• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intermolecular Interactions of 3,6-Bis-nitroguanyl- S-tetrazine Dimers: A Density Functional Theoretical Calculation

    2017-11-01 14:49:14HUYinNINGYanliKANGYingSONGJirongMAHaixia
    火炸藥學報 2017年5期
    關鍵詞:分析

    HU Yin,NING Yan-li,KANG Ying,SONG Ji-rong,MA Hai-xia

    (1. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China;2. School of Chemical Engineering,Northwest University, Xi′an 710069, China;3. Conservation Technology Department, the Palace Museum, Beijing 100009, China)

    IntermolecularInteractionsof3,6-Bis-nitroguanyl-S-tetrazineDimers:ADensityFunctionalTheoreticalCalculation

    HU Yin1,NING Yan-li1,KANG Ying1,SONG Ji-rong2,3,MA Hai-xia2

    (1. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China;2. School of Chemical Engineering,Northwest University, Xi′an 710069, China;3. Conservation Technology Department, the Palace Museum, Beijing 100009, China)

    Nine fully optimized geometries and electronic structures on potential energy surface of 3,6-bis-nitroguanyl-S-tetrazine (DNGTz) dimers have been obtained with density functional theoretical (DFT) method at the B3LYP/6-31G*level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is -62.24kJ/mol. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomer to dimer with the temperature ranging from 200.0K to 800.0K have been obtained using the statistical thermodynamic method. It was found that the dimerization are mainly contributed by the strong hydrogen bonds, while the binding energies are not only determined by hydrogen bonding. The dimerization process of dimers I, III, IV, V and VII can spontaneously occur at 200K, which indicates that these dimers can be stably present at room temperature.

    high-nitrogen energetic material; 3,6-bis-nitroguanyl-S-tetrazine (DNGTz); intermolecular interaction; density functional theory (DFT); natural bond orbital (NBO) analysis; thermodynamic property

    Introduction

    High-nitrogen energetic materials have superior chemical properties and detonation performance compared with the traditional energetic materials (EMs)[1]. Their molecular structures contain a large amount of N—N and C—N bonds, with high enthalpy of formation, low sensitivity and high thermal stability[2]. Moreover, high nitrogen content makes them present high density and easily obtain oxygen balance, thus, the main combustion product is clean gas (N2)[3]. Tetrazine compounds are the typical representative of the high nitrogen energetic compounds. The formula of tetrazine ring is C2H2N4, therefore the nitrogen content can reach 68.3%, which make tetrazine compound be an ideal group for the development of new EMs[4].

    The application of tetrazine compounds can almost involve in solid propellants, new type high-energy insensitive explosives, and civil combustible-gas generators[5-10]. In recent years, there are more reports about synthesis and characterization of tetrazine compounds[11-12].

    3,6-Bis-nitroguanyl-S-tetrazine is an important high nitrogen heterocyclic compound[13]with nitrogen content, enthalpy of formation and density of 58.7%, +389kJ/mol[14]and 1.76g/cm3, respectively. However, the enthalpy of formation of nitroguanyl is -98.7kJ/mol, which indicates that the introduction of tetrazine ring can greatly increase the enthalpy of formation of EMs. According to DSC analysis, DNGTz decomposes at 228℃ with the peak temperature of 269 ℃, higher than that of a traditional explosive of RDX (1,3,5-Trinitrohexahydro-1,3,5-triazine)[15]. Its impact sensitivityH50is 65cm, friction sensitivity is higher than 36kg (BAM) and static inductance degree is higher than 0.36J[16], which indicates that DNGTz is more stable than RDX[17-21]. At present, scientists have studied the synthesis, combustion performance of DNGTz[22]and found that DNGTz is a prospective explosive, however, its theoretical calculation is little done.

    It is known that intermolecular interaction could predict the binding force of the molecule and the stability of a system. And many physical, chemical and detonation properties of explosive are related to their state of aggregation. Therefore, there is an important academic and application significance to carry out studies on the intermolecular interactions of EMs[23-31]. In this study, we theoretically investigated the intermolecular interaction for the DNGTz dimers. Its nine fully optimized geometries, electronic structure, the binding energy and thermodynamic properties in the dimerization process were analyzed. Natural bond orbital (NBO) on the DNGTz dimers were also analyzed to explore the source of the interactions, which provides basic data for the structure-property relationship of this compound for further research.

    1 Computational Methods

    The initial structures of DNGTz monomers and dimers obtained from CHEM3D software were fully optimized at the DFT-B3LYP level by the Berny method[32]with 6-31G*basis set to obtain the geometries of the monomer and all possible optimized dimers. And in order to determine the suitability of the basis set, single-point calculation were performed on the geometries optimized by the B3LYP/6-31G*with B3LYP/6-311++G**basis set. The intermolecular interaction energies of the studied dimers were corrected both with basis set superposition error (BSSE) and zero point energies (ZPE). The interaction energies were compared with the above methods. Finally, NBO analysis and frequency calculations were carried out on each optimized structure. Thermodynamic data and their changes upon dimerizing were derived from statistical thermodynamics based on the frequency calculation. All these calculations have been carried out with the Gaussian 98[33]program using the default Gaussian convergence criteria.

    2 Results and Discussion

    2.1Optimizedstructure

    The stable structures of DNGTz monomer and the nine dimers were obtained (Fig.1). The geometrical parameters of the monomer and the dimers are collected in Table 1.

