• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    2017-11-01 23:03:55HeXiantaoDingYouqiangZhangDongxingYangLiCuiTaoWeiJiantaoLiuQuanweiYanBingxinZhaoDongyue
    農(nóng)業(yè)工程學報 2017年17期
    關(guān)鍵詞:排種電驅(qū)種器

    He Xiantao, Ding Youqiang, Zhang Dongxing,2, Yang Li,2, Cui Tao,2, Wei Jiantao, Liu Quanwei, Yan Bingxin, Zhao Dongyue

    ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    He Xiantao1, Ding Youqiang1, Zhang Dongxing1,2, Yang Li1,2※, Cui Tao1,2, Wei Jiantao3, Liu Quanwei1, Yan Bingxin1, Zhao Dongyue1

    (1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China; 3. CNH Industrial, Chicago 60527, USA)

    A proportional-integral-derivative (PID) electronic control system for seed meters was developed to improve the planting quality and operation efficiency of conventional planters with ground wheel and chain driven system. A PID algorithm was used for controlling seed plate rotation speed. In addition, the PID controller incorporated integral separation of the integral term to increase the response time and reduce the occurrence of overshoot when the set point was far away from the current rotation rate. The final tuned PID parameter values wereK=16,K=0.05, andK=36. The response time, overshoot, and steady error for a seed plate rotation speed step response from 0 to 24 r/min were 0.4 s, 1.56%, and 0.75%, respectively. Experiment results showed that the Singulation index (SI) of seed meter could receive to 98.4%, and the Multiple index (UI) and Miss index (MI) were not more than 1% even at the highest planting speed of 12 km/h, which indicated that the seed meter with the developed control system and tuned PID parameters could obtain better planting quality and higher planting speed.

    agricultural machinery; electronic control; performance; PID parameter tuning; integral separation

    0 Introduction

    Precision planters are used widely in China, and the performance of seed meter, which is a key component of precision planter, affects the uniformity of seed distribution directly[1]. However, conventional precision planters with ground wheels and chains driven system bring poor planting quality due to slippage between wheel and ground, and chain instability during the process[2]. Adopting electric motor to replace conventional mechanical driving system to drive seed meters is one of methods to solve the problems.

    The agricultural machinery companies in the world, e.g. John Deere[3]and Horsch[4], have developed their characteristic driving seed meters for precision planter by using electric motors, and the high-technology agricultural machinery companies, e.g. Precision Planting[5]and Ag Leader[6], have also developed corresponding control system for precision planters equipped with electric-driven seed meters in recently years. The planters with technology above significantly improve the planting speed to 15 km/h and singulation to about 98%, but their prices are very high. In addition, Chaney et al.[7]designed a kind of electronic control system for a sugarcane planter. He et al.[8]developed a type of seed meter based on electromagnetic vibrating mode, and also designed its PLC controller. Tang et al.[9]designed a driving system for seed meters to control the speed of seed plate based on the planting speed. Zhai et al.[10-11]developed an automated driving system of seed metering according to sensor signal. But these researches are at testing stage and not applied in the market.

    To solve issues above, this study developed a PID electronic control system for seed meters and conducted experiments to test the performance of the control system in the lab.

    1 Material and methods

    1.1 Components of the electronic control system

    The system consisted of five components: control box, touch screen display (MT4414T, Kinco Automation company, China), incremental encoder (TRD-2T500BF, Koyo Electrical Company, Japan), seed plate driving motor (57BL55S06, Times Brilliant Electrical Company, China), seed meter, as in Fig. 1.

    Fig.1 Components of electronic control system

    A twelve volt power supply provides power for the entire control system. The seed meter adopted in this study was an air-pressure precision corn meter developed by Shi et al.[12-13], which was modified to be driven by seed plate driving motor. The motors are DC brushless motors, and each motor’s back is embedded by three Hall-effect sensors to measure the positions of the rotors and realize current switching for the rotors electronically, which eliminates brush maintenance of DC brush motor[14-16]. In the meantime, the Hall-effect sensors were used by the study to measure the motor rotation speed in real time for achieving closed-loop control[17]. The planting speed was measured by an incremental encoder that was mounted on the shaft of a ground wheel.

    Whereis the planting speed, km/h;is diameter of the ground wheel, cm;is the sample period, s;is the number of pulses received within the period of;is the wheel slip ratio, %;is resolution of the encoder, pulses/r.

    A touch screen display as interface of data input/output used to enter planting parameters such as number of seed holes per disk seed spacing,and, and also display planting speed and rotation speed of seed plate. The touch screen display was communicated with the controller by RS485. The controller is the core of the system, which was designed to receive input data from incremental encoder and touch screen display and output a signal pulse with a certain frequency and duty cycle to adjust seed plate rotation speed for achieving desired seed spacing as planned. The seed plate rotation speed is calculated as

    Whereis the seed plate rotation speed, r/min;is the number of seed holes per disk;is the seed spacing, cm.

    1.2 PID control of seed plate rotation speed

    As PID control is a simple algorithm with high reliability, and commonly used in various control systems[18-21], a closed-loop PID is used in this study to control the seed plate rotation speed for improving the seed plate’s dynamic performance. The PID control principle was illustrated in Fig.2.

