陳訓(xùn)教,呂志軍,薛向磊,辛 亮,喻擎蒼,于友朋,趙 勻
?
無線遙控步行插秧機(jī)的設(shè)計(jì)與試驗(yàn)
陳訓(xùn)教1,呂志軍1,薛向磊1,辛 亮1,喻擎蒼2,于友朋1,趙 勻1※
(1. 東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030;2. 浙江理工大學(xué)信息學(xué)院,杭州 310018)
無線遙控步行插秧機(jī)有廣闊的市場前景和應(yīng)用價(jià)值,在不借助人力的情況下,田間地頭原地180°轉(zhuǎn)向是一大難題。為此,作者發(fā)明了一種具有升降功能的輔助行走機(jī)構(gòu),在田間地頭借助大幅度升降功使浮板能夠完全脫離泥面,減少轉(zhuǎn)向阻力。在分析了該機(jī)構(gòu)的結(jié)構(gòu)特點(diǎn)及工作原理基礎(chǔ)上,建立了機(jī)構(gòu)的運(yùn)動(dòng)學(xué)模型,開發(fā)了基于Visual Basic6.0的計(jì)算機(jī)輔助優(yōu)化設(shè)計(jì)與分析軟件,并結(jié)合“參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法快速優(yōu)化求解得到滿足輔助行走機(jī)構(gòu)工作要求的一組參數(shù),基于優(yōu)化所得參數(shù)進(jìn)行結(jié)構(gòu)設(shè)計(jì),并進(jìn)行了物理樣機(jī)加工試制與裝配。同時(shí),開發(fā)了末端氣動(dòng)執(zhí)行系統(tǒng)和基于串口通信的無線遙控系統(tǒng)。在規(guī)格為10 m×20 m,泥腳深度為15~25 cm的水田中進(jìn)行田間試驗(yàn),將插秧機(jī)的行走速度設(shè)定為0.45和0.90 m/s,試驗(yàn)結(jié)果表明,在無線遙控狀態(tài)下,該機(jī)型可以完成插秧、直線行駛、全自動(dòng)90°轉(zhuǎn)向和田間地頭原地180°轉(zhuǎn)向。輔助行走機(jī)構(gòu)和控制系統(tǒng)滿足無線遙控步行插秧機(jī)在田間正常作業(yè)要求,驗(yàn)證了機(jī)構(gòu)和控制系統(tǒng)的可行性。
遙控;設(shè)計(jì);試驗(yàn);步行插秧機(jī);輔助行走機(jī)構(gòu);參數(shù)導(dǎo)引啟發(fā)式優(yōu)化算法;氣動(dòng)執(zhí)行系統(tǒng);串口通信
科學(xué)技術(shù)的進(jìn)步推動(dòng)著現(xiàn)代農(nóng)業(yè)生產(chǎn)向著自動(dòng)化、信息化、規(guī)?;途_化方向快速發(fā)展[1]。農(nóng)機(jī)智能化研究特別是無人駕駛技術(shù)在現(xiàn)代農(nóng)業(yè)技術(shù)上的研究越來越深入,逐漸成為農(nóng)業(yè)工程技術(shù)智能化研究的重要組成部分[2],它包括:遙控和圖像識(shí)別田間作業(yè)機(jī)器的直線、轉(zhuǎn)向行駛、全自動(dòng)90°轉(zhuǎn)向、田間地頭原地180°轉(zhuǎn)向、核心作業(yè)部件的啟動(dòng)和終止。在整個(gè)作業(yè)過程中,確保機(jī)器等行距行駛。
步行插秧機(jī)是3種類型(高速、普通乘坐和步行插秧機(jī))中唯一雙腳與土地長時(shí)間接觸的作業(yè)方式。由于北方寒地插秧季節(jié)氣候寒冷,雙腳與冰冷的土地接觸,是一項(xiàng)非常艱苦的勞動(dòng),年復(fù)一年,很多農(nóng)民患上了關(guān)節(jié)炎等疾病,但是,步行插秧機(jī)由于其輕便、操作靈活、過埂和防陷性能好,特別適用于泥腳深的小塊水田,是一種不可或缺的機(jī)型。將步行插秧機(jī)配備無人駕駛技術(shù),可以免去農(nóng)民下田的生產(chǎn)環(huán)節(jié),此外,該技術(shù)產(chǎn)業(yè)化成本低,而且可以充分發(fā)揮回轉(zhuǎn)式分插機(jī)構(gòu)的高效率作業(yè)。
日本是最早進(jìn)行農(nóng)業(yè)機(jī)械智能化相關(guān)方面研究的國家,在水稻插秧機(jī)無人駕駛研究方面也處于領(lǐng)先地位。日本插秧機(jī)只有2種機(jī)型:高速乘坐式和手扶步行式,30年前,步行插秧機(jī)進(jìn)入市場,數(shù)量是高速插秧機(jī)的2倍,但由于其對農(nóng)民身體的傷害(日本處于寒溫帶,與中國東北氣候相同),目前步行插秧機(jī)已經(jīng)萎縮到全部產(chǎn)量的1%,大多數(shù)都改為高速乘坐式,為了適應(yīng)小田塊的作業(yè),過去的4行步行插秧機(jī)都變成高速乘坐式。日本的無人駕駛插秧機(jī)也沒有達(dá)到產(chǎn)業(yè)化地步,其研究僅局限于乘坐式。日本國家農(nóng)業(yè)研究中心的Nagasaka等針對乘坐式水稻插秧機(jī)的無人駕駛進(jìn)行了系統(tǒng)研究[3-5],他們對操作機(jī)構(gòu)進(jìn)行改造,并在插秧機(jī)上安裝了電腦、GPS和光纖陀螺儀,在50 m×10 m的稻田中用無線Modem對插秧機(jī)進(jìn)行導(dǎo)航,試驗(yàn)顯示,直線行走速度為0.7 m/s時(shí)偏差為5.5 cm,而轉(zhuǎn)彎時(shí)偏差為10 cm。北海道大學(xué)的Kaizu等運(yùn)用機(jī)器視覺理論進(jìn)行了無人駕駛方面的研究[6-7],開發(fā)了雙譜照相秧苗檢測系統(tǒng),有效消除水面反光及田邊綠色倒映物等噪聲影響,整體導(dǎo)航效果較好。