    Table 1 The Bond lengths of DNGTz and (DNGTz)2 at B3LYP/6-31G* level

    Note: values in parentheses are data of the monomer

    Compared to the monomer, the changes of bond lengths for the nine dimers mainly occur in the near of hydrogen bond (Table1). Apart from dimers III and V, the changes of bond lengths for other dimers are similar: if there is an apparent increase of one bond, there must be an apparent decrease of another bond. The bond lengths of N16—N17 and N42—N43 lengths of dimer I decrease by 0.7pm, while those of N17—O18 and N43—O44 increase by 0.7pm. The N16—N17 and N42—N43 lengths of dimer II decrease by 0.8 pm, while the N17—O19 and N43—O45 increase by 1.0pm. The N42—N43 bond length of dimer IV reduces by 1.4pm, and then the N43-O44 length rises by 1.4pm. The bond lengths of N16—N17 and N42—N43 of dimer VI decrease by 2.8pm, while those of N17—O18 and N43—O44 increase by 2.0pm. The lengths of N11—N12 and N37—N38 of dimer VII decrease by 1.5pm, while the lengths of N12—O13 and N38—O39 increase by 0.3pm. The N11—N12 length of dimer VIII decreases by 1.7pm, while the N12—O13 length increases by 0.7pm. The N11—N12 length of dimer IX decreases by 1.4pm, while the N12—O13 length increases by 1.0pm. The X-NO2(X = N, C or O) bond in nitro explosives is generally regarded as the detonating trigger bond[34-35]. In dimers I, II, IV, VI, VII, VIII and IX, there are at least one interaction between the amino group of one monomer and the X-NO2group of another monomer, which shortens the N-N bond near the X-NO2group, this phenomenon is most apparent in dimer VI. Therefore it can be inferred that the intermolecular interaction can reduce the sensitivity of DNGTz. The changes of bond angle are within 5.94° of the nine structures of DNGTz dimers compared to those of monomer molecules. The dihedral angles of dimers I, VI and VIII almost have no change, therefore the atoms still maintain the planarity of the molecule. While some dihedral angles of dimers II, III, IV, V, VII and IX change greatly. TheD(C9-N11-N12-O13),D(C9-N11-N12-O14),D(C35-N37-N38-O39) andD(C35- N37-N38-O40) of dimer VII decrease by 16.56°, 14.49°, 16.54° and 14.47°, respectively, which implies that the rotation has occurred in the -NO2group adjacent to the hydrogen bond in dimer VII. Similar analysis shows that obvious rotation has occurred in the nitro or guanidino groups adjacent to the hydrogen bond in dimers III, IV and V. In dimers II and IX, the rotation occurs in the -NO2groups adjacent to the hydrogen bond.

    Fig.1 shows that there are six, four and three hydrogen bonds in dimers I, II and IV, respectively, while there are two H-bonds in other dimers. Generally speaking, the binding energies (the negative value of the intermolecular interaction energy) usually determine by the H-bonding lengths when the intermolecular contacts are similar. Here it is determined by the strength of the intermolecular hydrogen bond. It can be speculated that the intensities of binding energy and stability may be in the order: III>VI>V>VII>IX>VIII.

    2.2Interactionenergy

    Both the uncorrected and corrected binding energies obtained for all the dimers are listed in Table 2. Generally speaking, the BSSE will be higher with a smaller basis set. The BSSE is larger for dimers at the B3LYP/6-31G*level (Table 2), so BSSE values were corrected by BSSE×50%[36].

    Table 2 Zero point energy and binding energies(kJ/mol) at the B3LYP/6-31G* level

    Table 2 shows that the uncorrected interaction energy |ΔE| may be in the order: III>I>VI> IV>V>VII>II>VIII>IX and the correction interaction energy (|(ΔE)C,ZPEC|) after BSSE and ZPE may be in the order: III>I>VI>IV>V>VII >IX>VIII>II. For the order of IX, VIII an II, it is not so consistent because the binding energies of these three dimers are close to each other, these values can be easily affected by the basis set we selected. The largest correction interaction energy after BSSE and ZPE for DNGTz dimers is -62.24kJ/mol which belongs to the dimer III. The binding energy for each hydrogen bond is -31.12kJ/mol,which is much higher than the best experimental estimate of the water dimer dissociation energy (15kJ/mol)[37], indicating that the bingding energy for each hydrogen bonding is strong. This is in consistence with the intensities of stability which is determined by the bonding lengths and the intermolecular contacts distance for the dimers. Thus, the H-bonding plays an important role in the intermolecular interactions.

    In order to determine the suitability of the basis set, single-point calculation were performed on the geometries optimized by the B3LYP/6-31G*with B3LYP/6-311++G**. The results show that the BSSE corrected binding energies with different basis sets give a different stability order and the correction interaction energy (|(ΔE)C|) after BSSE may be in the order: III>I>VI>IV> V>VII>VIII>IX>II.

    2.3Atomicchargesandchargetransfer

    Table 3 lists the natural bond orbital (NBO) atomic charges of the monomer and the dimers. Compared to the monomer, the changes of charge in all the dimers (Table 3 and Fig.1) mainly occur on the O…H and N…H atoms. In dimer VII, the charges on the N10, N36, H24 and H50 increase by 0.0063-0.0118e, while the charges on O13 and O39 decrease by 0.0231e. In dimer VIII, the charges on the N11 and N28 increase by 0.0110 and 0.0161e, while the charges on O13, O14, N29 and O40 reduce by 0.0074-0.0209e. In dimer I, the charges on the N2, N28, C4, C30, N10, N36, O19 and O45 increase by 0.0125-0.0246e, while the charges on N3, N29, N7, N33, O18 and O44 decrease by 0.0108-0.0510e. In dimer VI, the charges on the N3, N29, N16, N42, O19 and O45 increase by 0.0165-0.0257e, while the charges on N7, N33, O18 and O44 reduce by 0.0600-0.0100e. Therefore, due to the intermolecular interaction, if the charge of one oxygen atom in NO2increases, the charge on another oxygen atom will decrease. There is no net charge transfer between N33-H47 and N7-H21 because these two bonds have an opposite charge transfer direction. Mostly, the net charge transfer between the two sub-systems is slight. The dipole moments of DNGTz monomer and nine dimers are 0, 0.0023, 2.8945, 0.3628, 10.7599, 1.6143, 0.1063, 0.2117, 2.7812 and 1.4733 Debye, respectively.