    Fig.2 Schematic diagram of PID control principle

    The controller computes the error between the target values and actual values of seed plate rotation speed at time t, then control the motor speed by adjusting the signal duty cycle. A basic PID controller in continuous time[22-23]is described by

    WhereP() is the signal duty cycle;() is the error between the target values ((), r/min) and actual values ((), r/min) of seed plate rotation speed at time t, r/min;K, KandKare the proportional, integral, and differential gain constant, respectively. Equation (3) is discretized as follows for reducing computational cost[22-23].

    Here,(),p() (r/min) are the discrete error and control signal’s duty cycle, respectively;is sampling points.

    1.3 Setting PID parameters via step response analysis

    The present study employed a trial-and-error method to estimate the PID parameters by laboratory experiments. Given a step response in, the step response curve was plotted, and the impact of each PID parameter was analyzed in turn through trial and error to obtain a response curve that provided a rapid response time and a small stable error within a small overshoot. The overshoot was set here to be within 2%, and PID parameter selection providing the optimal performance of the control response was based on an appropriate tradeoff between the minimum response time and the minimum stable error.

    The laboratory setup employed for tuning is illustrated in Fig.3. The encoder (1 in Fig.3) was mounted on the shaft of a meter that measures the actual value ofin real time, and the rotation speed signal was sent to a data acquisition card (2 in Fig. 3; National Instrument USB-6009). LabView software was installed on a PC (3 in Fig. 3) to read the signal from the data acquisition card, calculate the meter’s rotation speed, and then display it to obtain the step response of. Planting parameters are entered through the touch screen display with=25 cm and=9 km/h, resulting a target value of in=24 r/min, thus, registering a step response from 0 to 24 r/min. Zhengdan 958 maize hybrid seeds were employed in the calibration, and the air pressure was set at 3.0 kPa. The encoder’s resolution was 2 500 pulses/r, and the data acquisition rate was 10 Hz.

    1.Incremental encoder 2.Data acquisition card 3.PC interface for LabView software

    Fig.3. Test setup employed for tuning PID parameters

    1.3.1 Setting the proportional gain constant (K)

    To determineK, we considered only proportional control in the trial and error experiments (i.e.,K=K=0). The proportional term produces an output value at sampling pointthat is proportional to(). The proportional response can be adjusted by multiplying() byK. A high proportional gain results in a large change in the output for a given change in() (i.e.,()?(?1)), and an overly high gain can make the system unstable. In the tuning process shown in Fig. 4, settingK=5 responded too slow, andKwas then incrementally increased to 10, 15 and 20. The response plot forK=15 exhibits the beginning of overshoot, which is greatly increased whenK=20. Therefore,Kshould be between 15 and 20. Further fine tuning obtained an optimal value ofK=16, which, shown in Table 1, provides minimum values for both the response time and stable error.

    Note: Kp is the proportional gain constant. Same as below.

    Table 1 Step response results for tuning Kp (proportional controller only, i.e., Ki=Kd=0)

    Note:Kis the integral gain constant;Kis the differential gain constant, Same as below.

    1.3.2 Setting the integral gain constant (K)

    To determineK, we considered only proportional- integral control in the trial and error experiments (i.e.,K= 0), and the previously optimized valueK=16 is employed as a constant. The integral term can eliminate the residual steady-state error that occurs with a pure proportional controller. However, it may slow down the system response and cause additional overshoot. Fig.5 presents the step response curves obtained forKvalues of 0.01 and 0.1 (red and green curves, respectively), where we observe that integral accumulation for even a small value ofK=0.01 delays the response time and increases system overshoot due to the initially large overshoot of 1.37% associated with proportional control alone. While the overshoot caused by the integral term would be reduced by decreasingKappropriately, this would also further increase the response time. Therefore, we retain a constantK, and employ integral separation[24-27]to reduce the overshoot and slow response caused by the integral term. This method employs a switching variableXto omit the integral term when() is large, and to include the integral term when() is small. The switching variable is defined as follows[28-29].

    The overall PID equation after introducingX[28-29]is given as

    Employing only the first 2 terms of Equation 6, a comparison between the results with and without integral separation given in Fig.5 showed that the added delay is eliminated and no overshoot occurs forK=0.01. However,K=0.1 induces a minor degree of overshoot, indicating thatKshould be between 0.01 and 0.1. The tuning results are listed in Table 2. Fine tuning of the integral term yields an optimal valueK=0.05. Here, compared withK=0.01, the steady error is reduced to 32.5% while the response time is increased to only 16.7%, indicating that the performance withK=0.05 is better. Compared with proportional control only, the steady error is reduced to 0.56% (i.e., a 34% reduction).

    Fig.5 Step response curves from Ki tuning

    Table 2 Step response results with integral-separation method (proportional-integral controller only, i.e., Kd=0)

    1.3.3 Setting the differential gain constant (K)

    The derivative of the error predicts system behavior, and thus improves the settling time and stability of the system, but it is sensitive to system noise, and can cause oscillation. Holding the other values constant atK=16 andK=0.05 during tuning,Kis initially selected as 10, 20, 30, 40, and 50, and the response curves obtained are shown in Fig.6a. The response times tend to decrease over the initial range forK, achieving a minimum value at 40 and 50. However, consideration of the tuning results listed in Table 3 indicates that the steady error also increases over the initial range forK, indicating thatKshould be less than 40. Through fine tuning, the optimal value ofK=36 was determined. Here, compared withK=20, the response time is reduced by 20% while the steady error is increased by only 17.2%, indicating a better response performance withK=36. The final parameters obtained by tuning areK=16,K=0.05, andK=36. The response time, overshoot, and steady error obtained with these parameters are 0.4 s, 1.56%, and 0.75%, respectively. Compared with the PI controller, the response time is reduced by 0.3 s, as shown in Fig.6b.

