王 鵬 張振峰 曹明川 祁亞輝 康宇航
(1海軍駐景德鎮(zhèn)地區(qū)航空軍事代表室 景德鎮(zhèn) 333000)
(2.海軍青島雷達(dá)聲納修理廠 青島 264001)(3.91967部隊(duì) 興城 125106)(4.海軍航空工程學(xué)院 煙臺(tái) 264001)
基于一致性多無(wú)人機(jī)編隊(duì)的研究現(xiàn)狀與發(fā)展趨勢(shì)?
王 鵬1張振峰2曹明川3祁亞輝4康宇航4
(1海軍駐景德鎮(zhèn)地區(qū)航空軍事代表室 景德鎮(zhèn) 333000)
(2.海軍青島雷達(dá)聲納修理廠 青島 264001)(3.91967部隊(duì) 興城 125106)(4.海軍航空工程學(xué)院 煙臺(tái) 264001)
基于一致性的多無(wú)人機(jī)編隊(duì)是近年來(lái)在國(guó)內(nèi)外得到廣泛研究和應(yīng)用的一種多無(wú)人機(jī)編隊(duì)控制方法,在編隊(duì)內(nèi)只要能夠保證信息交互便能使得編隊(duì)穩(wěn)定飛行從而完成任務(wù)。論文首先從無(wú)人機(jī)及基于一致性多無(wú)人機(jī)編隊(duì)的理論發(fā)展出發(fā),介紹了國(guó)內(nèi)外在該領(lǐng)域最新的研究情況。然后結(jié)合當(dāng)前基于一致性多無(wú)人機(jī)編隊(duì)的特點(diǎn),對(duì)基于一致性理論多無(wú)人機(jī)編隊(duì)的未來(lái)發(fā)展、應(yīng)用前景作了展望。
無(wú)人機(jī);一致性;編隊(duì)控制;通信
ClassNum ber V249
無(wú)人機(jī)自1991年在海灣戰(zhàn)爭(zhēng)中得到成功應(yīng)用以來(lái),就一直是各國(guó)科研團(tuán)隊(duì)和學(xué)者研究的熱點(diǎn),經(jīng)過(guò)近三十年的發(fā)展,無(wú)人機(jī)技術(shù)已相對(duì)成熟,尤其是伴隨著傳感器技術(shù)、無(wú)線通信技術(shù)和計(jì)算機(jī)技術(shù)的發(fā)展,無(wú)人機(jī)系統(tǒng)的智能化程度越來(lái)越高,實(shí)用性越來(lái)越強(qiáng),其被廣泛地應(yīng)用于軍事和民用領(lǐng)域,如地形測(cè)繪、森林火險(xiǎn)監(jiān)測(cè)、海上搜救、敵方目標(biāo)搜索與跟蹤等。
但是隨著無(wú)人機(jī)應(yīng)用場(chǎng)所復(fù)雜度的提高,尤其是未來(lái)戰(zhàn)場(chǎng)高新技術(shù)不斷被應(yīng)用,戰(zhàn)場(chǎng)信息化程度高,戰(zhàn)況瞬息萬(wàn)變,單無(wú)人機(jī)往往無(wú)法完成特定的任務(wù),此時(shí),由單個(gè)具有復(fù)雜功能的無(wú)人機(jī)完成的任務(wù)往往可以由多個(gè)具有簡(jiǎn)單功能的無(wú)人機(jī)相互協(xié)作來(lái)共同完成,且其任務(wù)完成的效率更高。例如在大范圍目標(biāo)區(qū)域內(nèi)執(zhí)行包括搜索目標(biāo)、打擊目標(biāo)和打擊效果評(píng)估的作戰(zhàn)任務(wù),如果由同時(shí)具備偵察、打擊功能的單架無(wú)人機(jī)實(shí)施該作戰(zhàn)任務(wù),不僅任務(wù)耗時(shí)長(zhǎng),無(wú)人機(jī)成本和任務(wù)失敗風(fēng)險(xiǎn)都會(huì)明顯提高;而由多架搭載不同功能模塊的無(wú)人機(jī)執(zhí)行任務(wù),不但可以降低成本,而且可以提高搜索與打擊效率,降低風(fēng)險(xiǎn)。同時(shí),配合先進(jìn)的協(xié)同任務(wù)規(guī)劃算法,可以更高效地搜索和打擊更多的目標(biāo)。再例如,當(dāng)無(wú)人機(jī)執(zhí)行目標(biāo)持續(xù)監(jiān)視任務(wù)時(shí),往往受限于探測(cè)器的性能如:攝像頭的視場(chǎng)角、有效探測(cè)距離或無(wú)人機(jī)本身的飛行性能如:最小轉(zhuǎn)彎半徑、最大或最小飛行速度等,單架無(wú)人機(jī)無(wú)法無(wú)間隙地持續(xù)監(jiān)視某一目標(biāo)。而由多架無(wú)人機(jī)組成的無(wú)人機(jī)編隊(duì),可通過(guò)設(shè)計(jì)合適的協(xié)同飛行路徑和編隊(duì)控制算法,實(shí)現(xiàn)對(duì)目標(biāo)的無(wú)縫隙持續(xù)監(jiān)視。
通過(guò)多無(wú)人機(jī)協(xié)同,提高無(wú)人機(jī)執(zhí)行任務(wù)的效率和成功率,是近年來(lái)無(wú)人機(jī)技術(shù)研究的熱點(diǎn),即多無(wú)人機(jī)協(xié)同控制技術(shù),主要包括協(xié)同編隊(duì)控制、協(xié)同航跡規(guī)劃、協(xié)同探測(cè)與跟蹤和協(xié)同目標(biāo)分配等。其中,編隊(duì)控制是多無(wú)人機(jī)協(xié)同控制的一項(xiàng)重要技術(shù)和基礎(chǔ)問(wèn)題。對(duì)于多無(wú)人機(jī)系統(tǒng),編隊(duì)控制的主要目的就是使各無(wú)人機(jī)保持某個(gè)期望的隊(duì)形或根據(jù)需要進(jìn)行隊(duì)形變換,即在任意時(shí)刻或某些特定時(shí)刻各無(wú)人機(jī)的相對(duì)位置關(guān)系滿足給定的幾何關(guān)系。從某種意義上說(shuō),當(dāng)多個(gè)無(wú)人機(jī)協(xié)同完成某項(xiàng)任務(wù)時(shí),就可以將它們視為一個(gè)無(wú)人機(jī)編隊(duì)(圖1)。
圖1 無(wú)人機(jī)編隊(duì)執(zhí)行任務(wù)