    Table 3 The calculated natural atomic charges (e) of DNGTz and (DNGTz)2 at the B3LYP/6-31G* level

    Note: Values in parentheses are data of the monomer.

    2.4Naturalbondorbitalanalysis

    In order to investigate the nature of the intermolecular interactions of (DNGTz)2NBO, We performed the analysis on the DNGTz monomer and its dimers by using the B3LYP/6-31G*. Table 4 summarizes the electron donor track (i), electron acceptor track (j) and the stabilization energy (E) of them.

    This is done by examining all possible interactions between filled (donor) Lewis-type NBOs and empty (acceptor) non-Lewis NBOs, and the second order perturbation theory is used to estimate their stabilization energy[38-40]. The stabilization energiesE(2) are proportional to the NBO interaction. When a donor and an acceptor belong to different submolecules in a cluster, it is called an intermolecular NBO interaction. It is these that explore the origin of the intermolecular interactions.

    What as what can be seen from the intermolecular NBO interaction in Table 4, in dimer III, which is the dimer with the strongest hydrogen bond, the lone pair (1) of N16, acts as a donor, interacts with N33-H47 σ antibond, as an accepter, the total stabilization energy is 108.41kJ/mol. The lone pair (1) of N42 interacts with N7-H21 σ antibond, the total stabilization energy of these two NBO interactions are 108.11kJ/mol. The lone pairs (1) of N3 and N29 interact with σ of N33-H47 and N7-H21 antibonds in dimer I, which is the dimer with the weakest hydrogen bond, the sum stabilization energies of these two NBO interactions are 61.92kJ/mol. In dimer VI, the main interaction is between the lone pairs on oxygen atom of -NO2in one submolecule and the N—H antibonds of another submolecule. Similar analysis can be done on other dimers. Therefore, the hydrogen bond is the main intermolecular interaction between the two submolecules.

    Table 4 Parts of calculated results of (DNGTz)2 at the B3LYP/6-31G* level by NBO analysis

    Note: BD denotes bonding orbital; BD*denotes antibonding orbital, LP denotes lone-pair. Only the stable energies over 4.18kJ/mol are listed.

    2.5Thermodynamicproperties

    Table 5 The thermodynamic properties of DNGTz and (DNGTz)2 at different temperatures

    ContinuedStructureT/KCθp/(J·mol-1·K-1)SθT/(J·mol-1·K-1)HθT/(kJ·mol-1)ΔST/(J·mol-1·K-1)ΔHT/(kJ·mol-1)ΔGT/(kJ·mol-1)I400.00701.071211.15165.05-164.57-64.930.89I600.00882.561532.85324.96-159.51-62.4233.28I800.00992.171803.01513.31-155.39-59.5564.76II200.00421.77815.4451.17-184.78-23.9213.04II298.15571.561012.31100.05-180.15-22.7830.93II400.00703.071199.33165.20-176.39-21.4749.09II600.00883.871521.70325.44-170.66-18.6383.77II800.00993.011792.17513.99-166.23-15.56117.43III200.00420.21822.9851.09-177.24-68.57-33.12III298.15568.961019.0099.76-173.46-67.64-15.92III400.00700.281205.22164.63-170.50-66.611.59III600.00881.801526.57324.37-165.79-64.2735.20III800.00991.891796.58512.61-161.82-61.5167.95IV200.00421.85833.9951.53-166.23-40.16-6.91IV298.15570.991030.77100.39-161.69-39.049.17IV400.00702.101217.56165.45-158.16-37.8225.45IV600.00882.951539.53325.49-152.83-35.1856.52IV800.00992.501809.78513.90-148.62-32.2586.65V200.00422.89841.6851.82-158.54-36.12-4.41V298.15571.571038.76100.75-153.70-34.9310.89V400.00702.491225.70165.87-150.02-33.6526.36V600.00883.141547.78325.96-144.58-30.9655.79V800.00992.551818.07514.40-140.33-28.0084.26VI200.00420.64855.6051.72-144.62-60.67-31.75VI298.15569.101051.71100.41-140.75-59.72-17.76VI400.00700.571237.99165.30-137.73-58.67-3.58VI600.00882.271559.50325.12-132.86-56.2523.46VI800.00992.231829.63513.45-128.77-53.4049.61VII200.00423.46866.4452.23-133.78-31.24-4.48VII298.15572.501063.82101.23-128.64-29.988.38VII400.00703.601251.06166.46-124.66-28.5921.28VII600.00883.961573.56326.75-118.80-25.7045.58VII800.00992.871844.02515.30-114.38-22.6368.88VIII200.00424.34884.3352.70-115.89-22.240.93VIII298.15573.351082.05101.79-110.41-20.8912.02VIII400.00704.431269.54167.10-106.18-19.4223.05VIII600.00884.631592.34327.55-100.02-16.3743.64VIII800.00993.311862.96516.21-95.44-13.1963.16IX200.00423.83869.2052.43-131.02-21.055.15IX298.15572.631066.69101.46-125.77-19.7617.73IX400.00703.571253.94166.69-121.78-18.3730.34IX600.00883.931576.41326.97-115.95-15.4954.08IX800.00992.951846.87515.53-111.53-12.4176.81

    3 Conclusion

    (1) From the DFT calculation, nine fully optimized geometries of DNGTz dimers were obtained. Maximum corrected intermolecular interaction of the most stable dimer III is predicted to be -62.24kJ/mol.

    (2) From the geometric analysis, one can find that rotation in the nitroguanidino groups occurred due to the intermolecular interactions. Moreover, the interaction, between the amino group of one monomer and the X-NO2group of another monomer, shortens the N—N bond near the X-NO2group, indicating that the intermolecular interaction can reduce the sensitivity of DNGTz.

    (3) The NBO analysis suggests that the net charge transfer in the sub-system between the dimers is small, almost no charge transfer occurs. At last, the dimerization process of dimers I, III, IV, V, VI and VII can spontaneously occur at 200K.