    Note: Kd is gain constant and same as below.

    Table 3 Step response results for tuning Kd (full PID controller)

    1.3.4 System step response under different planting speeds

    The proposed control system is mainly employed for high speed planting. To validate the performance at high speed, step response testing for values ofof 8 km/h to 14 km/h was conducted with=25 cm, and the results are shown in Fig.7.

    Fig.7 Step response curves under different planting speeds

    The target values ofassociated with each value ofare given in the chart legend. At 14 km/h, the step response exhibits instability and the actual value of(i.e., 35 r/min) did not attain the target value of 37.33 r/min . This may have caused by an inability of the motor to reach the target speed at the twelve volt power supply, which was applied based on the power supply voltage of the tractor. Adopting a power converter to transfer twelve volt to twenty-four volt is a way to increase speed of seed plate, but this raises the energy consumption and cost of the control system. But forless than 14 km/h, the step response was very stable. Therefore, the maximum working speed of the control system can reach at 13 km/h, which is much too high than the working speeds of conventional planters.

    2 Results and discussion

    2.1 The performance of the control system

    The performance of the proposed control system was tested in laboratory with three replications. Zhengdan 958 maize hybrid seeds were employed, and the air pressure was set at 3.0 kPa. Planting parameters were entered through the touch screen display with=25 cm,=50 cm and three planting speeds (6, 9 and 12 km/h, respectively).Using a camera to record planting condition, as in Fig.8.

    1.Control box 2.Touch screen display 3.Seed meter 4.Light source 5.Camera

    Basing on China National Standard of Test Methods of Single Seed Driller (GB/T 6973-2005)[30], the performance indexes is calculated as follows.

    Where1is the number of singles,2is the number of multiples,3is the number of skips, and′ is the number of theoretical planting seeds. SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter.

    The results of experiment is shown in Table 4 and Fig.9.

    Table 4 Results of experiment

    Note: SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter. The same below.

    Note: Columns labeled with same letters are not significantly different.

    As shown in the Table 4, with the increase of the planting speed, the SI, UI and MI didn’t change significantly. The data also showed that SI increased at first and then decreased with the planting speed increasing, and the best value was 99.47% at speed of 9 km/h. UI decreased at first and then increased with the speed increasing, and the worst value was 0.93% at speed of 6 km/h. MI were both zero at speed of 6, 9 km/h, but the value reached 0.8% at the speed of 12 km/h. Analyses above showed that UI was the determinant factor lead to SI decreasing when at low planting speed (6, 9 km/h), then MI became determinant instead of UI at the high planting speed (12 km/h). The best planting performance was got at speed of 9 km/h with SI of 99.47%, UI of 0.53% and MI of 0%. However, even at the highest planting speed of 12 km/h, the SI of seed meter can also be 98.4%, meanwhile the UI and MI were not more than 1%, which are far better than China National Standard[31]. Further analysis shown in Fig. 9 indicates that, when planting speed increased from 6 km/h to 9 km/h, the SI, UI, and MI changed only moderately. However when planting speed changed from 9 km/h to 12 km/h, the SI and MI changed appreciably. This change was possibly caused by the requirement of higher air pressure at higher planting speed. Results indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    2.2 The cost and market expectation of the control system

    Most of the components used in the control system are locally manufactured in China, and their costs are listed in the Table 5. The table indicates that, the cost of expanding one planting row that includes a seed plate driving motor and a seed meter is $321, and the control system has a higher performance-price ratio with the number of planting row increasing. The total cost of the control system for a four-row planter is $1800, which is considerably less than similar systems from abroad (for example, the cost of the controller alone from Precision Planting LLC is greater than $5000 in the Chinese market), making the system accessible to precision planters in developing countries and be largely used in the market.

    Table 5 Cost of control system for a four-row planter

    3 Conclusions

    A PID electronic control system for seed meters was designed and evaluated in this study. Conclusions of this research were as follows.

    1) Using integral separation in the PID control algorithm reduced the issues of overshoot and delayed response time associated with the integral component under conditions when the error is large. After tuning, the final PID parameters obtained wereK=16,K=0.05, andK=36. Under a step response infrom 0 to 24 r/min, the response time, overshoot, and steady error were 0.4 s, 1.56%, 0.75%, respectively.

    2) The experiment data showed that the SI of seed meter can be 98.4%, meanwhile the UI and MI are not more than 1% even at the highest planting speed of 12 km/h, which indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    3) Most of the components used in the electronic control system are locally manufactured in China, which is considerably less expensive than the similar systems abroad, making the system accessible to precision planters in developing countries.

    [1] Zhang Junchang, Yan Xiaoli, Xue Shaoping, et al. Design of no-tillage maize planter with straw smashing and fertilizing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 51-55.