國內(nèi)最早從事這方面研究的是華南農(nóng)業(yè)大學(xué)的羅錫文院士,他針對乘坐式水稻插秧機(jī)的無人駕駛進(jìn)行了系統(tǒng)研究[8-12],對插秧機(jī)操作機(jī)構(gòu)進(jìn)行改造,將計(jì)算機(jī)、傳感器、GPS和數(shù)據(jù)通訊技術(shù)等集成融合開發(fā)出了多種自動(dòng)控制系統(tǒng),其中開發(fā)的基于CAN(controller area network)總線的分布式控制系統(tǒng)在久保田SPU-68型插秧機(jī)上進(jìn)行了道路跟蹤試驗(yàn)和田間作業(yè)試驗(yàn),結(jié)果表明,道路直線跟蹤偏差小于0.05 m,田間作業(yè)試驗(yàn)直線跟蹤偏差不大于0.2 m,插秧機(jī)能夠自主完成路徑跟蹤、轉(zhuǎn)向、變速以及插秧等操作,滿足水田插秧作業(yè)要求。南京農(nóng)業(yè)大學(xué)的姬長英、周俊等以機(jī)器視覺為基礎(chǔ)[13-18],并融入小波變換、卡爾曼濾波等理論構(gòu)建了視覺導(dǎo)航實(shí)驗(yàn)平臺(tái),以農(nóng)用輪式移動(dòng)機(jī)器人載體進(jìn)行了大量無人駕駛試驗(yàn)并取得良好的效果。中國農(nóng)業(yè)機(jī)械化科學(xué)研究院的偉力國等以XDNZ630型水稻插秧機(jī)為試驗(yàn)平臺(tái),運(yùn)用GPS技術(shù),實(shí)現(xiàn)了插秧機(jī)的自動(dòng)對行導(dǎo)航及地頭轉(zhuǎn)向[19]。并進(jìn)行了插秧機(jī)路面與田間導(dǎo)航跟蹤試驗(yàn),結(jié)果表明,車輛行進(jìn)速度不大于0.6 m/s時(shí),對行跟蹤偏差小于10 cm,基本滿足插秧作業(yè)精度要求。此外,浙江大學(xué)的張方明博士在其博士論文中提出了幾種有效的田間路徑識(shí)別算法[20],并以乘坐式水稻插秧機(jī)為載體進(jìn)行自動(dòng)導(dǎo)航研究,取得了不錯(cuò)的效果。從以上研究現(xiàn)狀看,目前的無人駕駛集中在GPS和機(jī)器視覺的應(yīng)用上。該研究摒棄通常無人駕駛采用的GPS系統(tǒng),轉(zhuǎn)而借助無線遙控、圖像處理和自動(dòng)控制3種方式融合完成步行插秧機(jī)無人駕駛田間作業(yè),并在田間作業(yè)過程中盡量減少無線遙控操作。
為實(shí)現(xiàn)步行插秧機(jī)無人駕駛作業(yè),該研究完成了無線遙控部分和機(jī)械部分,并申請了機(jī)械部分的相關(guān)發(fā)明專利(專利號(hào):CN201510648987.2)和軟件著作權(quán)(登記號(hào):2017SR379283),插秧機(jī)在無線遙控下可以完成直線行駛、轉(zhuǎn)彎、插秧及田間地頭原地180°轉(zhuǎn)向等。步行插秧機(jī)田間地頭180°原地轉(zhuǎn)向可以借助人工輔助操作實(shí)現(xiàn),但在無線遙控作業(yè)中,如果機(jī)器未被抬升至一定的高度,浮板就會(huì)壅泥壅水,無法完成原地轉(zhuǎn)向動(dòng)作。作者發(fā)明了一套具有大幅度升降功能的輔助行走機(jī)構(gòu),以保證插秧機(jī)無線遙控狀態(tài)下順利在田間直線行走、平穩(wěn)升降和原地180°轉(zhuǎn)向。為獲得優(yōu)化設(shè)計(jì)參數(shù),自主開發(fā)輔助優(yōu)化軟件并結(jié)合“參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法[21]進(jìn)行快速優(yōu)化求解,并進(jìn)行了物理樣機(jī)研制,同時(shí)開發(fā)了基于串口通訊的控制系統(tǒng)和將控制指令轉(zhuǎn)換為插秧機(jī)動(dòng)作的末端氣動(dòng)執(zhí)行系統(tǒng),最后進(jìn)行田間試驗(yàn),驗(yàn)證了機(jī)構(gòu)和控制系統(tǒng)的可行性。
步行插秧機(jī)在無人駕駛田間作業(yè)過程中,輔助行走機(jī)構(gòu)須滿足以下2個(gè)要求:
1)保證插秧機(jī)始終處于水平狀態(tài)。為保證插秧效果,輔助行走機(jī)構(gòu)應(yīng)能使插秧機(jī)在插秧和升降過程中盡量保持水平狀態(tài),以保證達(dá)到平起平降效果及穩(wěn)定的插秧角度和深度。
2)保證插秧機(jī)在直線、轉(zhuǎn)彎行走過程中的等行距作業(yè)和田間地頭原地180°轉(zhuǎn)向。為保證插秧效果,方便后期管理和收割,插秧機(jī)需直線行走并保持等行距作業(yè)[19];在田間地頭原地180°轉(zhuǎn)向時(shí),輔助行走機(jī)構(gòu)應(yīng)能使插秧機(jī)被抬升至最高狀態(tài)時(shí),浮板與泥面完全分離,達(dá)到不壅泥壅水的效果。