    [1] Hu Yin, Ma Hai-xia, Zhang Jiao-qiang, et al. Theoretical study on intermolecular interactions of 3,6- diamino-1,2,4,5-tetrazine dimers[J]. Chemistry, 2010, 73(3): 263-268.

    [2] Bai Lin, Hu Yin, Hu Rong-zu, et al. Interaction between 3,6-diamino-1,2,4,5-tetrazine-1,4-di-N-oxide and hydrogen fluoride by DFT[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2010, 33(6): 19-24.

    [3] Hu Yin, Ma Hai-xia, Li Jun-feng, et al. Density function theoretical study on intermolecular interactions of 3,6-dihydrazino-1,2,4,5-tetrazine dimers[J]. Bulletin of the Korean Chemical Society, 2010, 31(10): 2897-2902.

    [4] Li Jun-feng, Ma Hai-xia, Yan Biao, et al. Thermal decomposition of 3,6-bis-nitroguanyl-S-tetrazine by the TG-FTIR[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2010, 33(6): 1-4.

    [5] David E C, Damon W P. New heterocycles from tetrazines and oxadiazoles[J]. Journal of Heterocyclic Chemistry, 2009, 46: 88-90.

    [6] Hiskey M A, Chavez D E and Naud D L. Propellant containing 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine or salts thereof: US,6458227[P], 2002.

    [7] Hervé G. Derivatives of 1,1-diamino-2,2-dinitroethene(DADNE) and specific reactivity understanding [J]. Propellants, Explosives, Pyrotechnics, 2009, 34: 444-451.

    [8] Shawali A S and Tawfik N M. Novel facile synthesis of imidazo[1,2-b]-[1,2,4,5]tetrazines with potential antimicrobial activity[J]. Arch Pharm Res, 2009, 32(7): 975-982.

    [9] Gong Y H, Miomandre F, Meallet-Renault R , et al. Synthesis and physical chemistry of s-tetrazines: which ones are fluorescent and why?[J]. Europen Journal of Organic Chemistry, 2009, 35: 6121-6128.

    [10] Steinhauser G, Klap?tke T M. Using the chemistry of fireworks to engage students in learning basic chemical principles: a lesson in eco-friendly pyrotechnics[J]. Journal of Chemical Education, 2010, 87(2): 150-156.

    [11] Xu Song-lin, Yang Shi-qing, Wang Yun-peng. Research advances in high-nitrogen energetic materials derived from tetrazine[J]. Chemical Propellants and Polymeric Materials, 2007, 5(1): 14-19.

    [12] Wang Bo-zhou, Lai Wei-peng, Lian Peng, et al. Novel synthesis, characterization and quantum chemistry study on 3,3′-azobis(6-amino-1,2,4,5-tetrazine) [J]. Chinese Journal of Organic Chemistry, 2009, 29(8): 1243-1248.

    [13] Chavez D E, Hiskey M A, Gilardi R D. Novel high-nitrogen materials based on nitroguanyl substituted tetrazine[J]. Organic Letters, 2004, 6(17):2889-2891.

    [14] Chavez D E, Tappan B C, Hiskey M A, et al. Novel high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies[J]. Propellants, Explosives, Pyrotechnics, 2005, 30(6):412-417.

    [15] Badgujar D M. Talawarb M B, Asthana S N, et al. Advances in science and technology of modern energetic materials: An overview [J]. Journal of Hazardous Materials, 2008, 15: 289-305.

    [16] Xue Jin-qiang,Shang Bing-kun, Wang Wei, et al.Research advances in tetrazine-based high-nitrogen molecular and ionic energetic compounds[J].Chemical Propellants and Polymeric Materials, 2011, 9(4): 1-8.

    [17] Huang Hui, Wang Ze-shan, Huang Heng-jian, et al. Researches and progresses of novel energetic materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2005, 28(4): 9-13.

    [18] Feng Chang-gen, Zhang Rui, Chen Lang. The cook-off test and its numerical simulation of RDX[J]. Chinese Journal of Energetic Materials, 2004, 12(4): 193-198.

    [19] Li Zhi-min, Zhou Ming-rui, Zhang Tong-lai, et al. Study on the electrostatic hazards of lead styphnate[J]. Acta Armamentarii, 2013, 34(8) : 958-964.

    [20] Lu Ming, Zhao Sheng-xiang, Chen Jing. Measurement and analysis of the frictional static electricity characteristics of composite RDX[J]. Chinese Journal of Energetic Materials, 2008, 16(6): 708-711.

    [21] Wang Gui-xiang, Xiao He-ming, Ju Xue-hai, et al. Theoretical studies on densities, detonation velocities and pressures and electric spark sensitivities of energetic materials[J]. Acta Chimica Sinica, 2007, 65(6):517-524.

    [22] Huo Huan,Wang Bo-zhou,Luo YI-fen,et al. Synthesis, characterization and thermal properties of energetic compound 3,6-dinitroguanidino-1,2,4,5-tetrazine (DNGTz) and its derivatives [J]. Journal of Solid Rocket Technology, 2013, 36(4):500-505.

    [23] Ma Hai-xia, XIAO He-ming, SONG Ji-rong, et al. Molecular structure of 4-amino-1,2,4-triazol-5-one and a density-functional theoretical investigation of its dimers and crystal band structure[J]. Journal of Chemical Physics, 2008,344(1-2): 79-89.

    [24] FANG Guo-yong, Xu Li-na, Hu Xin-gen, et al. DFT study of the interaction between 3-nitro-1,2,4-triazole-5- one and hydrogen fluoride[J]. Journal of Hazardous Materials, 2008, 160(1): 51-55.

    [25] Chermahini A N, Ghaedi A, Teimouri A, et al. Density functional theory study of intermolecular interactions of cyclic tetrazole dimers[J]. Journal of Molecular Structure Theochem, 2008, 867(1-3): 78-84.