多無(wú)人機(jī)系統(tǒng)協(xié)同控制離不開通信網(wǎng)絡(luò),這就需要多無(wú)人機(jī)系統(tǒng)在執(zhí)行編隊(duì)等飛行任務(wù)時(shí)能夠?qū)崿F(xiàn)動(dòng)態(tài)組網(wǎng),以便不同任務(wù)信息或無(wú)人機(jī)飛行狀態(tài)信息能夠在通信網(wǎng)絡(luò)中實(shí)時(shí)傳遞,保證最終任務(wù)的完成。顯然通信網(wǎng)絡(luò)也將對(duì)編隊(duì)的形成產(chǎn)生影響,但是傳統(tǒng)的編隊(duì)控制方法大都忽略了這一點(diǎn),所以在工程實(shí)踐中如何利用通信網(wǎng)絡(luò)中獲取到的鄰居無(wú)人機(jī)狀態(tài)信息設(shè)計(jì)編隊(duì)控制器是一個(gè)亟需解決的問(wèn)題。一致性理論作為多智能體系統(tǒng)一個(gè)重要研究領(lǐng)域,近年來(lái)研究成果豐富,為解決不同通信網(wǎng)絡(luò)下的多無(wú)人機(jī)編隊(duì)問(wèn)題提供了良好的思路和重要的理論支撐。一致性是指利用通信網(wǎng)絡(luò)中的鄰居信息,各個(gè)體分別構(gòu)建合適的控制器,最終使多智能體系統(tǒng)的全部或部分狀態(tài)量趨于相同。對(duì)于固定隊(duì)形編隊(duì)而言,多無(wú)人機(jī)的控制目標(biāo)可以認(rèn)為是速度達(dá)成一致,位置在達(dá)成一致的基礎(chǔ)上增加偏移量。所以編隊(duì)的形成和保持問(wèn)題本質(zhì)上可以轉(zhuǎn)化為一致性問(wèn)題。因此,如何利用多無(wú)人機(jī)間的通信拓?fù)湓O(shè)計(jì)一致性控制器,使多無(wú)人機(jī)達(dá)成設(shè)定的隊(duì)形,并且降低控制器設(shè)計(jì)復(fù)雜度,增強(qiáng)編隊(duì)魯棒性和抗干擾性能,具有重要的研究意義和實(shí)用價(jià)值。
2.1 無(wú)人機(jī)編隊(duì)控制技術(shù)
編隊(duì)控制是指當(dāng)多個(gè)運(yùn)動(dòng)物體聯(lián)合運(yùn)動(dòng)時(shí),各個(gè)體之間保持固定或變化的幾何形狀,同時(shí)完成障礙規(guī)避和內(nèi)部避碰的任務(wù)約束。編隊(duì)控制自提出以來(lái)就受到各界學(xué)者的關(guān)注,尤其是本世紀(jì)以來(lái),研究成果豐富;另一方面,無(wú)人機(jī)作為新興運(yùn)動(dòng)載體,因其運(yùn)動(dòng)靈活、造價(jià)低等特點(diǎn),自從出現(xiàn)就被廣泛應(yīng)用于軍民領(lǐng)域,如偵察與監(jiān)測(cè)[1~2]、目標(biāo)搜索和定位[3~4]、通信中繼[5]等?;诖?,無(wú)人機(jī)編隊(duì)控制技術(shù)更是成為研究前沿中的熱點(diǎn),國(guó)內(nèi)外不同科研機(jī)構(gòu)和學(xué)者在無(wú)人機(jī)或類似運(yùn)動(dòng)群體編隊(duì)控制方面開展了大量理論探索和實(shí)物研究。
理論研究方面,不管是控制類頂級(jí)期刊如Automatica、IEEE Transactions on Automatic Control,還是機(jī)器人方面知名期刊如Robotica、Robotics and Autonomous Systems、IEEE Transactions on Robotics,基本每年都會(huì)有多運(yùn)動(dòng)體編隊(duì)控制相關(guān)的論文出現(xiàn),研究?jī)?nèi)容涵蓋編隊(duì)控制方法[6~10]、不同編隊(duì)控制對(duì)象[11~13]、條件受限情況下的編隊(duì)控制[14~16]等等。實(shí)物研究方面,美國(guó)NASA和空軍早就將編隊(duì)協(xié)同技術(shù)作為其重點(diǎn)研究技術(shù)之一。美國(guó)Lockheed Martin公司研制的智能化巡邏攻擊性彈藥,就是對(duì)無(wú)人飛行器進(jìn)行編隊(duì)控制,增強(qiáng)綜合戰(zhàn)斗力的例子。院校方面,賓夕法尼亞大學(xué)GRASP實(shí)驗(yàn)室的 Daniel Mellinger,Nathan Michael以及 Vijay Kumar等設(shè)計(jì)的小型四旋翼無(wú)人機(jī)能夠?qū)崿F(xiàn)室內(nèi)的穩(wěn)定飛行,多無(wú)人機(jī)形成的編隊(duì)展示了超高的智能化水平,如圖2。近兩年,法國(guó)派瑞特公司推出了小型四旋翼無(wú)人機(jī)群的空中舞蹈表演,更是將無(wú)人機(jī)編隊(duì)控制水平提高到厘米級(jí)精度,并且相比于賓夕法尼亞大學(xué)的無(wú)人機(jī)編隊(duì),其無(wú)人機(jī)平臺(tái)更加小巧,機(jī)動(dòng)性更強(qiáng)。
盡管多無(wú)人機(jī)編隊(duì)涉及領(lǐng)域廣,但是隊(duì)形的形成與保持是編隊(duì)問(wèn)題的核心。因?yàn)槭嵌噙\(yùn)動(dòng)個(gè)體的整體行為,所以編隊(duì)控制策略包括兩個(gè)方面,一方面是多無(wú)人機(jī)間信息的交互,另一方面是隊(duì)形形成與保持控制算法。雖然前面提到的賓夕法尼亞大學(xué)和法國(guó)派瑞特公司的無(wú)人機(jī)編隊(duì)極具觀賞性,但是這兩種編隊(duì)控制方式都屬于集中式編隊(duì)控制,各無(wú)人機(jī)間不依靠信息交互進(jìn)行編隊(duì)控制,而是將自己的位置、速度、姿態(tài)等信息傳遞給獨(dú)立于各無(wú)人機(jī)的場(chǎng)外中心計(jì)算機(jī),事實(shí)上,這些信息是由飛行場(chǎng)地中布設(shè)的基于視覺的運(yùn)動(dòng)捕捉系統(tǒng)完成。中心計(jì)算機(jī)根據(jù)全局信息對(duì)各無(wú)人機(jī)進(jìn)行控制,達(dá)到編隊(duì)效果。由于基于視覺的運(yùn)動(dòng)捕捉系統(tǒng)能實(shí)現(xiàn)較高精度的定位定向和姿態(tài)解算,所以這種控制方式能夠達(dá)到較高編隊(duì)控制精度,但是從編隊(duì)控制方法上講,這種編隊(duì)控制是對(duì)各無(wú)人機(jī)單獨(dú)控制的集體展現(xiàn),體現(xiàn)的是單機(jī)控制水平,在實(shí)際編隊(duì)飛行中并不實(shí)用,一方面,在大多數(shù)編隊(duì)飛行中,不存在獨(dú)立于各無(wú)人機(jī)的全局信息采集設(shè)備;另一方面,如果各無(wú)人機(jī)都將自己的狀態(tài)信息發(fā)送給場(chǎng)外計(jì)算機(jī)統(tǒng)一決策、控制,那么由于通信鏈路不穩(wěn)定對(duì)編隊(duì)造成的影響將是致命的,另外通信時(shí)延也將對(duì)編隊(duì)控制產(chǎn)生十分不利的影響。
圖2 賓夕法尼亞大學(xué)的四旋翼無(wú)人機(jī)編隊(duì)