    [2] Saadat K, Mohammad J E, Mohammad M M. Design, development and evaluation of a mechatronic transmission system to improve the performance of a conventional row crop planter[J]. International journal of Agronomy and Plant Production, 2013, 4(3): 480-487.

    [3] Deere & Company (brand name John Deere). John deere Exact Emerge row unit[EB/OL]. [2016-08-05]. https://www. deere.com/en/planting-equipment/row-units/exactemerge-row- unit/

    [4] Horsch Maschinen GmbH. Maestro CC Technical Data [EB/OL]. [2016-08-17]. http://www.horsch.com/produkte/ saemaschinen/einzelkornsaemaschinen/maestro/maestro-cc/

    [5] Precision Planting LLC. Precision Planting vSet Select meter[EB/OL].[2016-09-21]. http://www.precisionplanting.com/#products/vset_select/.

    [6] Ag Leader Technology. Ag Leader SureDrive[EB/OL]. [2016-09-10]. http://www.agleader.com/products/seedcommand/sure-drives/.

    [7] Chaney P P, Parish R L, Sistler F E. Automatic control system for a sugarcane planter[J]. Applied Engineering in Agriculture, 1986, 2(2): 51-54.

    [8] He Peixiang, Yang Mingjin, Chen Zhonghui. Study on photoelectric controlled precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 47-49.

    [9] Tang Yaohua, Zhang Jinguo. Seed sowing driving system based on non-contact speed measuring[J]. Agri Mech Research, 2009(3): 21-23.

    [10] Zhai Jianbo, Gao Haizhou, Zheng Xiaolong, et al. Research on automatical seed metering drive system based on sensor technology[J]. Hubei Agricultural Sciences, 2011, 50(17): 3619-3621.

    [11] Zhai Jianbo, Xia Junfang, Zhou Yong, et al. Design and experimental study of the control system for precision seed-metering device[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(3): 13-18.

    [12] Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18.

    [13] Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance ofpneumatic- combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69.

    [14] Xun Qian, Wu Yong, Wang Peiliang, et al. Starting control strategy of brushless DC motor based on Hall rotor position sensor[J]. China Measurement & Test, 2016, 42(8): 118-122.

    [15] Chen Yonghua. Application of Hall Effect in the control of brushless DC motor [J]. Experiment Science and Technology, 2011, 9(2): 34-36.

    [16] Zhang Qingchao, Ma Ruiqing, Zhang Zhen, et al. Electromagnetic torque observation of brushless DC motor based on hall position signals[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 187-195.

    [17] Guo Wei, Wang Mingming. A modified speed measurement method using frequency multiplication to the hall signal of BLDC motor[J]. Micromotors, 2012, 45(1): 74-84.

    [18] Knospe C. PID control[J]. IEEE Control Systems Magazine, 2006, 26(1): 30-31.

    [19] Sigurd S. Simple analytic rules for model reduction and PID controller tuning[J]. Journal of Process Control, 2003, 13(4): 291-309.

    [20] Bucz ?, Kozáková A, Vesely V. Easy Tuning of pid controllers for specified performance[J]. IFAC Proceedings Volumes, 2012, 45(3): 733-738.

    [21] Yun Li, Ang K H, Chong G. PID control system analysis and design[J]. Control Systems IEEE, 2006, 26(1): 32-41.

    [22] Ang K H, Chong G, Li Y. PID control system analysis, design, and technology[J]. IEEE transactions on control systems technology, 2005, 13(4): 559-76.

    [23] Al-Mashakbeh A S. Proportional integral and derivative control of brushless dc motor[J]. European Journal of Scientific Research, 2009, 35(2): 198-203.

    [24] Jiang Weirong, Huang Haibo, Lan Jianping. Simulation and design of integral separation fuzzy control system for brushless DC motor[C]//International Conference on Computational and Information Sciences, 2013: 1194-1197.

    [25] Theorin A, H?gglund T. Derivative backoff: The other saturation problem for PID controllers[J]. Journal of Process Control, 2015, 33: 155-160.

    [26] Guo Xuyang, Qi Xiaohui, Tian Lizhuang. AC servo system based on integral partition PID control[J]. Modern Electronics Technique, 2007, (19): 163-164.

    [27] Wang Xiaodong. A kind of integration separation pid controller's designing[J]. Shanxi Science and Technology, 2006(6): 104-106.

    [28] Li Ge, Jia Yuanwu, Zhang Hua, et al. Application of integral-separation PID control algorithm in PLC-based tension control system[J]. Journal of Textile Research, 2008, 29(8): 109-112.

    [29] Ye Shuliang, Wang Keqi. The design of digital PID control with separated integral for an ultra-precision positioning system[J]. Techniques of Automation and Applications, 2003, 22(10): 65-67.

    [30] Standardization Administration of the People’s Republic of China. Testing Methods of Single Seed Drills (precision drills): GB/T 6973-2005[S]. Beijing: Standards Press of China, 2005.

    [31] Standardization Administration of the People’s Republic of China. Specifications for single seed drills (precision drills): JB/T 10293-2001[S]. Beijing: Standards Press of China, 2001.

