午夜福利在线在线| 乱码一卡2卡4卡精品| 黄色视频,在线免费观看| 国产精品亚洲一级av第二区| 两人在一起打扑克的视频| 我的女老师完整版在线观看| 91在线观看av| 日本一二三区视频观看| 成人三级黄色视频| 国产成人a区在线观看| 狂野欧美激情性xxxx在线观看| av福利片在线观看| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看| 日韩欧美在线乱码| 成人无遮挡网站| av在线观看视频网站免费| 老女人水多毛片| 欧美日韩乱码在线| 人妻夜夜爽99麻豆av| 校园春色视频在线观看| 丰满乱子伦码专区| 国产视频一区二区在线看| 色视频www国产| 深夜精品福利| 日韩国内少妇激情av| 麻豆成人午夜福利视频| 国产主播在线观看一区二区| 亚洲精华国产精华液的使用体验 | 99久久无色码亚洲精品果冻| 成人国产一区最新在线观看| 日韩欧美国产在线观看| av在线天堂中文字幕| 国产极品精品免费视频能看的| 欧美丝袜亚洲另类 | 99热这里只有是精品50| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| h日本视频在线播放| 亚洲欧美清纯卡通| 22中文网久久字幕| 色视频www国产| 黄色女人牲交| 黄色欧美视频在线观看| 国产精品三级大全| 搞女人的毛片| 日本 欧美在线| 中文亚洲av片在线观看爽| 一进一出抽搐动态| 亚洲自拍偷在线| 免费黄网站久久成人精品| 国产私拍福利视频在线观看| 啦啦啦韩国在线观看视频| 91久久精品国产一区二区三区| 中国美白少妇内射xxxbb| 国产精品女同一区二区软件 | 狠狠狠狠99中文字幕| 波野结衣二区三区在线| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 三级毛片av免费| 午夜福利18| 亚洲男人的天堂狠狠| 久久久久久久久大av| 亚洲欧美日韩高清在线视频| 麻豆国产97在线/欧美| 亚洲精华国产精华液的使用体验 | 99国产极品粉嫩在线观看| 国内精品久久久久久久电影| 国产精品一及| 久久久久国产精品人妻aⅴ院| 可以在线观看的亚洲视频| 国产免费av片在线观看野外av| 伦精品一区二区三区| 国产精品一区www在线观看 | 18+在线观看网站| 国内精品宾馆在线| www日本黄色视频网| 免费一级毛片在线播放高清视频| 国产成人影院久久av| eeuss影院久久| 欧美日本视频| 午夜精品久久久久久毛片777| 亚洲综合色惰|