根據(jù)設(shè)計(jì)要求,發(fā)明了一種輔助行走機(jī)構(gòu)如圖1所示(紅色部分),該機(jī)構(gòu)由搖桿滑道機(jī)構(gòu)(推桿1、擺桿2、活塞桿和插秧機(jī)機(jī)體)、雙搖桿機(jī)構(gòu)(擺桿2、長拉桿4、下擺桿8和插秧機(jī)機(jī)體)和平行四桿機(jī)構(gòu)(上擺桿6、支撐桿7、下擺桿8和插秧機(jī)機(jī)體)串聯(lián)組合而成,且巧妙地運(yùn)用了插秧機(jī)自身的動(dòng)力裝置,與插秧機(jī)攜帶的液壓升降機(jī)構(gòu)形成并聯(lián),協(xié)同完成插秧機(jī)的升降動(dòng)作。當(dāng)插秧機(jī)插秧時(shí),尾輪9與驅(qū)動(dòng)輪3的相對位置保證插秧機(jī)處于水平狀態(tài),以確保穩(wěn)定的插秧深度和角度;當(dāng)插秧機(jī)需要田間地頭原地180°轉(zhuǎn)向時(shí),插秧機(jī)液壓升降系統(tǒng)通過驅(qū)動(dòng)自身升降機(jī)構(gòu)使中間驅(qū)動(dòng)輪3下降,同時(shí)液壓升降系統(tǒng)中的活塞桿驅(qū)動(dòng)推桿1向右運(yùn)動(dòng),推桿1驅(qū)動(dòng)擺桿2下端向左運(yùn)動(dòng),擺桿2與長拉桿4相鉸接,長拉桿4拉動(dòng)由固定桿5固定在手扶架上的上擺桿6、支撐桿7和下擺桿8組成的平行四桿機(jī)構(gòu)總成向左運(yùn)動(dòng),從而帶動(dòng)尾輪9下降,由中間驅(qū)動(dòng)輪3和尾輪9的下降運(yùn)動(dòng)使插秧機(jī)升至一定高度后,最終使插秧機(jī)浮板完全脫離泥面,順利完成田間地頭原地180°轉(zhuǎn)向。
1.推桿 2.擺桿 3.驅(qū)動(dòng)輪 4.長拉桿 5.固定桿 6.上擺桿 7.支撐桿 8.下擺桿 9.尾輪
如圖2所示為輔助行走機(jī)構(gòu)簡圖,建立以液壓升降機(jī)構(gòu)中仿形臂鉸鏈點(diǎn)為原點(diǎn)、水平方向?yàn)檩S(向右為正)、豎直方向?yàn)檩S(向上為正)的坐標(biāo)系,并規(guī)定以逆時(shí)針方向?yàn)檎齕22]。
根據(jù)圖2建立機(jī)構(gòu)的封閉矢量方程
將矢量方程轉(zhuǎn)換為解析形式,得出各運(yùn)動(dòng)點(diǎn)的位移方程,其中,固定鉸鏈點(diǎn)的坐標(biāo)(x,y)、固定鉸鏈點(diǎn)的坐標(biāo)(x,y)、固定鉸鏈點(diǎn)的坐標(biāo)(x,y)、固定鉸鏈點(diǎn)的坐標(biāo)(x,y)、焊接點(diǎn)的坐標(biāo)(x,y)、焊接點(diǎn)的坐標(biāo)(x,y)和活塞桿末端點(diǎn)的縱坐標(biāo)1為已知常量。
活塞桿末端點(diǎn)的位移方程為
注:la為 A點(diǎn)橫坐標(biāo);h1為 A點(diǎn)縱坐標(biāo);l1為桿AB的長度;l2為桿BC的長度;l3為桿CD的長度;l4為桿AE的長度;l5桿EF的長度;l6桿FG的長度;l7桿PJ的長度;l8桿JL的長度;l9為桿LK的長度;l10為桿IJ的長度;l11為桿IH′的長度;l12為桿H′H的長度;l13為桿GH的長度;l14為桿KM的長度;l15為桿NO的長度;α為 CB與CD夾角;β為CA的向量角;γ為CB與CA夾角;α1為 FE的向量角;β1為FA與FE夾角;γ1為FA的向量角;α2為GI與GE夾角;β2為GH與GI夾角;γ2為GE的向量角;α3為 HI與HH’夾角;γ3為HI的向量角;γ4為 NO與NM夾角;β3為KM的向量角;θ為手扶架傾角;θ1為H′I與H′H夾角;θ2為尾輪傾斜角;r為尾輪半徑。
Note: la refers to abscissa of point A; h1 refers to ordinate of point A; l1 refers to length of rod AB; l2 refers to length of rod BC; l3 refers to length of rod CD; l4 refers to length of rod AE; l5 refers to length of rod EF; l6 refers to length of rod FG; l7 refers to length of rod PJ; l8 refers to length of rod JL; l9 refers to length of rod LK; l10 refers to Length of rod IJ; l11 refers to length of rod IH′; l12 refers to length of rod H′H; l13 refers to length of rod GH; l14 refers to Length of rod KM; l15 refers to length of rod NO; α refers to included angle of CB and CD; β refers to vector angle of CA; γ refers to included angle of CB and CA; α2 refers to vector angle of FE; β1 refers to included angle of FA and FE; γ1 refers to vector angle of FA; α1 refers to angle of GI and GE; β2 refers to included angle of GH and GI; γ2 refers to vector angle of GE; α3 refers to included angle of HI and HH′; γ3 refers to vector angle of HI; γ4 refers to included angle of NO and NM; β3 refers to vector angle of KM; θ refers to inclination angle of Hand-frame; θ1 refers to included angle of H′I and H′H; θ2 refers to inclination angle of tail-wheel; r refers to radius of tail-wheel.