    玉米精量排種器電驅(qū)PID控制系統(tǒng)設(shè)計與性能評價

    和賢桃1,丁友強1,張東興1,2,楊 麗1,2※,崔 濤1,2,魏劍濤3,劉全威1,顏丙新1,趙東岳1

    (1. 中國農(nóng)業(yè)大學工學院,北京 100083; 2. 農(nóng)業(yè)部土壤-機器-植物系統(tǒng)技術(shù)重點實驗室,北京 100083;3. 凱斯紐荷蘭公司,芝加哥 60527)

    本文研究了一種基于PID的排種器電驅(qū)控制系統(tǒng),取消了播種機采用地輪和鏈條驅(qū)動的方式,提高了播種機的播種質(zhì)量和作業(yè)速度。采用PID算法控制排種盤轉(zhuǎn)速,在目標轉(zhuǎn)速與當前轉(zhuǎn)速差異較大時,加入PID積分分離算法,以減少轉(zhuǎn)速的超調(diào)量。通過整定后的PID參數(shù)為:K= 16、K= 0.05、K= 36,在其排種盤轉(zhuǎn)速范圍為0~24 r/min時,響應(yīng)時間、超調(diào)量、穩(wěn)態(tài)誤差分別為0.4秒,1.56%和0.75%。試驗結(jié)果表明,在12 km/h的高速播種作業(yè)條件下,采用該電驅(qū)控制系統(tǒng)的排種器排種單粒率仍然可達到98.4%,其重播率和漏播率小于1%。采用本文研究的基于PID算法的排種控制系統(tǒng)可以獲得良好的排種質(zhì)量和更高的排種速度,使排種器更適宜高速精量播種。

    農(nóng)業(yè)機械;電驅(qū)控制;性能;PID整定;積分分離

    10.11975/j.issn.1002-6819.2017.17.004

    TP273

    A

    1002-6819(2017)-17-0028-06

    2017-04-07

    2017-08-02

    the National Key Research and Development Program of China (No.2017YFD0700703); the National Natural Science Foundation of China(51575515); China Agriculture Research System (CARS-02).

    He Xiantao, Doctor, major research direction is intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: hxt@cau.edu.cn

    Yang Li, Professor, Doctoral supervisor, major research direction is modern agricultural machinery and intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: yangli@cau.edu.cn