    [26] Ju Xue-hai, Xiao He-ming and Tan Jin-zhi. Theoretical study on intermolecular interactions and thermodynamic properties of imethylnitroamine clusters[J]. Chinese Journal of Chemistry, 2002, 20(7): 629-637.

    [27] Xiao H M, Li J S and Dong H S. A quantum-chemical study of PBX: intermolecular interactions of TATB with CH2F2and with linear fluorine-containing polymers[J]. Journal of Physical Organic Chemistry, 2001, 14: 644-649.

    [28] Xiao He-ming, Li Jin-shan, Dong Hai-shan. A study on the intermolecular interactions in energetic systems-the mixtures containing NNO2and NH2groups[J]. Chin Acta Chimica Sinica, 2000,58(3):297-302.

    [29] Fan Guo-yong, Xu Li-na, Xiao He-ming, et al. Theoretical study on intermolecular interactions of 3-nitro-1,2,4- triazo-5-one with NH3and H2O[J]. Chin Acta Chimica Sinica, 2005, 63(12):1055-1061.

    [30] Xu Li-na, Xiao He-ming, Fang Guo-yong, et al. Theoretical study on intermolecular interactions of 3-nitro- 1,2,4- triazo-5-one dimers[J]. Chin Acta Chimica Sinica, 2005, 63(12): 1062-1068.

    [31] Li Jin-shan, Zhao Feng, Jing Fu-qian. A theoretical study of intermolecular interaction of HNO3dimer[J]. Journal of Molecular Structure: Theochem, 2001, 574: 213-220.

    [32] Zhao Ning-ning, Zhao Ya-li, Hu Yin, et al. Intermolecular interactions and thermodynamic properties of 3,6-diamino-1,2,4,5-tetrazine1,4-dioxide dimers: a density functional theoretical study[J]. South Africa Journal of Chemistry, 2013,66:167-172.

    [33] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, Revision A[CP/CD]. Pittsburgh: Gaussian, Inc, 1998.

    [34] Delpuech A,Cherville J. Relation entre la structure electronique et la sensibilité au choc des explosifs secondaires nitrés-critère moléculaire de sensibilité. I. cas des nitroaromatiques et des nitramines[J]. Propellants, Explosives, Pyrotechnics, 1978, 3(6):169-175.

    [35] Xiao H M, Fan J F, Gu Z M, et al. Theoretical study on pyrolysis and sensitivity of energetic compounds. (3) Nitro derivatives of aminobenzenes [J]. Journal of Chemical Physics, 1998, 226:15-24.

    [36] Ju Xue-hai, Xiao Ji-jun, Xiao He-ming. Theoretical study on intermolecular interactions and thermodynamic properties of water-hydrogen peroxide clusters [J]. Journal of Molecular Structure (Theochem), 2003, 626(1-3): 231-238.

    [37] Feyereisen M W, Feller D, Dixon D A. Hydrogen bond energy of the water dimer[J]. Journal of Physical Chemistry, 1996, 100:2993- 2997.

    [38] Reed A E, Weinstock R B and Weinhold F. Natural population analysis[J]. Journal of Chemical Physics, 1985, 83:735-746.

    [39] Reed A E and Weinhold F. Natural localized molecular orbitals[J]. Journal of Chemical Physics, 1985, 83:1736-1740.

    [40] Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Journal of Chemical Reviews, 1988, 88(6):899-926.

    DNGTz二聚體分子間相互作用的密度泛函理論計算

    胡 銀1,寧艷利1,康 瑩1,宋紀蓉2,3,馬海霞2

    (1. 西安近代化學研究所,陜西 西安 710065;2.西北大學化工學院,陜西 西安 710069;3. 故宮博物院文??萍疾?,北京 100009)

    在DFT-B3LYP/6-31G*水平下,求得3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz)二聚體勢能面上9種優(yōu)化幾何構(gòu)型和電子結(jié)構(gòu)。用基組疊加誤差(BSSE)和零點能(ZPE)校正,計算了分子間相互作用能,二聚體分子間最大相互作用能為-62.24kJ/mol。由自然鍵軌道(NBO)分析揭示了分子間相互作用的本質(zhì)。對優(yōu)化構(gòu)型進行振動分析,并基于統(tǒng)計熱力學求得溫度200.0~800.0K從單體形成二聚體的熱力學性質(zhì)變化。結(jié)果表明, 二聚主要由強氫鍵所貢獻,而結(jié)合能不僅取決于氫鍵。二聚體I、III、IV、V和VII的二聚過程在200.0K均能自發(fā)進行,表明二聚體 I、 III、IV、 V 和 VII 在室溫可以穩(wěn)定存在。

    高氮含能材料;3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz);分子間相互作用;密度泛函理論(DFT); 自然鍵軌道分析(NBO); 熱力學性質(zhì)

    TJ55;O64DocumentCodeAArticleID1007-7812(2017)05-0030-09

    10.14077/j.issn.1007-7812.2017.05.006

    date:2017-02-28;Reviseddate2017-04-28

    Foundation:The National Natural Science Foundation of China(No.21673179)

    Biography:HU Yin (1984- ),female,engineer,research field:theoretical studies on intermolecular interaction and molecular structure characterization of energetic materials. E-mail: huyin618@163.com