圖2 輔助行走機(jī)構(gòu)簡圖
Fig.2 Simplified diagram of walking aided mechanism
液壓升降機(jī)構(gòu)中仿形臂與拉桿鉸接,由此得出鉸鏈點(diǎn)的位移方程為
其中
擺桿與推桿鉸接與點(diǎn),與長拉桿鉸接于,由固定鉸鏈點(diǎn)推出鉸鏈點(diǎn)和點(diǎn)的位移方程為
其中
其中
其中
其中
由支撐桿鉸鏈點(diǎn)的位移方程推導(dǎo)尾輪輪心的位移方程為
根據(jù)輔助行走機(jī)構(gòu)的結(jié)構(gòu)特點(diǎn)和無線遙控步行插秧機(jī)作業(yè)要求,優(yōu)化時(shí),需考慮以下優(yōu)化目標(biāo):
3)機(jī)構(gòu)運(yùn)動(dòng)過程中與插秧機(jī)不發(fā)生運(yùn)動(dòng)干涉,即推桿與插秧機(jī)箱架、秧盤托架底板不發(fā)生碰撞;長拉桿與秧門不發(fā)生碰撞。
4)插秧機(jī)在田間作業(yè)時(shí)處于水平狀態(tài),當(dāng)插秧機(jī)初始狀態(tài)時(shí)為水平狀態(tài)時(shí),尾輪與中間驅(qū)動(dòng)輪的升降高度盡可能相等,且插秧機(jī)被抬升至最高位置時(shí)浮板應(yīng)脫離泥面。
5)尾輪半徑不宜過小,應(yīng)大于平均泥腳深度(200 mm),防止輪子陷入泥中而增加行駛阻力。
6)驅(qū)動(dòng)輪與尾輪的升降速度在豎直方向上盡可能相等,使插秧機(jī)達(dá)到平起平降的效果。
輔助行走機(jī)構(gòu)優(yōu)化模型的已知變量為液壓升降系統(tǒng)的液壓行程170 mm及點(diǎn)橫坐標(biāo)l;優(yōu)化設(shè)計(jì)變量有:桿長4、桿長5、桿長6、桿長7、桿長8、桿長9、桿長10、桿長11、桿長12、桿長13、桿長14、桿長15、尾輪半徑、與夾角1和尾輪傾斜角2。
通過分析變量與優(yōu)化目標(biāo),輔助行走機(jī)構(gòu)的優(yōu)化屬于多目標(biāo)(9個(gè)目標(biāo))、多參數(shù)(16個(gè)參數(shù))、強(qiáng)耦合性復(fù)雜優(yōu)化問題[22,24-27]。該研究采取課題組提出的“參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法進(jìn)行優(yōu)化求解,其基本原理如圖3所示。根據(jù)輔助行走機(jī)構(gòu)數(shù)學(xué)建模所得運(yùn)動(dòng)學(xué)方程,開發(fā)了基于VB可視化編程平臺(tái)的輔助行走機(jī)構(gòu)優(yōu)化設(shè)計(jì)與分析軟件,如圖4所示,并將“參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法嵌入軟件中,同時(shí)將優(yōu)化目標(biāo)轉(zhuǎn)換為數(shù)學(xué)方程,再將數(shù)學(xué)方程轉(zhuǎn)換為目標(biāo)函數(shù),并在優(yōu)化軟件中數(shù)字化顯示,通過進(jìn)度條的形式直觀地顯示優(yōu)化效果,紅色顯示條越長,表明優(yōu)化目標(biāo)越接近理想值[21],同時(shí)結(jié)合農(nóng)藝要求,為優(yōu)化出滿足要求的參數(shù)提供依據(jù)[28-30]。需要注意的是,待優(yōu)化的機(jī)構(gòu)設(shè)計(jì)參數(shù)初始值的選取必須滿足機(jī)構(gòu)運(yùn)動(dòng)條件,否則,無法進(jìn)行優(yōu)化計(jì)算。例如,選取輔助行走機(jī)構(gòu)中推桿1(圖2中的桿)和擺桿2上部分(圖2中的桿)長度值的時(shí)候,需要滿足當(dāng)活塞桿末端點(diǎn)運(yùn)動(dòng)至任何位置時(shí),桿和桿長度之和大于活塞桿末端點(diǎn)與鉸鏈點(diǎn)之間的距離,否則,機(jī)構(gòu)將無法運(yùn)動(dòng)。
圖3 “參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法程序框圖
圖4 優(yōu)化軟件界面
根據(jù)以上分析,借助專家經(jīng)驗(yàn),運(yùn)用優(yōu)化設(shè)計(jì)與分析軟件并結(jié)合“參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法進(jìn)行快速優(yōu)化求解,當(dāng)目標(biāo)值顯示區(qū)域的所有進(jìn)度條均呈現(xiàn)為紅色時(shí),此時(shí),優(yōu)化軟件中參數(shù)輸入?yún)^(qū)域中的參數(shù)滿足優(yōu)化目標(biāo)要求,即為滿足輔助行走機(jī)構(gòu)工作要求的參數(shù)。此外,紅色的進(jìn)度條越長,說明目標(biāo)函數(shù)值越靠近預(yù)設(shè)的理想值,所對應(yīng)的參數(shù)也就越好,該組參數(shù)為結(jié)構(gòu)設(shè)計(jì)、裝配圖及零件圖繪制提供依據(jù),優(yōu)化完畢的一組機(jī)構(gòu)參數(shù)值和所對應(yīng)的函數(shù)目標(biāo)值分別如表1和表2所示。