相比于集中式控制,用分布式控制方法實(shí)現(xiàn)多無(wú)人機(jī)編隊(duì)飛行,每架無(wú)人機(jī)要將自己的位置、速度和運(yùn)動(dòng)目標(biāo)等狀態(tài)信息與編隊(duì)中與之相鄰的無(wú)人機(jī)交互[17]。編隊(duì)中各無(wú)人機(jī)具有較高的自主性,每架無(wú)人機(jī)都要進(jìn)行控制決策,雖然相比于集中式控制,對(duì)各無(wú)人機(jī)計(jì)算機(jī)性能要求增加,但是各無(wú)人機(jī)運(yùn)算量相似,不會(huì)集中于某一架無(wú)人機(jī)或場(chǎng)外計(jì)算機(jī),出現(xiàn)中心計(jì)算機(jī)故障而導(dǎo)致編隊(duì)徹底失敗的問(wèn)題。分布式無(wú)人機(jī)編隊(duì)控制,各無(wú)人機(jī)只需和鄰近計(jì)算機(jī)進(jìn)行信息交互,增強(qiáng)了通信鏈路的可靠性,也增加了編隊(duì)保持的魯棒性,在工程實(shí)踐中,這樣的結(jié)構(gòu)也便于編隊(duì)的實(shí)現(xiàn)和維護(hù)。此外,分布式編隊(duì)控制器便于統(tǒng)一設(shè)計(jì),具有較好的容錯(cuò)性和擴(kuò)展性,編隊(duì)中增加或減少無(wú)人機(jī)對(duì)原編隊(duì)中其它無(wú)人機(jī)影響較小,各無(wú)人機(jī)控制計(jì)算機(jī)負(fù)載不會(huì)隨編隊(duì)中無(wú)人機(jī)數(shù)量的增加而明顯增大。所以,當(dāng)前多無(wú)人機(jī)編隊(duì)控制的理論研究方向主要是分布式編隊(duì)控制方法。
基于分布式控制思想,眾多學(xué)者對(duì)無(wú)人機(jī)編隊(duì)控制策略和方法進(jìn)行了研究,目前比較成熟的隊(duì)形控制方法主要有:leader-follower法,基于行為法和虛擬結(jié)構(gòu)法。
1)leader-follower法。leader-follower法是一種主-從策略,它是應(yīng)用最為廣泛的一種多運(yùn)動(dòng)體編隊(duì)控制策略[7,18~19],在 leader-follower控制結(jié)構(gòu)中,存在唯一的leader無(wú)人機(jī)相對(duì)獨(dú)立地運(yùn)動(dòng),其它無(wú)人機(jī)作為follower,跟隨leader的運(yùn)動(dòng),并保持一定的幾何相對(duì)關(guān)系。一般編隊(duì)飛行只有一個(gè)leader,其余所有無(wú)人機(jī)均為follower,跟隨leader無(wú)人機(jī)運(yùn)動(dòng);當(dāng)無(wú)人機(jī)數(shù)量龐大時(shí),leader-follower控制策略往往采用級(jí)聯(lián)結(jié)構(gòu),即最上層的無(wú)人機(jī)充當(dāng)編隊(duì)leader的角色,處于中間層的無(wú)人機(jī)既作為上層無(wú)人機(jī)的follower又作為下一層無(wú)人機(jī)的leader,層層跟隨形成整體編隊(duì),這種級(jí)聯(lián)式編隊(duì)結(jié)構(gòu)具有明確的領(lǐng)航-跟隨關(guān)系。
用leader-follower法進(jìn)行編隊(duì)控制各無(wú)人機(jī)間相互關(guān)系明確、直觀,控制器的設(shè)計(jì)也容易實(shí)現(xiàn),但是這種方法也存在不足:由于從follower無(wú)人機(jī)到leader無(wú)人機(jī)沒有明確的反饋回路,整體編隊(duì)保持魯棒性差;同時(shí)級(jí)聯(lián)結(jié)構(gòu)的leader-follower編隊(duì)誤差容易隨逐級(jí)跟蹤誤差累計(jì)而傳播放大,處于最底層的follower無(wú)人機(jī)不易在編隊(duì)中保持穩(wěn)定;再者,leader-follower編隊(duì)在系統(tǒng)結(jié)構(gòu)上過(guò)于依賴leader無(wú)人機(jī)的飛行狀態(tài),一旦leader無(wú)人機(jī)被干擾或出現(xiàn)故障容易導(dǎo)致整個(gè)編隊(duì)控制的失敗[20~21]。
2)基于行為法?;谛袨榉ㄊ菑膭?dòng)物的群體行為中抽象出來(lái)的一種方法[22],其中心思想是對(duì)多無(wú)人機(jī)編隊(duì)中的每一架無(wú)人機(jī)的可能行為包括:軌跡跟蹤、隊(duì)形保持、障礙規(guī)避和內(nèi)部避碰在不同時(shí)刻設(shè)定不同的權(quán)重,它們的加權(quán)和就決定了各無(wú)人機(jī)最終的控制行為。在這種控制結(jié)構(gòu)下,編隊(duì)隊(duì)形比較容易改變,可以適應(yīng)不同的環(huán)境,通過(guò)調(diào)節(jié)權(quán)重實(shí)現(xiàn)多運(yùn)動(dòng)個(gè)體的最優(yōu)編隊(duì)控制[23~25],但是這種控制方法也有缺點(diǎn),即很難用數(shù)學(xué)的方法來(lái)分析群體的行為,也很難用數(shù)學(xué)方法對(duì)編隊(duì)穩(wěn)定進(jìn)行分析,編隊(duì)隊(duì)形保持精度無(wú)法保證。
3)虛擬結(jié)構(gòu)法。虛擬結(jié)構(gòu)法最早由M.Anthony Lewis提出[26],整個(gè)編隊(duì)被認(rèn)為是一個(gè)剛性結(jié)構(gòu),不同運(yùn)動(dòng)個(gè)體相對(duì)幾何結(jié)構(gòu)中某一虛擬點(diǎn)位置固定不變,由此形成編隊(duì)。根據(jù)虛擬點(diǎn)選取不同可以細(xì)分為虛擬leader、虛擬中心和虛擬參考點(diǎn)結(jié)構(gòu)等。虛擬結(jié)構(gòu)法通過(guò)共享虛擬結(jié)構(gòu)的狀態(tài)信息進(jìn)行編隊(duì)控制,編隊(duì)隊(duì)形可以任意設(shè)定,編隊(duì)控制精確較高[27~28],但是如何確定虛擬參考點(diǎn)并傳輸其狀態(tài)信息,如何讓編隊(duì)中各無(wú)人機(jī)獲取虛擬結(jié)構(gòu)信息并實(shí)現(xiàn)信息同步是該方法的難點(diǎn)。
以上提到的編隊(duì)控制方法是編隊(duì)層面的控制方法,具體到單個(gè)無(wú)人機(jī)控制,實(shí)現(xiàn)編隊(duì)的控制方法還包括自適應(yīng)PID控制、滑膜控制[29]、自適應(yīng)控制[30]、模型預(yù)測(cè)控制[31~32]等。雖然人們對(duì)編隊(duì)控制的各個(gè)方面進(jìn)行了研究,但是在實(shí)踐中總會(huì)出現(xiàn)新的問(wèn)題,這也引導(dǎo)著人們?cè)诰庩?duì)控制領(lǐng)域,尤其是無(wú)人機(jī)編隊(duì)控制領(lǐng)域繼續(xù)前行。前面已經(jīng)提到,多無(wú)人機(jī)編隊(duì)是群體行為,群體中各個(gè)體的信息交互也將影響編隊(duì)的控制效果,傳統(tǒng)的編隊(duì)控制方法往往忽略了這一點(diǎn),基于此,一些學(xué)者開始嘗試?yán)梅植际叫畔⒔换サ目刂评碚搧?lái)解決編隊(duì)問(wèn)題[33],同時(shí)又能夠降低控制器計(jì)算復(fù)雜度,這就是一致性理論,它的產(chǎn)生和發(fā)展極大地推進(jìn)了無(wú)人機(jī)編隊(duì)控制的進(jìn)展。