    猜你喜歡
    分析
    禽大腸桿菌病的分析、診斷和防治
    隱蔽失效適航要求符合性驗證分析
    電力系統(tǒng)不平衡分析
    電子制作(2018年18期)2018-11-14 01:48:24
    電力系統(tǒng)及其自動化發(fā)展趨勢分析
    經(jīng)濟危機下的均衡與非均衡分析
    對計劃生育必要性以及其貫徹實施的分析
    GB/T 7714-2015 與GB/T 7714-2005對比分析
    出版與印刷(2016年3期)2016-02-02 01:20:11
    網(wǎng)購中不良現(xiàn)象分析與應對
    中西醫(yī)結(jié)合治療抑郁癥100例分析
    偽造有價證券罪立法比較分析
    舔av片在线| 黄色女人牲交| 国产精品国产高清国产av| 国产伦一二天堂av在线观看| 又黄又爽又免费观看的视频| 无遮挡黄片免费观看| 97超视频在线观看视频| 最近最新免费中文字幕在线| 美女高潮的动态| 日韩欧美国产在线观看| 国产精品一区二区三区四区免费观看 | 欧美日本视频| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇熟女久久| 操出白浆在线播放| 一区二区三区国产精品乱码| 人妻夜夜爽99麻豆av| 国产私拍福利视频在线观看| 国产精品久久视频播放| 亚洲第一电影网av| 一个人看的www免费观看视频| 日韩欧美精品v在线| 淫秽高清视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品电影一区二区三区| 大型黄色视频在线免费观看| 哪里可以看免费的av片| 女警被强在线播放| 一区二区三区国产精品乱码| 嫩草影视91久久| 五月玫瑰六月丁香| 可以在线观看的亚洲视频| 夜夜躁狠狠躁天天躁| h日本视频在线播放| 婷婷精品国产亚洲av在线| 亚洲av成人av| 香蕉国产在线看| 99热这里只有精品一区 | 香蕉av资源在线| 亚洲aⅴ乱码一区二区在线播放| 非洲黑人性xxxx精品又粗又长| 精品国产乱子伦一区二区三区| 午夜两性在线视频| 婷婷六月久久综合丁香| 老鸭窝网址在线观看| 亚洲精品456在线播放app | 日本与韩国留学比较| 欧美不卡视频在线免费观看| 999精品在线视频| 日韩欧美一区二区三区在线观看| 禁无遮挡网站| 日日摸夜夜添夜夜添小说| 欧美三级亚洲精品| 天堂√8在线中文| 黄片大片在线免费观看| 看免费av毛片| 午夜视频精品福利| 国产精品爽爽va在线观看网站| 桃红色精品国产亚洲av| 亚洲在线自拍视频| 日韩中文字幕欧美一区二区| 国产男靠女视频免费网站| 色综合站精品国产| 中文字幕精品亚洲无线码一区| 日日夜夜操网爽| 黄色日韩在线| 亚洲激情在线av| 免费搜索国产男女视频| 成年女人毛片免费观看观看9| 国产精品野战在线观看| av天堂在线播放| 成人特级av手机在线观看| 最近在线观看免费完整版| 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 一区福利在线观看| 麻豆av在线久日| 制服人妻中文乱码| 亚洲中文字幕日韩| 久久精品国产清高在天天线| 国产高清有码在线观看视频| 99热这里只有精品一区 | 亚洲18禁久久av| 嫩草影院入口| 成人18禁在线播放| 国产高清视频在线播放一区| 亚洲国产欧美人成| aaaaa片日本免费| 91在线观看av| 1000部很黄的大片| 午夜福利18| 2021天堂中文幕一二区在线观| 国内少妇人妻偷人精品xxx网站 | 深夜精品福利| 欧美午夜高清在线| 国产精品一区二区三区四区久久| 国产91精品成人一区二区三区| 国产精品香港三级国产av潘金莲| 香蕉av资源在线| 亚洲性夜色夜夜综合| 黄频高清免费视频| 中出人妻视频一区二区| 亚洲熟女毛片儿| 亚洲18禁久久av| av女优亚洲男人天堂 | 黄频高清免费视频| 欧美大码av| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 国产麻豆成人av免费视频| 窝窝影院91人妻| 国产三级中文精品| 岛国在线免费视频观看| 欧美大码av| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 99久国产av精品| 成人高潮视频无遮挡免费网站| 日韩 欧美 亚洲 中文字幕| 欧美激情在线99| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆 | 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 在线观看美女被高潮喷水网站 | 亚洲七黄色美女视频| 国产v大片淫在线免费观看| 岛国在线观看网站| 国产精品,欧美在线| 亚洲国产色片| 好看av亚洲va欧美ⅴa在| av国产免费在线观看| 久久久久久久精品吃奶| 九色国产91popny在线| 成人特级黄色片久久久久久久| 丰满人妻一区二区三区视频av | 国产麻豆成人av免费视频| 好看av亚洲va欧美ⅴa在| 五月伊人婷婷丁香| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 国产爱豆传媒在线观看| 性色av乱码一区二区三区2| 欧美另类亚洲清纯唯美| 精品国产超薄肉色丝袜足j| 国产一区二区在线av高清观看| 女警被强在线播放| 国产亚洲精品一区二区www| 亚洲真实伦在线观看| 国产伦人伦偷精品视频| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看| 美女高潮的动态| 又黄又粗又硬又大视频| 又紧又爽又黄一区二区| 在线看三级毛片| 99热这里只有精品一区 | 国产单亲对白刺激| 观看免费一级毛片| 天堂网av新在线| 看片在线看免费视频| 久久久久免费精品人妻一区二区| 欧美日韩精品网址| 亚洲专区国产一区二区| 国产成年人精品一区二区| 国产午夜精品久久久久久| 我要搜黄色片| 在线免费观看不下载黄p国产 | 手机成人av网站| 美女黄网站色视频| 日本黄色片子视频| 日本黄色视频三级网站网址| 叶爱在线成人免费视频播放| 欧美一级a爱片免费观看看| 嫩草影视91久久| 欧美zozozo另类| 淫妇啪啪啪对白视频| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 国产精品久久电影中文字幕| 波多野结衣高清无吗| 亚洲七黄色美女视频| 伦理电影免费视频| 精品人妻1区二区| 欧美zozozo另类| 国产成人av激情在线播放| 国产三级中文精品| 俺也久久电影网| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 一本久久中文字幕| 91在线观看av| 五月玫瑰六月丁香| 熟女少妇亚洲综合色aaa.