在軟件參數(shù)欄中輸入優(yōu)化參數(shù),經(jīng)分析計(jì)算后得到活塞桿伸出長度與插秧機(jī)的升降高度和在升降過程中整機(jī)傾斜度變化關(guān)系如圖5所示。當(dāng)活塞桿伸出長度最大時(shí)(170 mm),中間驅(qū)動(dòng)輪下降高度為244 mm,后端尾輪下降高度為229 mm,插秧機(jī)整機(jī)傾斜度小于2°,最大值為1.2°,且輔助行走機(jī)構(gòu)與插秧機(jī)機(jī)體不發(fā)生干涉,滿足3.1節(jié)所述的相關(guān)優(yōu)化目標(biāo)要求。
表1 輔助行走機(jī)構(gòu)優(yōu)化模型的參數(shù)初始值與優(yōu)化值
表2 輔助行走機(jī)構(gòu)優(yōu)化模型的目標(biāo)初始值與優(yōu)化值
圖5 升降高度和傾斜度理論變化曲線
氣動(dòng)執(zhí)行模塊作為控制系統(tǒng)的終端,是將控制指令轉(zhuǎn)換為插秧機(jī)的實(shí)際動(dòng)作實(shí)現(xiàn)自主作業(yè)。如圖6所示為氣動(dòng)執(zhí)行模塊原理圖,DC為24 V穩(wěn)壓電源,V為電壓表,F(xiàn)為逆變器,將24 V直流電轉(zhuǎn)換為供電動(dòng)機(jī)(氣泵)M所用的220 V交流電,H為空氣濾清器,G為壓力表,C1~C7為氣缸,E1~E7為控制氣缸通斷的電磁閥,電磁閥的編號(hào)與氣缸編號(hào)一一對應(yīng)。為了穩(wěn)定系統(tǒng)壓力,在氣泵與氣缸之間安裝減壓閥D和壓力繼電器K(設(shè)定壓力值為0.7 MPa),并安裝壓力開關(guān)S1(初始狀態(tài)為閉合狀態(tài)),當(dāng)系統(tǒng)壓力超過設(shè)定值,壓力繼電器發(fā)送信號(hào),將壓力開關(guān)S1斷開,停止供壓,同時(shí)減壓閥D開啟,降低系統(tǒng)氣壓。當(dāng)系統(tǒng)壓力低于設(shè)定值,壓力繼電器再一次發(fā)出信號(hào),將壓力開關(guān)閉合,啟動(dòng)供壓,從而保證系統(tǒng)的正常工作且節(jié)約能源。當(dāng)插秧機(jī)檔位操作桿放在中立位置時(shí),氣缸通斷組合與對應(yīng)的插秧機(jī)動(dòng)作如表3所示,其中“√”代表氣缸被接通,“×”代表氣缸被切斷。
注:C1~C7為氣缸;E1~E7為電磁閥;D為減壓閥;K為壓力繼電器;S1為開關(guān),下同。
表3 氣缸通斷組合與對應(yīng)的插秧機(jī)動(dòng)作表
由表3可以看出,插秧機(jī)的大部分動(dòng)作(左右轉(zhuǎn)彎、離合、前進(jìn)、倒退和插秧)都需要C3氣缸的配合,所以必須使C3氣缸能快速接通與切斷,因此,在C3氣缸和換向閥之間設(shè)有快速排氣閥,以保證動(dòng)作響應(yīng)及時(shí)。氣缸C2為插秧機(jī)自身的液壓升降系統(tǒng)提供輔助,控制插秧機(jī)的升降動(dòng)作,為防止插秧機(jī)升至一定高度后在一定時(shí)間內(nèi)由于插秧機(jī)自身液壓系統(tǒng)壓力不穩(wěn)定等問題而導(dǎo)致高度發(fā)生變化,從而影響系統(tǒng)穩(wěn)定性,在C2氣缸與換向閥之間設(shè)置自鎖式回路,當(dāng)電磁閥E2通電后,換向閥右位接通,此時(shí)斷開電磁閥E2,氣缸不會(huì)換向,且能保證氣壓相對穩(wěn)定,只有當(dāng)接通電磁閥E2′后,氣缸才能換向。
為利用無線遙控手段實(shí)現(xiàn)對插秧機(jī)的實(shí)時(shí)控制,該研究以型號(hào)為STC80C52的單片機(jī)芯片,設(shè)計(jì)信號(hào)傳輸和處理系統(tǒng)。系統(tǒng)之間采用無線串口通訊模式,無線發(fā)送和接收串口模塊為433mHz,型號(hào)為E13-TTL;應(yīng)用C語言對單片機(jī)開發(fā)板進(jìn)行二次開發(fā)變?yōu)樾盘?hào)傳輸模塊,使具有控制指令發(fā)送功能;以單片機(jī)最小系統(tǒng)作為車載信號(hào)處理模塊,信號(hào)傳輸模塊和信號(hào)處理模塊如圖7、8所示。
1.無線串口模塊 2.矩陣鍵盤 3.單片機(jī)
1.電磁閥 2.電源 3.繼電器 4.信號(hào)接收模塊 5.單片機(jī)
信號(hào)傳輸模塊首先執(zhí)行UART()函數(shù)將串口初始化,使E13-TTL可用,然后利用單片機(jī)開發(fā)板自帶的矩陣鍵盤,通過周期性掃描函數(shù)KEYSCAN()掃描被按下的鍵,按下的鍵的組合對應(yīng)于表3中的插秧機(jī)動(dòng)作,再通過SEND()函數(shù)發(fā)送按鍵組合對應(yīng)的動(dòng)作指令。信號(hào)傳輸模塊的按鍵一次只發(fā)送一個(gè)動(dòng)作指令,但可以在極短的時(shí)間間隔內(nèi)按下不同的按鍵,快速實(shí)現(xiàn)插秧機(jī)動(dòng)作及動(dòng)作切換所對應(yīng)的按鍵組合。
信號(hào)處理模塊使用字符變量接收存儲(chǔ)信號(hào)傳輸模塊發(fā)送來的指令。氣缸編號(hào)與電磁閥、繼電器、單片機(jī)引腳一一對應(yīng),根據(jù)對字符變量的判斷結(jié)果。信號(hào)處理模塊中單片機(jī)的對應(yīng)引腳值為1時(shí),氣缸處于斷開狀態(tài),反之,則為接通狀態(tài),以實(shí)現(xiàn)表3中氣缸的通斷組合,進(jìn)而對應(yīng)插秧機(jī)動(dòng)作。