2.2 一致性理論及其在編隊(duì)控制中應(yīng)用
自從智能體(Agent)概念在1986年被麻省理工學(xué)院人工智能實(shí)驗(yàn)室的Minsky教授第一次提出,就受到了業(yè)界廣泛的關(guān)注[34]。隨后,多智能體系統(tǒng)迅速發(fā)展為人工智能的一個(gè)重要分支,1989年舉行的第一屆國(guó)際多智能體歐洲學(xué)術(shù)會(huì)議,更是標(biāo)志著其發(fā)展受到廣大學(xué)者的重視。伴隨著多智能體系統(tǒng)的出現(xiàn),多智能體系統(tǒng)的一致性問(wèn)題隨即進(jìn)入人們的視野,多智能體系統(tǒng)的一致性問(wèn)題是指,系統(tǒng)中單個(gè)智能體根據(jù)局部鄰居信息相互作用,在此基礎(chǔ)上分別構(gòu)建合適的控制器,最終使智能體的全部或部分狀態(tài)量趨于相同。因?yàn)楦髦悄荏w的控制器設(shè)計(jì)僅依賴于智能體的自身信息和鄰居信息,而無(wú)需知道整個(gè)系統(tǒng)的全局信息,這很好地模擬了自然界諸如鳥群、魚群運(yùn)動(dòng)等現(xiàn)象,為解決多運(yùn)動(dòng)體的蜂擁問(wèn)題(flocking)[35~36]、集結(jié)問(wèn)題(rendezvous)[37~38]和編隊(duì)控制問(wèn)題提供了重要手段。
研究一致性問(wèn)題,一般要借助于圖論[39](Graph Theory),用其表征多智能體間的通信網(wǎng)絡(luò),圖論中的鄰接矩陣(Adjacency Matrix)、拉普拉斯矩陣(Laplacian Matrix)等概念可以用來(lái)對(duì)網(wǎng)絡(luò)中的通信拓?fù)潢P(guān)系建模,在多智能體系統(tǒng)一致性問(wèn)題穩(wěn)定性分析上扮演著重要角色。Jadbabaie利用Laplacian矩陣概念,結(jié)合動(dòng)態(tài)系統(tǒng)理論,對(duì)具有線性化模型的多智能體一致性進(jìn)行了研究,給出了其能夠達(dá)成一致的條件。在此結(jié)論的基礎(chǔ)之上,眾多學(xué)者針對(duì)多智能體的一致性問(wèn)題開展了大量的研究。智能體模型從一階積分系統(tǒng)[40~41]、二階積分系統(tǒng)[42~43]到高階線性系統(tǒng)[44~46],從線性模型到非線性模型[47~50],從連續(xù)系統(tǒng)到離散系統(tǒng)[51~52],從同構(gòu)多智能體到異構(gòu)多智能體[12,42,53];控制方式涵蓋狀態(tài)反饋控制和輸出反饋控制[54],控制方法包括一般線性控制和自適應(yīng)控制[55~57]?,F(xiàn)有的研究工作中,一致性問(wèn)題主要的解決辦法是通過(guò)變量代換,將一致性問(wèn)題轉(zhuǎn)化成穩(wěn)定性問(wèn)題,最終給出黎卡提方程或線性矩陣不等式(LMI)限定形式的多智能體一致性條件,黎卡提方程或線性矩陣不等式不僅和智能體本身動(dòng)態(tài)有關(guān),也和系統(tǒng)通信拓?fù)浣Y(jié)構(gòu)有關(guān),所以有很大一部分學(xué)者針對(duì)多智能體的通信拓?fù)浣Y(jié)構(gòu)開展了研究。文獻(xiàn)[54,57~59]在研究一致性問(wèn)題時(shí)均假定多智能體之間的通信拓?fù)錇闊o(wú)向圖,根據(jù)圖論可知,無(wú)向圖的Laplacian矩陣為對(duì)稱矩陣,所以在進(jìn)行變量代換和穩(wěn)定性分析時(shí),可以較為容易地解耦、降維處理,降低控制器設(shè)計(jì)的復(fù)雜度;文獻(xiàn)[42,60~61]從不同角度解決了有向通信拓?fù)錀l件下的一致性問(wèn)題,降低了多智能體間通信拓?fù)涞囊?,文獻(xiàn)[62~64]更是針對(duì)多智能體間通信網(wǎng)絡(luò)可能遇到的網(wǎng)絡(luò)重組,或者信息傳遞不同步等問(wèn)題,研究了切換通信拓?fù)錀l件下的一致性問(wèn)題,得到了系統(tǒng)能夠達(dá)成一致的條件。
針對(duì)多智能體協(xié)同控制中可能出現(xiàn)的其它問(wèn)題,一致性理論研究成果中還包括控制策略方面的[65~66],提高控制品質(zhì)方面的[67~70],考慮通信延時(shí)方面的[71~72]以及抗干擾方面的[73~75],這些都可以作為借鑒應(yīng)用在編隊(duì)控制中。在眾多研究一致性問(wèn)題的學(xué)者中,國(guó)內(nèi)河海大學(xué)畢業(yè),現(xiàn)為美國(guó)加州大學(xué)河濱分校教授的任偉在一致性領(lǐng)域的貢獻(xiàn)是開創(chuàng)性的,他在文獻(xiàn)[76]中系統(tǒng)地介紹了一致性方法在二階積分系統(tǒng)軌跡跟蹤和編隊(duì)控制中的應(yīng)用,并且表明leader-follower、基于行為的和基于虛擬結(jié)構(gòu)的編隊(duì)控制方法都可以認(rèn)為是基于一致性方法的特例。在隨后的文獻(xiàn)[77]中,他把基于一致性的編隊(duì)算法應(yīng)用于輪式機(jī)器人,驗(yàn)證了此方法的實(shí)用性。隨后基于一致性的編隊(duì)控制方法隨著一致性理論的發(fā)展而進(jìn)步,文獻(xiàn)[78]給出了無(wú)向圖下,二階集群系統(tǒng)實(shí)現(xiàn)編隊(duì)運(yùn)動(dòng)的充分條件。文獻(xiàn)[79]研究了離散多智能體系統(tǒng)的軌跡跟蹤與編隊(duì)形成問(wèn)題,給出了基于一致性的控制器的設(shè)計(jì)方法。文獻(xiàn)[80]研究了切換通信拓?fù)錀l件下具有一階積分特性的多智能體系統(tǒng)的軌跡跟蹤與編隊(duì)控制,得到了編隊(duì)能夠形成的條件。
在利用一致性方法解決編隊(duì)問(wèn)題的研究學(xué)者中,以董希旺為代表的清華大學(xué)團(tuán)隊(duì),近兩年獲得眾多成果。文獻(xiàn)[81]研究了有向切換通信拓?fù)錀l件下高階線性多智能體的時(shí)變編隊(duì)問(wèn)題,用一致性方法進(jìn)行控制器設(shè)計(jì),得到了系統(tǒng)能夠形成編隊(duì)的條件并給出了控制器設(shè)計(jì)步驟。隨后,文獻(xiàn)[82]和[83]分別研究了基于狀態(tài)反饋和輸出反饋的編隊(duì)控制問(wèn)題。在無(wú)人機(jī)控制方面,文獻(xiàn)[84]和[85]分別針對(duì)有向通信網(wǎng)絡(luò)和無(wú)向切換通信網(wǎng)絡(luò)設(shè)計(jì)了一致性編隊(duì)控制器,提出了多無(wú)人機(jī)能夠形成時(shí)變編隊(duì)的條件,給出了編隊(duì)控制器控制增益選取原則,文中算法在小型四旋翼無(wú)人機(jī)上進(jìn)行了成功驗(yàn)證,證明了此類方法的有效性和實(shí)用性。