| 999久久久精品免费观看国产| 午夜福利免费观看在线| 国产高清videossex| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 亚洲午夜理论影院| 国产高清视频在线观看网站| 精品久久蜜臀av无| 国产高潮美女av| 观看美女的网站| 国产高清videossex| 成人国产一区最新在线观看| 岛国在线免费视频观看| 亚洲国产欧美网| 一区福利在线观看| 国产亚洲欧美98| 日本成人三级电影网站| 制服丝袜大香蕉在线| x7x7x7水蜜桃| 成人18禁在线播放| 好男人在线观看高清免费视频| xxxwww97欧美| 久久国产精品人妻蜜桃| 一本综合久久免费| 身体一侧抽搐| 亚洲国产看品久久| 国产精品自产拍在线观看55亚洲| 麻豆国产av国片精品| 色尼玛亚洲综合影院| 搡老熟女国产l中国老女人| 精品一区二区三区视频在线观看免费| 国产精品香港三级国产av潘金莲| 性色av乱码一区二区三区2| xxx96com| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 午夜视频精品福利| 麻豆av在线久日| 亚洲国产欧美网| 亚洲,欧美精品.| 桃色一区二区三区在线观看| 一区二区三区高清视频在线| 日本 欧美在线| 波多野结衣巨乳人妻| av欧美777| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 日韩有码中文字幕| 亚洲精品在线美女| 制服丝袜大香蕉在线| 免费在线观看日本一区| 99久久精品热视频| 性欧美人与动物交配| 国产精品综合久久久久久久免费| 18美女黄网站色大片免费观看| 中文资源天堂在线| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| 午夜福利18| 亚洲欧美日韩高清专用| 国产精品亚洲一级av第二区| 亚洲欧美一区二区三区黑人| 国产熟女xx| 97超视频在线观看视频| 国产高清videossex| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 在线观看免费视频日本深夜| 国产三级黄色录像| 精品一区二区三区av网在线观看| 免费电影在线观看免费观看| www国产在线视频色| 亚洲精品在线美女| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费 | 啪啪无遮挡十八禁网站| 国产1区2区3区精品| 国产欧美日韩一区二区三| 欧美中文日本在线观看视频| 精品电影一区二区在线| 国产精品久久久久久人妻精品电影| 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| xxxwww97欧美| 久久欧美精品欧美久久欧美| 成人av在线播放网站| 国产精品1区2区在线观看.| 中文字幕熟女人妻在线| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 日韩有码中文字幕| 欧美三级亚洲精品| 日韩高清综合在线| 免费无遮挡裸体视频| or卡值多少钱| 国产又黄又爽又无遮挡在线| 在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产极品精品免费视频能看的| 欧美激情在线99| 99久久精品一区二区三区| 亚洲国产精品sss在线观看| 成年女人永久免费观看视频| 伊人久久大香线蕉亚洲五| 午夜久久久久精精品| 国产午夜精品论理片| av天堂在线播放| 听说在线观看完整版免费高清| 亚洲精品456在线播放app | 欧美绝顶高潮抽搐喷水| www日本黄色视频网| 最近最新中文字幕大全免费视频| 观看免费一级毛片| av在线蜜桃| 性色av乱码一区二区三区2| 色av中文字幕| www日本在线高清视频| 18禁国产床啪视频网站| 成人18禁在线播放| 国产又色又爽无遮挡免费看| 亚洲人成伊人成综合网2020| 久久久久亚洲av毛片大全| 久久久国产成人免费| 午夜两性在线视频| 国产成人影院久久av| 国内精品一区二区在线观看| 精品国产乱码久久久久久男人| 亚洲av中文字字幕乱码综合| 亚洲熟妇中文字幕五十中出| 在线播放国产精品三级| 久久久成人免费电影| 精品久久蜜臀av无| 国产野战对白在线观看| 少妇的丰满在线观看| 成人国产一区最新在线观看| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看 | 欧美精品啪啪一区二区三区| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 亚洲中文av在线| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 蜜桃久久精品国产亚洲av| av天堂在线播放| 十八禁人妻一区二区| 亚洲专区字幕在线| av在线天堂中文字幕| 一区二区三区国产精品乱码| 午夜福利免费观看在线| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 少妇的逼水好多| 亚洲精品美女久久av网站| 啦啦啦观看免费观看视频高清| 丰满的人妻完整版| 欧美大码av| 久久精品aⅴ一区二区三区四区| 成人三级做爰电影| 一区福利在线观看| 久久伊人香网站| 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 最好的美女福利视频网| 很黄的视频免费| 午夜福利高清视频| 女警被强在线播放| 午夜福利在线在线| 少妇的丰满在线观看| 精品久久久久久,| 精品欧美国产一区二区三| 免费看光身美女| 一级毛片精品| 欧美日韩黄片免| 欧美性猛交黑人性爽| 老司机午夜十八禁免费视频| 精品日产1卡2卡| 亚洲色图av天堂| 国产三级黄色录像| 精品无人区乱码1区二区| 久久人妻av系列| 国产极品精品免费视频能看的| 99热只有精品国产| a级毛片在线看网站| 啦啦啦观看免费观看视频高清| 91av网一区二区| 高清毛片免费观看视频网站| 久久久久久久久中文| 午夜a级毛片| 国产精品美女特级片免费视频播放器 | 亚洲专区中文字幕在线| 久久这里只有精品19| 国产爱豆传媒在线观看| 久久这里只有精品19| 国产男靠女视频免费网站| 在线看三级毛片| 久久香蕉精品热| 香蕉国产在线看| 日本黄色视频三级网站网址| 在线观看日韩欧美| 一进一出抽搐gif免费好疼| 熟女人妻精品中文字幕| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 一本一本综合久久| 