為驗(yàn)證輔助行走機(jī)構(gòu)和控制系統(tǒng)的可行性,基于3.3節(jié)中得到的優(yōu)化參數(shù),對輔助行走機(jī)構(gòu)進(jìn)行結(jié)構(gòu)設(shè)計(jì)和加工試制,并裝配至富來威2Z-455型步行插秧機(jī)上,同時(shí)將氣動(dòng)執(zhí)行系統(tǒng)和信號(hào)處理模塊安裝在插秧機(jī)托架上,并用拉絲將汽缸活塞末端與控制插秧機(jī)動(dòng)作的相關(guān)執(zhí)行機(jī)構(gòu)相連。水田規(guī)格為10 m×20 m,經(jīng)測量泥腳深度為15~25 cm,將插秧機(jī)的行走速度設(shè)定為0.45和0.90 m/s,田間試驗(yàn)如圖9所示。
圖9 田間試驗(yàn)
在0.45和0.90 m/s 2種情況下,手持遙控器分別對插秧機(jī)進(jìn)行直行、插秧、轉(zhuǎn)彎及田間原地180°轉(zhuǎn)向等操作,插秧機(jī)均能完成相應(yīng)操作,信號(hào)傳輸及時(shí),氣動(dòng)執(zhí)行系統(tǒng)響應(yīng)及時(shí),動(dòng)作切換順暢且無干擾現(xiàn)象,插秧機(jī)在田間地頭原地180°轉(zhuǎn)向過程中,浮板與泥面完全分離,不存在壅泥壅水現(xiàn)象,驗(yàn)證了輔助行走機(jī)構(gòu)和控制系統(tǒng)的可行性。
該研究的最終結(jié)果是希望開發(fā)1種基于無線遙控、圖像處理和自動(dòng)控制3種方式融合來完成全自動(dòng)無人駕駛田間作業(yè)的小型插秧機(jī),由于時(shí)間和精力有限,作者未能完成圖像識(shí)別部分,只完成了機(jī)械部分和無線遙控部分。
1)根據(jù)無線遙控步行插秧機(jī)運(yùn)動(dòng)要求發(fā)明了1套具有升降功能的輔助行走機(jī)構(gòu),并闡述了機(jī)構(gòu)組成及工作原理,建立了相應(yīng)的運(yùn)動(dòng)學(xué)模型。
2)針對輔助行走機(jī)構(gòu)的工作特點(diǎn),結(jié)合農(nóng)藝要求,制定了輔助行走機(jī)構(gòu)的優(yōu)化目標(biāo)與設(shè)計(jì)變量,并將目標(biāo)數(shù)字化。
3)開發(fā)了計(jì)算機(jī)輔助優(yōu)化設(shè)計(jì)與分析軟件,并運(yùn)用“參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法優(yōu)化出一組滿足工作要求的機(jī)構(gòu)設(shè)計(jì)參數(shù)。
4)開發(fā)了氣動(dòng)執(zhí)行系統(tǒng)和無線遙控系統(tǒng),根據(jù)優(yōu)化參數(shù)進(jìn)行輔助行走機(jī)構(gòu)加工試制,并進(jìn)行田間試驗(yàn),驗(yàn)證了機(jī)構(gòu)和控制系統(tǒng)的可行性。
[1] 姬長英,周俊. 農(nóng)業(yè)機(jī)械導(dǎo)航技術(shù)發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):44-54.
Ji Changying,Zhou Jun. Current situation of navigation technologies for agricultural machinery[J]. Transactions of the ChineseSociety for Agricultural Machinery, 2014, 45(9): 44-54. (in Chinese with English abstract)
[2] 李建平,林妙玲. 自動(dòng)導(dǎo)航技術(shù)在農(nóng)業(yè)工程中的應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(9):232-236.
Li Jianping, Lin Miaoling. Research progress of automatic guidance technologies applied in agricultural engineering[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2006, 22(9): 232-236. (in Chinese with English abstract)
[3] Nagasaka Y, Umeda N, Kanetai Y, et al. Autonomous guidance for rice transplanting using global positioning and gyroscopes[J]. Computers and Electronics in Agriculture, 2004, 43(3): 223-234.
[4] Weise G N, Nagasaka Y, Taniwaki K. An investigation of the turning behaviour of an autonomous rice transplanter[J]. J Agric Engng Res, 2000, 77(2): 233-237.
[5] Nagasaka Y, Saito H, Tamaki K, et al. An autonomous rice transplanter guided by global positioning system and inertial measurement unit[J]. Journal of Field Robotics, 2009, 26(6/7): 537-548.
[6] Kaizu Y, Imou K. Vision-based navigation of a rice transplanter[C]//GIGR International Conference. Beijing: [S.n.], 2004.