    猜你喜歡
    排種電驅(qū)種器
    玉米擾動輔助充種高速氣吸式排種器設(shè)計與試驗
    一種排種盤傳動結(jié)構(gòu)的設(shè)計與應(yīng)用
    油冷多合一電驅(qū)總成油堵密封分析
    四桿平移式大豆小區(qū)育種排種器設(shè)計與試驗
    基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
    某大容量電驅(qū)系統(tǒng)配套同步電機電磁分析與計算
    新型電驅(qū)壓裂變頻調(diào)速六相異步電動機的研制
    精量排種器現(xiàn)狀及發(fā)展分析
    氣力托勺式馬鈴薯精量排種器設(shè)計
    PCL803電驅(qū)壓縮機起升泵高溫故障
    免费观看在线日韩| 免费少妇av软件| 国产精品不卡视频一区二区| 最新的欧美精品一区二区| 婷婷色综合大香蕉| 久久精品久久精品一区二区三区| 热re99久久精品国产66热6| 精品人妻一区二区三区麻豆| 亚洲久久久国产精品| 天天操日日干夜夜撸| 日本vs欧美在线观看视频| 美女xxoo啪啪120秒动态图| 亚洲欧美中文字幕日韩二区| 青春草视频在线免费观看| 亚洲成人av在线免费| 国产熟女午夜一区二区三区| 桃花免费在线播放| 菩萨蛮人人尽说江南好唐韦庄| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 亚洲av在线观看美女高潮| 十八禁网站网址无遮挡| 99香蕉大伊视频| 青春草亚洲视频在线观看| 美女国产高潮福利片在线看| 两个人免费观看高清视频| 免费女性裸体啪啪无遮挡网站| 亚洲伊人久久精品综合| 精品久久久精品久久久| 国产色婷婷99| 永久网站在线| 国产精品免费大片| a级毛片黄视频| 又黄又爽又刺激的免费视频.| 免费高清在线观看日韩| 日韩制服骚丝袜av| 精品卡一卡二卡四卡免费| 纯流量卡能插随身wifi吗| 国产毛片在线视频| 香蕉国产在线看| 久久久久人妻精品一区果冻| 成人二区视频| 伦理电影大哥的女人| 99香蕉大伊视频| av在线播放精品| 国产精品久久久久久久久免| 免费看光身美女| 成人手机av| 国产亚洲最大av| 下体分泌物呈黄色| 成年动漫av网址| 男的添女的下面高潮视频| 亚洲av福利一区| 国产精品久久久久成人av| 极品少妇高潮喷水抽搐| 精品国产露脸久久av麻豆| 五月伊人婷婷丁香| 2018国产大陆天天弄谢| 搡老乐熟女国产| 日日爽夜夜爽网站| 自线自在国产av| 久久久国产精品麻豆| 欧美bdsm另类| 国产精品久久久久久av不卡| 老女人水多毛片| 国产熟女欧美一区二区| 一级片'在线观看视频| 久久国内精品自在自线图片| 午夜福利乱码中文字幕| 一级片免费观看大全| 永久网站在线| 日本猛色少妇xxxxx猛交久久| 欧美国产精品va在线观看不卡| 国产一区有黄有色的免费视频| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 亚洲综合精品二区| 巨乳人妻的诱惑在线观看| 国产免费一级a男人的天堂| 亚洲av福利一区| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 国产黄频视频在线观看| 免费大片18禁| 熟妇人妻不卡中文字幕| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 老司机影院成人| 男人添女人高潮全过程视频| 日产精品乱码卡一卡2卡三| 中文字幕最新亚洲高清| a级毛色黄片| 亚洲国产精品999| 两性夫妻黄色片 | 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久久电影| 五月伊人婷婷丁香| 精品久久蜜臀av无| 黄色视频在线播放观看不卡| 国产精品人妻久久久久久| 免费人妻精品一区二区三区视频| 久久国产亚洲av麻豆专区| 三上悠亚av全集在线观看| 国产精品.久久久| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 丝袜喷水一区| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 国产亚洲一区二区精品| 波野结衣二区三区在线| 一区二区av电影网| 一本久久精品| 亚洲精华国产精华液的使用体验| 最黄视频免费看| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 男女边摸边吃奶| 国产亚洲最大av| 国产精品一二三区在线看| 91精品三级在线观看| 久久精品久久久久久噜噜老黄| 18禁在线无遮挡免费观看视频| 国产亚洲精品第一综合不卡 | 欧美精品亚洲一区二区| 亚洲国产日韩一区二区| 久久久久视频综合| 性色av一级| 岛国毛片在线播放| 在线观看三级黄色| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 日本免费在线观看一区| 一级a做视频免费观看| 久久精品久久久久久久性| 亚洲国产精品999| 精品国产露脸久久av麻豆| 少妇人妻 视频| videossex国产| 一个人免费看片子| 草草在线视频免费看| 美女xxoo啪啪120秒动态图| 欧美 日韩 精品 国产| 色94色欧美一区二区| 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 国产一区二区三区综合在线观看 | 高清在线视频一区二区三区| 国产黄色免费在线视频| 王馨瑶露胸无遮挡在线观看| 宅男免费午夜| 久久精品国产自在天天线| 久久精品国产综合久久久 | 欧美另类一区| 久久久久久人妻| 欧美日韩一区二区视频在线观看视频在线| xxx大片免费视频| 侵犯人妻中文字幕一二三四区| 伦精品一区二区三区| 又大又黄又爽视频免费| 美女国产高潮福利片在线看| 岛国毛片在线播放| 国产视频首页在线观看| 精品亚洲乱码少妇综合久久| 91午夜精品亚洲一区二区三区| 免费观看性生交大片5| av线在线观看网站| 交换朋友夫妻互换小说| 精品国产国语对白av| 又黄又爽又刺激的免费视频.| 最新的欧美精品一区二区| 日日爽夜夜爽网站| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 热re99久久精品国产66热6| 最近中文字幕2019免费版| 免费久久久久久久精品成人欧美视频 | 国产日韩欧美视频二区| 成年美女黄网站色视频大全免费| 精品少妇久久久久久888优播| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 51国产日韩欧美| 九草在线视频观看| 国产精品一区二区在线不卡| 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 色视频在线一区二区三区| 在线观看人妻少妇| 国产熟女午夜一区二区三区| 在线免费观看不下载黄p国产| 国产精品.