雖然基于一致性的概念可以很容易地在編隊(duì)控制問(wèn)題中應(yīng)用,并且已經(jīng)取得了豐碩的成果,但是在實(shí)際多無(wú)人機(jī)飛行中仍會(huì)有問(wèn)題存在。比如一致性問(wèn)題的目的是使多智能體的某些狀態(tài)達(dá)成一致,不存在內(nèi)部避碰的問(wèn)題,但是在編隊(duì)飛行中就必須給予考慮;雖然針對(duì)避碰問(wèn)題也有大量學(xué)者給出解決方案[86~89],但是和一致性方法相結(jié)合,各智能體統(tǒng)一設(shè)計(jì)控制器的方法還比較少,文獻(xiàn)[33]在利用基于一致性的方法解決編隊(duì)問(wèn)題時(shí)給出了基于人工勢(shì)場(chǎng)法的避碰控制器設(shè)計(jì),但是并沒有考慮無(wú)人機(jī)可能陷入局部震蕩的情況。此外,一般的通信網(wǎng)絡(luò)無(wú)法保證信息的傳遞都是雙向的,有向通信網(wǎng)絡(luò)更具普遍性,而有向通信拓?fù)錀l件下的一致性控制器相比無(wú)向通信拓?fù)錀l件,設(shè)計(jì)更復(fù)雜,尤其是在通信拓?fù)浣Y(jié)構(gòu)隨時(shí)間發(fā)生變化時(shí),這一問(wèn)題更加突出,如何降低控制器的設(shè)計(jì)復(fù)雜度,依然是實(shí)際應(yīng)用中需要解決的問(wèn)題。再者,在實(shí)際無(wú)人機(jī)編隊(duì)飛行中,抗干擾問(wèn)題是必須要考慮的,雖然一致性理論中給出了H∞控制方法來(lái)實(shí)現(xiàn)對(duì)外部干擾的抑制,但主要是針對(duì)無(wú)向通信網(wǎng)絡(luò)和固定通信網(wǎng)絡(luò)的,如何在更為一般的通信拓?fù)錀l件下,實(shí)現(xiàn)編隊(duì)抗干擾控制也顯得十分有實(shí)際意義。
近年來(lái),隨著人工智能、集成電路、數(shù)據(jù)挖掘等技術(shù)的交叉融合,基于一致性理論的多無(wú)人機(jī)編隊(duì)控制技術(shù)得到越來(lái)越多國(guó)內(nèi)外學(xué)者的廣泛關(guān)注,并已取得階段性的研究成果,未來(lái)這一技術(shù)也將朝著以下幾個(gè)方向發(fā)展:
1)考慮飽和約束等條件下的多無(wú)人機(jī)編隊(duì)控制
這是實(shí)際無(wú)人機(jī)飛行中一個(gè)基本的問(wèn)題,任何控制系統(tǒng)的輸入都是有限的,但是基于一致性的編隊(duì)控制器沒有對(duì)輸入進(jìn)行約束,尤其是對(duì)切換拓?fù)錀l件下控制器設(shè)計(jì)時(shí),增益矩陣相比于一般控制器會(huì)明顯變大(但不是簡(jiǎn)單倍數(shù)關(guān)系),這也將直接導(dǎo)致輸入量的幅值比較大,這在實(shí)際應(yīng)用中很可能導(dǎo)致輸入飽和。雖然在數(shù)值仿真中,加入飽和限制并不影響編隊(duì)的形成,對(duì)編隊(duì)形成的速度也影響甚小,但是如何給出在飽和約束條件下的適用性的嚴(yán)格理論證明,仍需要繼續(xù)研究。
2)考慮通信時(shí)延條件下的多無(wú)人機(jī)編隊(duì)控制
目前大多數(shù)研究都是基于通信網(wǎng)絡(luò)的信息傳遞來(lái)實(shí)現(xiàn)多無(wú)人機(jī)編隊(duì)飛行,如果通信出現(xiàn)時(shí)延,很可能對(duì)編隊(duì)的形成產(chǎn)生不利影響。有相關(guān)文獻(xiàn)對(duì)此問(wèn)題進(jìn)行了研究,但是得到的不等式約束條件都具有較高的維度面臨著求解困難、耗時(shí)長(zhǎng)等問(wèn)題,如何降低通信時(shí)延情況下,基于一致性的編隊(duì)控制器設(shè)計(jì)難度,也顯得十分有意義。
3)設(shè)計(jì)更為高效、智能的避碰控制器
目前關(guān)于基于一致性多無(wú)人機(jī)編隊(duì)選用的避碰控制器一般都是基于人工勢(shì)場(chǎng)法,雖然能夠保證碰撞不會(huì)發(fā)生,但是并不高效,無(wú)人機(jī)在識(shí)別到危險(xiǎn)時(shí)軌跡一般會(huì)發(fā)生較大機(jī)動(dòng),這很可能造成輸入飽和。如何使多無(wú)人機(jī)在編隊(duì)形成或變換過(guò)程中更為智能地相互避讓,有必要進(jìn)一步進(jìn)行研究。
相對(duì)于無(wú)人機(jī)單機(jī)執(zhí)行任務(wù),多無(wú)人機(jī)編隊(duì)系統(tǒng)可以完成更復(fù)雜的任務(wù),并具有高效率、高容錯(cuò)性和內(nèi)在并行等優(yōu)點(diǎn)?;谝恢滦缘亩酂o(wú)人機(jī)編隊(duì)研究涉及學(xué)科眾多,具有前沿性,無(wú)論對(duì)于軍事應(yīng)用還是民事應(yīng)用都將大有實(shí)用價(jià)值。
[1]Liu CA,Liang G P,Wang H P,etal.Application of Ant Algorithm to Path Planning to Reconnaissance UAV[J].Fire Control&Command Control,2005.
[2]Redding J,Bethke B,Bertuccelli L,et al.Active Learning in Persistent Surveillance UAV Missions[J].American Institute of Aeronautics&Astronautics,2009.
[3]Pack D J,Delima P,Toussaint G J,et al.Cooperative control of UAVs for localization of intermittently emitting mobile targets[J].IEEE Trans Syst Man Cybern B Cy-bern,2009,39(4):959-970.
[4]Kwon H,Pack D J.Cooperative target localization bymultiple unmanned aircraft systems using sensor fusion quality[J].Optimization Letters,2011,6(8):1-11.