[7] Kaizu Y, Imou K. A dual-spectral camera system for paddy rice seedling row detection[J]. Computers and Electronics in Agriculture, 2008, 63(1): 49-56.
[8] 張智剛,羅錫文,周志艷,等. 久保田插秧機(jī)的GPS導(dǎo)航控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(7):95-98.
Zhang Zhigang, Luo Xiwen, Zhou Zhiyan, et al. Design of GPS navigation control system for rice transplanter[J]. Transactions of the ChineseSociety for Agricultural Machinery, 2006, 37(7): 95-98. (in Chinese with English abstract)
[9] 胡煉,羅錫文,趙祚喜,等. 插秧機(jī)電控操作機(jī)構(gòu)和控制算法設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):118-122.
Hu Lian, Luo Xiwen, Zhao Zuoxi, et al. Design of electronic control device and control algorithm for rice transplanter[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2009, 25(4): 118-122. (in Chinese with English abstract)
[10] 苗峻齊,羅錫文,張智剛,等. 無人駕駛水稻精量穴直播機(jī)的自動(dòng)控制系統(tǒng)設(shè)計(jì)[C]//中國農(nóng)業(yè)工程學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集,2011.
[11] 羅錫文,王坤,張智剛,等. 插秧機(jī)自動(dòng)轉(zhuǎn)向控制的PD參數(shù)整定[C]//中國農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì),2005.
[12] 張智剛,羅錫文,李俊嶺. 輪式農(nóng)業(yè)機(jī)械自動(dòng)轉(zhuǎn)向控制系統(tǒng)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(11):77-80.
Zhang Zhigang, Luo Xiwen, Li Junling. Automatic steering control system of wheeled model farming machinery[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2005, 21(11): 77-80. (in Chinese with English abstract)
[13] 周俊,姬長英. 基于機(jī)器視覺的輪式移動(dòng)機(jī)器人橫向最優(yōu)控制[J]. 機(jī)器人,2002,24(3):209-212.
Zhou Jun, Ji Changying. Lateral optimal control for wheeled mobile robot navigated by machine vision[J]. Robot, 2002, 24(3): 209-212. (in Chinese with English abstract)
[14] 周俊,姬長英. 視覺導(dǎo)航輪式移動(dòng)機(jī)器人橫向預(yù)測模糊控制[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(6):76-79.
Zhou Jun, Ji Changying. Lateral predictive fuzzy logic control for wheeled mobile robot navigated by machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(6): 76-79. (in Chinese with English abstract)
[15] 周俊,姬長英. 智能車輛橫向控制研究[J]. 機(jī)器人,2003,25(1):26-30.
Zhou Jun, Ji Changying. Lateral control of intelligent vehicle[J]. Robot, 2003, 25(1): 26-30. (in Chinese with English abstract)
[16] 周俊,姬長英. 基于知識(shí)的視覺導(dǎo)航農(nóng)業(yè)機(jī)器人行走路徑識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(6):101-105.
Zhou Jun, Ji Changying. Road recognition for agricultural robot guided by machine vision[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2003, 19(6): 101-105. (in Chinese with English abstract)
[17] 周俊,姬長英. 農(nóng)業(yè)機(jī)器人視覺導(dǎo)航中多分別率路徑識(shí)別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2003,34(6):120-123.
Zhou Jun, Ji Changying. Multi-resolution road recognition for vision navigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(6): 120-123. (in Chinese with English abstract)
[18] 周俊,姬長英,劉成良. 農(nóng)用輪式移動(dòng)機(jī)器人視覺導(dǎo)航系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,36(3):90-94.
Zhou Jun, Ji Changying, Liu Chengliang. Visual navigation system of agricultural wheeled-mobile robot[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2005, 36(3): 90-194. (in Chinese with English abstract)
[19] 偉利國,張權(quán),顏華,等. XDNZ630型水稻插秧機(jī)GPS自動(dòng)導(dǎo)航試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(7):186-190.
Wei Liguo, Zhang Quan, Yan Hua, et al. GPS automatic navigation system design for XDNZ630 rice transplanter[J]. Transactions of the ChineseSociety for Agricultural Machinery, 2011, 42(7): 186-190. (in Chinese with English abstract)
[20] 張方明. 田間路徑識(shí)別算法和基于立體視覺的車輛自動(dòng)導(dǎo)航方法研究[D]. 杭州:浙江大學(xué),2006.
[21] 趙勻,趙雄,代麗,等. “參數(shù)導(dǎo)引”啟發(fā)式優(yōu)化算法及應(yīng)用[C]//第10屆中國機(jī)構(gòu)與機(jī)器科學(xué)應(yīng)用國際會(huì)議(2013CCAMMS)論文集,2013-07-01.
[22] 趙勻. 農(nóng)業(yè)機(jī)械分析與綜合[M]. 北京:機(jī)械工業(yè)出版社,2009.
[23] 孫桓,陳作模,葛文杰. 機(jī)械原理[M]. 北京:高等教育出版社,2011.
[24] 陳建能,黃前澤,王英,等. 缽苗移栽機(jī)橢圓齒輪行星系植苗機(jī)構(gòu)運(yùn)動(dòng)學(xué)建模與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):6-12.
Chen Jianneng, Huang Qianze, Wang Ying, et al. Kinematics modeling and analysis of transplanting mechanism with planetary elliptic gears for pot seedling transplanter[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2012, 28(5): 6-12. (in Chinese with English abstract)
[25] 趙雄,陳建能,王英,等. 水稻缽苗“D形”靜軌跡移栽機(jī)構(gòu)逆向設(shè)計(jì)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(8):92-97.