日韩免费av在线播放| 1024手机看黄色片| 1000部很黄的大片| 亚洲国产色片| 91字幕亚洲| av女优亚洲男人天堂 | x7x7x7水蜜桃| 国产三级在线视频| 国产69精品久久久久777片 | 亚洲国产精品久久男人天堂| 国产又色又爽无遮挡免费看| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 国产v大片淫在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 精品久久蜜臀av无| www日本黄色视频网| x7x7x7水蜜桃| 美女午夜性视频免费| 欧美一级毛片孕妇| 99re在线观看精品视频| 99久久成人亚洲精品观看| 色吧在线观看| 日韩大尺度精品在线看网址| 亚洲精品美女久久av网站| 夜夜躁狠狠躁天天躁| 床上黄色一级片| 中文字幕久久专区| 色综合站精品国产| 搡老熟女国产l中国老女人| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 这个男人来自地球电影免费观看| 身体一侧抽搐| bbb黄色大片| 免费看a级黄色片| 99久国产av精品| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 长腿黑丝高跟| 中文字幕av在线有码专区| 极品教师在线免费播放| 日韩精品中文字幕看吧| 十八禁人妻一区二区| 一进一出抽搐gif免费好疼| 狂野欧美白嫩少妇大欣赏| 国产三级在线视频| 免费在线观看成人毛片| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美黑人欧美精品刺激| 免费观看精品视频网站| 露出奶头的视频| 亚洲午夜理论影院| 久久亚洲真实| 动漫黄色视频在线观看| 日韩有码中文字幕| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 国产主播在线观看一区二区| 午夜精品一区二区三区免费看| 亚洲中文av在线| 国产伦一二天堂av在线观看| a级毛片在线看网站| 黄色 视频免费看| 99在线视频只有这里精品首页| 免费看a级黄色片| 精品久久蜜臀av无| 国产伦精品一区二区三区视频9 | 国产精品电影一区二区三区| 欧美丝袜亚洲另类 | 麻豆成人午夜福利视频| 最好的美女福利视频网| 成年女人毛片免费观看观看9| 亚洲成人中文字幕在线播放| 床上黄色一级片| 成人亚洲精品av一区二区| 成年免费大片在线观看| 每晚都被弄得嗷嗷叫到高潮| 两性夫妻黄色片| 精品福利观看| 亚洲黑人精品在线| 手机成人av网站| 国产黄色小视频在线观看| 麻豆一二三区av精品| 波多野结衣高清作品| 黄色丝袜av网址大全| 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 全区人妻精品视频| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 国产精品av久久久久免费| 一区二区三区国产精品乱码| 久久精品影院6| 中文字幕最新亚洲高清| 日本 av在线| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 黑人巨大精品欧美一区二区mp4| 日本a在线网址| 两性午夜刺激爽爽歪歪视频在线观看| 视频区欧美日本亚洲| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区| 夜夜躁狠狠躁天天躁| 欧美午夜高清在线| 久久久久精品国产欧美久久久| 国产精品香港三级国产av潘金莲| 观看免费一级毛片| 午夜福利免费观看在线| 欧美不卡视频在线免费观看| 麻豆国产av国片精品| 村上凉子中文字幕在线| 国产精品永久免费网站| 久久久久久国产a免费观看| 亚洲欧美日韩东京热| 国产成人影院久久av| 日韩精品青青久久久久久| 欧美另类亚洲清纯唯美| 天堂动漫精品| 国产熟女xx| 免费看十八禁软件| 国产爱豆传媒在线观看| 人妻久久中文字幕网| 美女黄网站色视频| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 成人av一区二区三区在线看| www国产在线视频色| 日本精品一区二区三区蜜桃| 看黄色毛片网站| 69av精品久久久久久| 免费在线观看影片大全网站| 首页视频小说图片口味搜索| 日韩欧美三级三区| 国产亚洲精品av在线| 免费看十八禁软件| 好男人电影高清在线观看| 精品日产1卡2卡| 欧美黑人欧美精品刺激| 成人高潮视频无遮挡免费网站| 99久久无色码亚洲精品果冻| 欧美日韩瑟瑟在线播放| www.999成人在线观看| 观看美女的网站| 天堂av国产一区二区熟女人妻| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 国产伦一二天堂av在线观看| 亚洲九九香蕉| 国产亚洲精品av在线| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| 啪啪无遮挡十八禁网站| av天堂中文字幕网| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 亚洲五月婷婷丁香| 黄色 视频免费看| 午夜激情福利司机影院| 婷婷精品国产亚洲av在线| 三级毛片av免费| 婷婷精品国产亚洲av在线| 两人在一起打扑克的视频| 国产成人系列免费观看| 欧美一级毛片孕妇| 美女黄网站色视频| 老司机深夜福利视频在线观看| 亚洲欧美日韩高清专用| 国产成人系列免费观看| 精品国内亚洲2022精品成人| 亚洲aⅴ乱码一区二区在线播放| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播| 国产亚洲欧美在线一区二区| 一个人看的www免费观看视频| 久久这里只有精品19| 国产精品久久久人人做人人爽| 国产亚洲精品av在线| 国模一区二区三区四区视频 | av女优亚洲男人天堂 | 久久国产精品人妻蜜桃| 午夜亚洲福利在线播放| 免费在线观看影片大全网站| 熟女少妇亚洲综合色aaa.| 亚洲精品国产精品久久久不卡| 一个人看的www免费观看视频| 亚洲成人久久爱视频| 一a级毛片在线观看| 国产成人av激情在线播放| 欧美zozozo另类| www.自偷自拍.com| 真实男女啪啪啪动态图| or卡值多少钱| 女同久久另类99精品国产91| 国产69精品久久久久777片 | 韩国av一区二区三区四区| 嫁个100分男人电影在线观看| 午夜免费成人在线视频| 精品久久久久久久久久免费视频| 精品国产乱码久久久久久男人| 国产午夜福利久久久久久| 少妇的丰满在线观看| 长腿黑丝高跟| 黑人巨大精品欧美一区二区mp4|