[5]Sivakumar A,Tan K Y.UAV swarm coordination using cooperative control for establishing a wireless communications backbone[C]//International Conference on Autonomous Agentsand MultiagentSystems,2010:1157-1164.
[6]PorfiriM,Roberson D G,Stilwell D J.Tracking and formation control ofmultiple autonomous agents:Atwo-level consensus approach[J].Automatica,2007,43(8):1318-1328.
[7]Lin Z,DingW,Yan G,et al.Leader-follower formation via complex Laplacian[J].Automatica,2013,49(6):1900-1906.
[8]Kan Z,Dani AP,Shea JM,etal.Network Connectivity Preserving Formation Stabilization and Obstacle Avoidance via a Decentralized Controller[J].IEEE Transactionson Automatic Control,2012,57(7):1827-1832.
[9]Brin ON-Arranz L,Seuret A,Canudas-De-WitC.Cooperative Control Design for Time-Varying Formations of Multi-AgentSystems[J].IEEETransactions on Automatic Control,2014,59(8):2283-2288.
[10]Chen F,Chen Z,Liu Z,et al.Decentralized formation controlofmobile agents:a unified framework[J].Physica A:Statistical Mechanics and its Applications,2008,387(19):4917-4926.
[11]Cepeda-Gomez R,Perico L F.Formation Controlof Nonholonomic Vehicles Under Time Delayed Communications[J].IEEE Transactions on Automation Science and Engineering,2015,12(3):819-826.
[12]RahimiR,Abdollahi F,Naqshi K.Time-varying formation control of a collaborative heterogeneousmulti agent system[J].Robotics and Autonomous Systems,2014,62(12):1799-1805.
[13]Lin P,Jia Y.Distributed rotating formation control of multi-agent systems[J].Systems&Control Letters,2010,59(10):587-595.
[14]Liu C,Tian Y.Formation control ofmulti-agent systems with heterogeneous communication delays[J].International Journal of Systems Science,2009,40(6):627-636.
[15]Xiao F,Wang L,Chen J,et al.Finite-time formation control formulti-agent systems[J].Automatica,2009,45(11):2605-2611.
[16]Jafarian M,Vos E,De Persis C,etal.Formation control of amulti-agent system subject to Coulomb friction[J].Automatica,2015,61:253-262.
[17]Qu Y,Zhu X,Zhang Y M.Cooperative control for UAV formation flight based on decentralized consensus algorithm [M]. Intelligent Robotics and Applications,Springer,2012:357-366.
[18]Mariottini G L,Morbidi F,Prattichizzo D,et al.Vision-Based Localization for Leader–Follower Formation Control[J].IEEE Transactions on Robotics,2009,25(6):1431-1438.
[19]Consolini L,Morbidi F,Prattichizzo D,et al.Leader-follower formation control of nonholonomicmobile robots with input constraints[J].Automatica,2008,44(5):1343-1349.
[20]Xue Z,Zeng J.Circle Formation Control of Large-Scale Intelligent Swarm Systems in a Distributed Fashion[C]//International Symposium on Neural Networks,Isnn 2009,Wuhan,China,2009:1105-1115.
[21]Justh EW,Krishnaprasad PS.Asimple control law for UAV formation flying[J].ASimple Control Law for Uav Formation Flying,2002.
[22]Balch T,Arkin R C.Behavior-based formation control formultirobot teams[J].IEEE Transactions on Robotics and Automation,1998,14(6):926-939.
[23]Cao Z,Tan M,Wang S,etal.The optimization research of formation control formultiplemobile robots[C]//Proceedings of the World Congress on Intelligent Control and Automation,2002:1270-1274.