Zhao Xiong, Chen Jianneng, Wang Ying, et al. Reverse design and analysis of rice seedling transplanter with D-shape static trajectory[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2012, 28(8): 92-97. (in Chinese with English abstract)
[26] 葉秉良,俞高紅,陳志威,等. 偏心齒輪-非圓齒輪行星系取苗機(jī)構(gòu)的運(yùn)動(dòng)學(xué)建模與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):7-12.
Ye Bingliang, Yu Gaohong, Chen Zhiwei, et al. Kinematics modeling and parameters optimization of seedling pick-up mechanism of planetary gear train with eccentric gear and non-circular gear[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2011, 27(12): 7-12. (in Chinese with English abstract)
[27] 代麗,孫良,趙雄,等. 基于運(yùn)動(dòng)學(xué)目標(biāo)函數(shù)的插秧機(jī)分插機(jī)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(3):35-42.
Dai Li, Sun Liang, Zhao Xiong, et al. Parameters optimization of separating-planting mechanism in transplanter based on kinematics objective function[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2014, 30(3): 35-42. (in Chinese with English abstract)
[28] 武傳宇,趙勻,陳建能. 水稻插秧機(jī)分插機(jī)構(gòu)人機(jī)交互可視化優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(1):46-49. Wu Chuanyu, Zhao Yun, Chen jianneng. Optimization design of rice transplanter separating-planting mechanism with visualization human-computer interaction method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(1): 46-49. (in Chinese with English abstract)
[29] 錢孟波,俞高紅,蔣晨驍,等. 非圓齒輪水稻缽苗拋秧機(jī)構(gòu)運(yùn)動(dòng)機(jī)理與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):64-69.
Qian Mengbo, Yu Gaohong, Jiang Chenixao, et al. Work principle and parameter optimization of rice-seedling transplanter with non-circular gears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 64-69. (in Chinese with English abstract)
[30] 俞高紅,謝仁華,趙勻,等. 橢圓齒輪傳動(dòng)后插旋轉(zhuǎn)式分插機(jī)構(gòu)運(yùn)動(dòng)分析與實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(5):45-48.
Yu Gaohong, Xie Renhua, Zhao Yun, et al. Kinematic analysis and experiment of backward rotary transplanting mechanism with elliptical gears transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(5): 45-48. (in Chinese with English abstract)
Design and performance experiment of wireless remote control walking rice transplanter
Chen Xunjiao1, Lü Zhijun1, Xue Xianglei1, Xin Liang1, Yu Qingcang2, Yu Youpeng1, Zhao Yun1※
(1.,,150030,;2.310018,)
Wireless remote control walking rice transplanter has broad market prospects and a high application value. Its 180° turning without manual assistance in the paddy field is a difficult problem. Based on the analysis of the operations of the walking transplanter in the paddy field, a kind of walking assist mechanism that can be lifted and descended was invented. Thanks to the substantial lifting and descending functions, the floating plate can be fully lifted away from the mud surface in the paddy field, and the resistance to turning can be reduced. A kinematics model was established for this mechanism on the basis of the analysis of the structural characteristics and working principles of this mechanism, while the multi-objective and multi-parameter optimized model was proposed for the walking assist mechanism according to its structural characteristics as well as operating requirements of wireless remote control walking rice transplanter in the paddy field. The computer-aided design and analysis software based on Visual Basic 6.0 was developed, and the “parameter-guided” heuristic optimization algorithm invented by the researcher team was embedded in this software for quick optimal solutions in order to get a group of parameters meeting the working requirements of the walking assist mechanism. Based on the optimized parameters, the structural design of the walking assist mechanism was carried out, and the trial physical prototype was manufactured. At the same time, C Language was applied to carry out the re-development of the microcontroller development board, which was used as signal transmission module for sending the control commands (remote control function). The minimum system of the single-chip microcomputer was used as the vehicle-based signal processing module. The end pneumatic actuator system was developed in order to convert the control commands into the actual actions of the rice transplanter and to realize the automatic operation. The signal processing module used the character variables to receive the commands from the storage signal transmission module. The cylinder numbers respectively correspond to the solenoid valves, the relays, and the single-chip microcomputer pins, so that the “on” and “off” of the cylinders with the corresponding number can be controlled according to the judgment results on the character variables. By this way, different cylinders’ “on/off” acting as a group realized the actions of the rice transplanter. Finally, the physical prototype of the walking assist mechanism, signal processing module and end pneumatic actuator system were fitted to the walking transplanter, and the test was carried out in paddy field with the specifications of 10 m×20 m and the mud depth of 15-25 cm, and the walking speed of the transplanter was set as 0.45 m/s and 0.90m/s. The test results showed that, in the wireless remote control state, the machine successfully completed the operation of planting, straight driving, automatic 90° turning and 180° turning in the paddy field. The walking assist mechanism and control system meet the requirements of the field operation of the wireless remote control walking rice transplanter, that proves the feasibility of the mechanism and the control system.
remote control; design; experiments; walking rice transplanter; walking aided mechanism; parameter-guided heuristic optimization algorithm; pneumatic actuator system; serial communication
10.11975/j.issn.1002-6819.2017.17.002
S223.91+2
A
1002-6819(2017)-17-0010-08
2017-03-06
2017-08-10
黑龍江省應(yīng)用技術(shù)研究與開發(fā)計(jì)劃重大項(xiàng)目(GA16B302)。
陳訓(xùn)教,研究方向?yàn)闄C(jī)構(gòu)創(chuàng)新與優(yōu)化。哈爾濱 東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。Email:herr_chen@qq.com
趙 勻,教授,博士生導(dǎo)師,研究方向?yàn)闄C(jī)構(gòu)創(chuàng)新、數(shù)值分析與綜合。哈爾濱 東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。Email:zhaoyun@neau.edu.cn
農(nóng)業(yè)工程學(xué)報(bào)2017年17期