久久久| 国产激情久久老熟女| 热re99久久精品国产66热6| 国产精品久久久久久久电影| 久久 成人 亚洲| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到 | 久久热在线av| 国产xxxxx性猛交| 国产精品一国产av| 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线| 亚洲色图综合在线观看| 成人午夜精彩视频在线观看| 久久精品久久久久久噜噜老黄| a 毛片基地| 国产一区二区三区综合在线观看 | 亚洲精品美女久久久久99蜜臀 | 尾随美女入室| 免费久久久久久久精品成人欧美视频 | 亚洲成av片中文字幕在线观看 | 精品第一国产精品| 久久精品aⅴ一区二区三区四区 | 久久ye,这里只有精品| 内地一区二区视频在线| 日本av免费视频播放| 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 精品一区二区三区四区五区乱码 | 成人二区视频| 久久精品人人爽人人爽视色| 久久久国产一区二区| 亚洲成人一二三区av| 97超碰精品成人国产| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 免费看光身美女| 国产激情久久老熟女| av线在线观看网站| 看非洲黑人一级黄片| 国产黄色视频一区二区在线观看| 亚洲第一区二区三区不卡| 久久青草综合色| 久久狼人影院| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 最近最新中文字幕大全免费视频 | 国产免费福利视频在线观看| 丰满少妇做爰视频| 看免费成人av毛片| 国产精品欧美亚洲77777| 99久久人妻综合| 1024视频免费在线观看| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 国产激情久久老熟女| 久久久久精品性色| 亚洲精品一二三| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 日本与韩国留学比较| 欧美人与性动交α欧美软件 | 大香蕉97超碰在线| 成年人免费黄色播放视频| 色哟哟·www| 黑人巨大精品欧美一区二区蜜桃 | 久久精品国产亚洲av天美| 国产极品天堂在线| 成人无遮挡网站| av在线老鸭窝| 日韩av在线免费看完整版不卡| 丝袜美足系列| 性高湖久久久久久久久免费观看| 免费观看性生交大片5| 赤兔流量卡办理| 久久精品国产亚洲av涩爱| 久久久国产一区二区| 男人舔女人的私密视频| 国产 一区精品| 黄色视频在线播放观看不卡| 永久网站在线| 国产在视频线精品| 国产高清不卡午夜福利| 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区| 99久国产av精品国产电影| 精品一品国产午夜福利视频| 日产精品乱码卡一卡2卡三| 中文字幕精品免费在线观看视频 | 久久国内精品自在自线图片| 插逼视频在线观看| 最后的刺客免费高清国语| 亚洲在久久综合| 亚洲欧洲日产国产| 国产色婷婷99| 国产男人的电影天堂91| 久久国产精品男人的天堂亚洲 | 男女无遮挡免费网站观看| 亚洲综合色惰| 自线自在国产av| 18在线观看网站| 国产精品熟女久久久久浪| 夫妻性生交免费视频一级片| 男女高潮啪啪啪动态图| 国产一级毛片在线| 日本黄大片高清| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美亚洲二区| 边亲边吃奶的免费视频| 热re99久久国产66热| 人人妻人人爽人人添夜夜欢视频| 色吧在线观看| 欧美丝袜亚洲另类| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站| 日韩一本色道免费dvd| 色婷婷久久久亚洲欧美| 国产成人精品无人区| av电影中文网址| 亚洲成色77777| 精品少妇久久久久久888优播| 97超碰精品成人国产| √禁漫天堂资源中文www| av在线老鸭窝| 五月玫瑰六月丁香| 国产成人精品一,二区| 精品一区二区三区四区五区乱码 | 成人手机av| 亚洲精品第二区| 母亲3免费完整高清在线观看 | 黄网站色视频无遮挡免费观看| 亚洲精品aⅴ在线观看| 老司机亚洲免费影院| 欧美日韩一区二区视频在线观看视频在线| 我要看黄色一级片免费的| 久久久国产精品麻豆| 啦啦啦视频在线资源免费观看| 国产毛片在线视频| 天美传媒精品一区二区| 亚洲在久久综合| 久久人人爽av亚洲精品天堂| 免费在线观看完整版高清| 国产亚洲最大av| 国产av一区二区精品久久| 亚洲国产欧美在线一区| 成年动漫av网址| 久久久国产一区二区| 久久国产精品男人的天堂亚洲 | 亚洲性久久影院| 久久影院123| kizo精华| 国产成人av激情在线播放| 免费在线观看完整版高清| 亚洲av电影在线观看一区二区三区| 巨乳人妻的诱惑在线观看| 精品午夜福利在线看| 丁香六月天网| 91午夜精品亚洲一区二区三区| 久久精品国产综合久久久 | 亚洲综合精品二区| 午夜福利在线观看免费完整高清在| 国产在视频线精品| 满18在线观看网站| 国产成人aa在线观看| 亚洲精品aⅴ在线观看| a级毛片黄视频| 亚洲精品aⅴ在线观看| 曰老女人黄片| 这个男人来自地球电影免费观看 | 国内精品宾馆在线| 男女免费视频国产| 国产精品久久久久久精品电影小说| 亚洲精品aⅴ在线观看| 美女国产高潮福利片在线看| 亚洲精品乱码久久久久久按摩| 97人妻天天添夜夜摸| 少妇高潮的动态图| 丰满迷人的少妇在线观看| 日韩一区二区视频免费看| 亚洲欧洲日产国产| 尾随美女入室| av在线播放精品| 五月开心婷婷网| 嫩草影院入口| 日本-黄色视频高清免费观看| 国产在视频线精品| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 中文欧美无线码| 如何舔出高潮| 亚洲国产精品专区欧美| 免费少妇av软件| 九色成人免费人妻av| 男女无遮挡免费网站观看| 国产男女内射视频| 另类亚洲欧美激情| 国产精品免费大片| 十八禁高潮呻吟视频| 99香蕉大伊视频| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码 | 久久久久精品久久久久真实原创| 亚洲图色成人| 五月玫瑰六月丁香| 国产精品国产av在线观看| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 亚洲色图综合在线观看| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 午夜福利在线观看免费完整高清在| 久久久久网色| 视频在线观看一区二区三区| 黄色 视频免费看| 国产极品粉嫩免费观看在线| 一个人免费看片子| 97在线视频观看| 中国美白少妇内射xxxbb| 久久综合国产亚洲精品| 久久久国产精品麻豆| 一区二区三区乱码不卡18| 日本免费在线观看一区| 狂野欧美激情性bbbbbb| 中文欧美无线码| 三上悠亚av全集在线观看| 99热网站在线观看| 国产色婷婷99| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 美国免费a级毛片| 国产成人精品无人区| 亚洲精品成人av观看孕妇| 国产精品一国产av| 十八禁高潮呻吟视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费人成在线观看视频色| 精品一区在线观看国产| 国产在线视频一区二区| 久久午夜福利片| 免费观看av网站的网址| 国产成人aa在线观看| 成人手机av| 久久人人97超碰香蕉20202| 国产精品国产三级国产av玫瑰| 亚洲第一av免费看| 亚洲av电影在线观看一区二区三区| 看免费成人av毛片| 99久久精品国产国产毛片| 久久久亚洲精品成人影院| 国产精品国产三级国产专区5o| 亚洲熟女精品中文字幕| 精品亚洲成国产av| 国产精品三级大全| 欧美激情国产日韩精品一区| 欧美日韩国产mv在线观看视频| 成人毛片60女人毛片免费| 97精品久久久久久久久久精品| 国产成人欧美| av播播在线观看一区| 丝袜在线中文字幕| 亚洲国产精品专区欧美| 成人综合一区亚洲| 在线观看国产h片| 国产一区二区激情短视频 | 天天影视国产精品| 黑人猛操日本美女一级片| 久久精品国产亚洲av涩爱| videossex国产| 边亲边吃奶的免费视频| 国产69精品久久久久777片| 亚洲av成人精品一二三区| 巨乳人妻的诱惑在线观看| 91久久精品国产一区二区三区| 国产在线视频一区二区| 日韩欧美精品免费久久| 男的添女的下面高潮视频| 超碰97精品在线观看| 五月伊人婷婷丁香| 老女人水多毛片| 男女国产视频网站| 国产成人精品福利久久| 2021少妇久久久久久久久久久| 婷婷色麻豆天堂久久| 久热久热在线精品观看| av免费在线看不卡| 日韩欧美一区视频在线观看| 久久热在线av| 波野结衣二区三区在线| 大片免费播放器 马上看| 国产在线免费精品| 国产av国产精品国产| 国产成人精品福利久久| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 中文字幕免费在线视频6| 亚洲一级一片aⅴ在线观看| 免费看不卡的av| 日日爽夜夜爽网站| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| 免费播放大片免费观看视频在线观看| 国产精品久久久av美女十八| 国国产精品蜜臀av免费| 国产在线免费精品| 国产精品嫩草影院av在线观看| 18在线观看网站| 久久精品国产亚洲av天美| 精品久久国产蜜桃| 精品人妻熟女毛片av久久网站| 亚洲国产最新在线播放| 午夜日本视频在线| 中文字幕免费在线视频6| 久久人人爽人人爽人人片va| 亚洲在久久综合| 中文字幕精品免费在线观看视频 | 十八禁高潮呻吟视频| 97在线视频观看| 国产精品.久久久| 国产精品久久久久久精品电影小说| 日本色播在线视频| 91成人精品电影| 精品一区在线观看国产| 色94色欧美一区二区| 欧美精品亚洲一区二区| 又大又黄又爽视频免费| 午夜福利乱码中文字幕| 国产1区2区3区精品| 亚洲av日韩在线播放| 黄色 视频免费看| 777米奇影视久久| 日韩在线高清观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 男的添女的下面高潮视频| 国产精品蜜桃在线观看| 一级片'在线观看视频| 成年人免费黄色播放视频| 久久久久网色| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 黄色毛片三级朝国网站| 欧美精品一区二区大全| 欧美成人精品欧美一级黄| 久久人人爽人人爽人人片va| 免费大片黄手机在线观看| 下体分泌物呈黄色| 99热国产这里只有精品6| 精品国产一区二区三区四区第35| 啦啦啦中文免费视频观看日本| av.在线天堂| 亚洲精品中文字幕在线视频| 各种免费的搞黄视频| 99国产精品免费福利视频| 老司机亚洲免费影院| 最黄视频免费看| 一区二区日韩欧美中文字幕 | 国产毛片在线视频| 2021少妇久久久久久久久久久| 一区在线观看完整版| 亚洲国产看品久久| 卡戴珊不雅视频在线播放| 欧美精品人与动牲交sv欧美| 中文字幕亚洲精品专区| 九色成人免费人妻av| videosex国产| 麻豆乱淫一区二区| 一本色道久久久久久精品综合| 欧美激情国产日韩精品一区| 五月天丁香电影| 欧美人与性动交α欧美精品济南到 | 内地一区二区视频在线| 91久久精品国产一区二区三区| 精品国产一区二区三区久久久樱花| 韩国高清视频一区二区三区| av又黄又爽大尺度在线免费看| 久久久久精品人妻al黑| 97人妻天天添夜夜摸| 日本vs欧美在线观看视频| 国产成人一区二区在线| 中文乱码字字幕精品一区二区三区| 看非洲黑人一级黄片| 少妇被粗大的猛进出69影院 | 久久久久精品人妻al黑| 黄色视频在线播放观看不卡| www.色视频.com| 亚洲,欧美,日韩| 欧美国产精品va在线观看不卡| 99热国产这里只有精品6| 久久久欧美国产精品| 久久精品国产综合久久久 | 涩涩av久久男人的天堂| 丰满乱子伦码专区| 国产一区二区三区综合在线观看 | 国产福利在线免费观看视频| 亚洲精品国产av蜜桃| 丰满乱子伦码专区| av.在线天堂| 在线亚洲精品国产二区图片欧美| 91久久精品国产一区二区三区| av.在线天堂| 18禁观看日本| 国产亚洲最大av| 亚洲欧美一区二区三区黑人 | 精品国产一区二区三区久久久樱花| 超碰97精品在线观看| 男女边吃奶边做爰视频| 99国产综合亚洲精品| 女人被躁到高潮嗷嗷叫费观| 国产亚洲最大av| 亚洲欧美一区二区三区黑人 | 九九在线视频观看精品| 另类精品久久| 一级毛片电影观看| 精品熟女少妇av免费看| 欧美成人午夜免费资源| 欧美日韩视频高清一区二区三区二|