[24]Kim S,Kim Y.Optimum design of three-dimensionalbehavioural decentralized controller for UAV formation flight[J].Engineering Optimization,2009,41(3):199-224.
[25]Liu Y,Geng Z.Finite-time formation control for linear multi-agent systems:Amotion planning approach[J].Systems&Control Letters,2015,85:54-60.
[26]Lewis MA,Tan K.High precision formation control of mobile robots using virtual structures[J].Autonomous Robots,1997,4(4):387-403.
[27]Linorman NH M,Liu H H T.Formation UAV flight control using virtual structure and motion synchronization[C]//American ControlConference,2008:1782-1787.
[28]Atrianfar H,Haeri M.Flocking ofmulti-agent dynamic systemswith virtual leader having the reduced number of informed agents[J].Transactionsof the Institute ofMeasurementand Control,2013:292261160.
[29]Chang Y H,Chang CW,Chen C L,et al.Fuzzy sliding-mode formation control for multirobot systems:design and implementation[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2012,42(2):444-457.
[30]Park JH,ChoiY K.Formation ControlofMobile Robots using Adaptive PID Controller[J].Journal of the Korea Institute of Information and Communication Engineering,2015,19(11):2554-2561.
[31]Guillet A,Lenain R,Thuilot B,et al.Adaptable Robot Formation Control:Adaptive and Predictive Formation Control of Autonomous Vehicles[J].IEEE Robotics&Automation Magazine,2014,21(1):28-39.
[32]Chao Z,Zhou SL,Ming L,etal.UAV Formation Flight Based on Nonlinear Model Predictive Control[J].Mathematical Problems in Engineering,2012,213(2):181-188.
[33]朱旭.基于信息一致性的多無(wú)人機(jī)編隊(duì)控制方法研究[D].西安:西北工業(yè)大學(xué),2014.
[34]Minsky ML.The society ofmind[M].Simon&Schuster,1988:371-396.
[35]Dong Y,Huang J.Flocking with connectivity preservation ofmultiple double integrator systems subject to external disturbances by a distributed control law[J].Automatica,2015,55:197-203.
[36]Wang W,Peng H.Flocking controlwith communication noise based on second-order distributed consensus algorithm[C]//Power Engineering and Automation Conference,2012:1-4.
[37]Dong Y,Huang J.Leader-Following Connectivity Preservation Rendezvous ofMultiple Double Integrator Systems Based on Position Measurement Only[J].IEEE Transactions on Automatic Control, 2014, 59 (9) :2598-2603.
[38]Caicedo-Nunez C H,Zefran M.Consensus-based rendezvous[C]//IEEE International Conference on Control Applications,2008:1031-1036.
[39]Godsil C,Royle G.Algebraic graph theory[M].Cambridge University Press,1974:298.
[40]Olfati-Saber R,Murray RM.Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
[41]RenW,Beard RW,Others.Consensus seeking inmultiagentsystems under dynamically changing interaction topologies[J].IEEE Transactions on automatic control,2005,50(5):655-661.
[42]Mei J,Ren W,Chen J.Consensus of second-order heterogeneousmulti-agent systems under a directed graph[C]//Proceedings of the American Control Conference,2014:802-807.
[43]Yu W,Zheng WX,Chen G,et al.Second-order consensus in multi-agent dynamical systems with sampled position data [J]. Automatica, 2011, 47 (7) :1496-1503.
[44]Xi J,Shi Z,Zhong Y.Consensus analysis and design for high-order linear swarm systems with time-varying delays[J].Physica A:StatisticalMechanics and its Applications,2011,390(23-24):4114-4123.
[45]Dong X,Xi J,Shi Z,et al.Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties,time-varying delays and external disturbances[J].International Journal of Systems Science,2013,44(10):1843-1856.
[46]Seo JH,Shim H,Back J.Consensus of high-order linear systems using dynamic output feedback compensator:low gain approach [J].Automatica,2009,45(11):2659-2664.
[47]Yu W,Chen G,Cao M,etal.Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics[J].IEEE Transactions on Systems Man&Cybernetics Part B Cybernetics APublication of the IEEE Systems Man&Cybernetics Society,2010,40(3):881-891.
[48]Yu W.Designing Distributed Control Gains for Consensus in Multi-Agent Systems with Second-Order Nonlinear Dynamics[C]//World Congress,2011:1231-1236.
[49]Li Z,Ren W,Liu X,et al.Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols [J].IEEE Transactions on Automatic Control,2013,58(7):1786-1791.
[50]Zhao Y,Duan Z,Wen G,etal.Robustconsensus tracking of multi-agent systems with uncertain lur'e-type non-linear dynamics[J].Iet Control Theory&Applications,2013,7(9):1249-1260.
[51]Wang J,Nian X,Wang H.Consensusand formation control of discrete-timemulti-agent systems[J].Journal of Central South University of Technology,2011, 18:1161-1168.
[52]Pan H,Qiao W.Consensus of double-integrator discrete-time multi-agent system based on second-order neighbors'information[C]//The 26th Chinese Control and Decision Conference (2014 CCDC) ,2014:1946-1951.
[53] Mo L,Niu Y,Pan T.Consensus of heterogeneous multi-agent systemswith switching jointly-connected interconnection[J].Physica A:StatisticalMechanics and its Applications,2015,427:132-140.
[54]Li Z,Duan Z,Chen G.Dynamic consensus of linear multi-agent systems[J].Control Theory&Applications,IET.,2011,5(1):19-28.
[55]Li J,Ho D WC,Li J.Distributed adaptive repetitive consensus control framework foruncertain nonlinear leader-follower multi-agent systems [J].Journal of the Franklin Institute,2015,352(11):5342-5360.
[56]Su H,Chen G,Wang X,et al.Adaptive second-order consensus of networked mobile agentswith nonlinear dynamics[J].Automatica,2011,47(2):368-375.
[57]Li Z,Ren W,Liu X,etal.Distributed consensus of linearmulti-agent systemswith adaptive dynamic protocols[J].Automatica,2013,49(7):1986-1995.
[58]Ma C,Zhang J.Necessary and sufficient conditions for consensusability of linear multi-agent systems [J].IEEE Transactions on Automatic Control,2010,55(5):1263-1268.
[59]Li Z,Duan Z,Chen G.On H∞ and H2 performance regions ofmulti-agentsystems[J].Automatica,2011,47(4):797-803.
[60]Wang J,Duan Z,Li Z,et al.Distributed H∞ and H 2 consensus control in directed networks[J].IETControl Theory&Applications,2013,8(3):193-201.
[61]Wei L,Ai-Li L,Shao-Lei Z.Distributed H∞ control of multi-agent systems with directed networks[J].Chinese Physics B,2015,24(9):90208.
[62]ZhaiG,Huang C.Anote on basic consensus problems in multi-agent systems with switching interconnection graphs[J].International Journal of Control,2014,88(3):631-639.
[63]You K,Li Z,Xie L.Consensus condition for linear multi-agent systems over random ly switching topologies[J].Automatica,2013,49(10):3125-3132.
[64]Cao Y,Ren W,Egerstedt M.Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks[J].Automatica,2012,48(8):1586-1597.
[65]Wen G,Li Z,Duan Z,etal.Distributed consensus control for linearmulti-agent systemswith discontinuous observations[J].International Journal of Control,2013,86(1):95-106.
[66]Ma Q,Lu J,Xu H.Consensus for nonlinearmulti-agent systemswith sampled data[J].Transactions of the Institute of Measurement& Control, 2013, 36(5):618-626.
[67]Lin P,Jia Y.RobustH∞ consensus analysis ofa class of second-order multi-agent systems with uncertainty[J].Iet Control Theory&Applications, 2010,4(3):487-498.
[68]Sun F,Chen J,Guan Z,et al.Leader-following finite-time consensus for multi-agent systems with jointly-reachable leader [J]. Nonlinear Analysis: Real World Applications,2012,13(5):2271-2284.
[69]Cao Y,Ren W.Optimal linear-consensus algorithms:an LQR perspective[J].IEEE Transactions on Systems Man&Cybernetics Part B Cybernetics APublication of the IEEE Systems Man&Cybernetics Society,2010,40(3):819-830.
[70]Semsar-Kazerooni E,Khorasani K.Optimal consensus seeking in a network ofmultiagent systems:an LMIapproach[J].IEEE Transactions on Systems Man&Cybernetics Part B Cybernetics APublication of the IEEE Systems Man&Cybernetics Society,2010,40(2):540-547.
[71]Cui Y,Jia Y.L2-L∞ consensus control for high-order multi-agent systems with switching topologies and time-varying delays[J].Control Theory&Applications,IET,2012,6(12):1933-1940.
[72]Liu Y,Jia Y.RobustH ∞ consensus controlofuncertain multi-agent systems with time delays[J].International Journal of Control,Automation and Systems,2011,9(6):1086-1094.
[73]Hu H,Yu L,Chen G,etal.Second-order consensus of multi-agent systems with unknown but bounded disturbance[J].International Journal of Control,Automation and Systems,2013,11(2):258-267.
[74]Ding Z.Consensus Disturbance Rejection With Disturbance Observers[J].IEEE Transactions on Industrial Electronics,2015,62(9):5829-5837.
[75]Zhang X,Liu X.Further Results on Consensus of Second-Order Multi-Agent SystemsWith Exogenous Disturbance[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2013,60(12):3215-3226.
[76]RenW.Consensus strategies for cooperative controlof vehicle formations[J].Control Theory&Applications,IET,2007,1(2):505-512.
[77]Ren W,Sorensen N.Distributed coordination architecture formulti-robot formation control[J].Robotics and AutonomousSystems,2008,56(4):324-333.
[78]Xie G,Wang L.Moving formation convergence of a group ofmobile robots via decentralised information feedback [J].International Journal of Systems Science,2009,40(10):1019-1027.
[79]Turpin M,Michael N,Kumar V.Decentralized formation control with variable shapes for aerial robots[C]//IEEE International Conference on Robotics&Automation,2012:23-30.
[80]Nian X,Su S,Pan H.Consensus tracking protocol and formation control ofmulti-agent systems with switching topology [J].Journal of Central South University of Technology,2011,18:1178-1183.
[81]Dong X,ShiZ,Lu G,etal.Time-varying formation control for high-order linear swarm systems with switching interaction topologies[J].IETControl Theory&Appli-cations,2014,8(18):2162-2170.
[82]Dong X,Shi Z,Lu G,etal.Time-varying output formation control for high-order linear time-invariant swarm systems[J].Information Sciences,2015,298:36-52.
[83]Dong X,Hu G.Time-varying output formation for linear multi-agent systems via dynamic output feedback control[J].IEEE Transactions on Control of Network Systems,2015:1.
[84]Dong X,Yu B,Shi Z,et al.Time-Varying Formation Control for Unmanned Aerial Vehicles:Theories and Applications[J].IEEE Transactions on Control Systems Technology,2015,23(1):340-348.
[85]Zhou Y,Dong X,Lu G,et al.Time-varying formation control for unmanned aerial vehicleswith switching interaction topologies[C]//International Conference on Unmanned AircraftSystems,2014.
[86]DaiY,Kim Y,Wee S,etal.Aswitching formation strategy for obstacle avoidance of amulti-robot system based on robot priority model[J].ISATransactions,2015,56:123-134.
[87]Sharma R K,Ghose D.Collision avoidance between uav clusters using swarm intelligence techniques[J].International Journal of Systems Science,2009,40(5):521-538.
[88]Fukushima H,Kon K,Matsuno F.Distributed Model Predictive Control For Multi-Vehicle Formation With Collision Avoidance Constraints[C]//IEEE Conference on Decision&Control,&European Control Conference,2006:5480-5485.
[89]Wang X,Yadav V,Balakrishnan SN.Cooperative UAV formation flying with obstacle/collision avoidance[J].IEEE Transactions on Control Systems Technology,2007,15(4):672-679.
Research Statusand Development of Multi-UAVs Formation Based on Consensus
WANG Peng1ZHANG Zhen feng2CAO Mingchuan3QIYahui4KANG Yuhang4
(1.NavalMilitary Representative Office in Jingdezhen,Jingdezhen 333000)
(2.NavalRadarand Sonar Repair Depot,Qingdao 266000)
(3.No.91967 Troopsof PLA,Xingcheng 125106)(4.Naval Aeronautical Engineering Institue,Yantai 264001)
Multi-UAVs formation based on consistency is a kind ofmulti-UAVs formation controlmethod which has been widely researched and applied athome and abroad in recentyears,as long as the information exchange can be ensured in the formation,the formation can fly stably and complete the task well.This paper introduces the latest research athome and abroad from the theoretical developmentof UAV andmulti-UAVs formation based on consensus.Then,combined with the current characteristics of multi-UAVs formation based on consensus,a prospect ismade for themulti-UAVs formation based on consensus.
UAV,consensus,formation control,communication
V249
10.3969/j.issn.1672-9730.2017.09.001
2017年3月6日,
2017年4月22日
王鵬,男,碩士,助理工程師,研究方向:自動(dòng)控制。張振鋒,男,助理工程師,研究方向:電子對(duì)抗。曹明川,男,碩士,助理工程師,研究方向:固體火箭發(fā)動(dòng)機(jī)。祁亞輝,男,博士,講師,研究方向:導(dǎo)航制導(dǎo)與控制。康宇航,男,博士,研究方向:飛行器控制與制導(dǎo)。