王永祥+王鵬
摘 要: 為了提高網(wǎng)絡(luò)大數(shù)據(jù)的安全性能,進(jìn)行Web入侵風(fēng)險(xiǎn)預(yù)測,提出基于非平穩(wěn)性盲源分離的大數(shù)據(jù)的Web入侵檢測模型進(jìn)行風(fēng)險(xiǎn)預(yù)測估計(jì)。構(gòu)建大數(shù)據(jù)的Web入侵信息測量模型,對(duì)Web大數(shù)據(jù)信息流進(jìn)行二維信號(hào)擬合,采用非平穩(wěn)性高斯獨(dú)立平均統(tǒng)計(jì)量進(jìn)行入侵信息判別,實(shí)現(xiàn)Web入侵風(fēng)險(xiǎn)預(yù)測模型改進(jìn)設(shè)計(jì)。仿真結(jié)果表明,采用該方法進(jìn)行大數(shù)據(jù)的Web入侵檢測的準(zhǔn)確檢測概率較高,風(fēng)險(xiǎn)預(yù)測的精度高于傳統(tǒng)模型。
關(guān)鍵詞: 大數(shù)據(jù); Web入侵; 風(fēng)險(xiǎn)預(yù)測; 盲源分離
中圖分類號(hào): TN915.08?34; TP311 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2017)18?0150?03
Web intrusion risk prediction based on large data
WANG Yongxiang1, WANG Peng 2
(1. Guangzhou Vocational College of Technology and Business, Guangzhou 511442, China;
2. School of Computer Science and Technology, Southwest University for Nationalities, Chengdu 610225, China)
Abstract: In order to improve the security performance of network large data and predict the Web intrusion risk, the Web intrusion detection model based on the non?stationary blind source separation is proposed for risk prediction estimation. The big data Web intrusion information measurement model is constructed to perform two?dimensional signal fitting of Web data information flow. The non?stationary Gauss independent average statistical magnitude is used for intrusion information discrimination to implement improvement and design of the Web intrusion risk prediction model. The simulation results show that the method has high detection probability for the big data Web intrusion detection, and higher risk prediction accuracy than that of the traditional model.
Keywords: big data; Web intrusion; risk prediction; blind source separation
0 引 言
隨著大數(shù)據(jù)信息技術(shù)的發(fā)展,大數(shù)據(jù)在網(wǎng)絡(luò)中的安全性受到人們的關(guān)注,網(wǎng)絡(luò)安全涉及到人們隱私信息和財(cái)產(chǎn)安全,在Web環(huán)境下研究大數(shù)據(jù)的安全保密性能對(duì)促進(jìn)網(wǎng)絡(luò)信息技術(shù)的發(fā)展以及社會(huì)穩(wěn)定具有重要意義[1]。大數(shù)據(jù)在Web環(huán)境中容易受到病毒干擾入侵,導(dǎo)致信息泄露,出現(xiàn)加密失敗和數(shù)據(jù)存儲(chǔ)資源的非法占用等安全問題,通過對(duì)Web入侵的風(fēng)險(xiǎn)預(yù)測,促進(jìn)網(wǎng)絡(luò)安全建設(shè)。為了提高網(wǎng)絡(luò)大數(shù)據(jù)的安全性能,進(jìn)行Web入侵風(fēng)險(xiǎn)預(yù)測,提出基于非平穩(wěn)性盲源分離的大數(shù)據(jù)的Web入侵檢測模型進(jìn)行風(fēng)險(xiǎn)預(yù)測估計(jì)方法。
3 仿真實(shí)驗(yàn)與結(jié)果分析
為了測試本文算法在實(shí)現(xiàn)大數(shù)據(jù)環(huán)境下的Web入侵檢測和風(fēng)險(xiǎn)預(yù)測中的性能,進(jìn)行仿真實(shí)驗(yàn)。采用Hadoop 2012構(gòu)建分布平臺(tái),在云計(jì)算環(huán)境下設(shè)計(jì)大數(shù)據(jù)信息庫,在大數(shù)據(jù)信息庫中進(jìn)行入侵檢測,采用Matlab仿真工具進(jìn)行數(shù)學(xué)仿真。大數(shù)據(jù)特征點(diǎn)的采樣個(gè)數(shù)為1 024個(gè),入侵中繼網(wǎng)絡(luò)中Sink節(jié)點(diǎn)設(shè)置為12個(gè),Web網(wǎng)絡(luò)中數(shù)據(jù)傳輸速率為100 Mb/s,干擾信噪比為0~80 dB,仿真時(shí)間為12 s。根據(jù)上述仿真參量設(shè)定,進(jìn)行入侵檢測分析,采用本文方法和傳統(tǒng)方法進(jìn)行大數(shù)據(jù)Web入侵檢測,得到檢測概率曲線如圖1所示。
分析圖1結(jié)果得知,采用本文方法進(jìn)行大數(shù)據(jù)Web入侵檢測的準(zhǔn)確概率遠(yuǎn)高于傳統(tǒng)方法,說明對(duì)入侵?jǐn)r截的有效概率較高。
表1 數(shù)據(jù)Web入侵風(fēng)險(xiǎn)預(yù)測誤差對(duì)比
表1給出了大數(shù)據(jù)Web入侵預(yù)測誤差對(duì)比,分析得知,本文方法對(duì)入侵預(yù)測誤差較低,有效保障了網(wǎng)絡(luò)大數(shù)據(jù)的安全。
4 結(jié) 語
本文提出基于非平穩(wěn)性盲源分離的大數(shù)據(jù)的Web入侵檢測模型進(jìn)行風(fēng)險(xiǎn)預(yù)測估計(jì)。仿真結(jié)果表明,采用該方法進(jìn)行大數(shù)據(jù)的Web入侵檢測的準(zhǔn)確檢測概率較高,風(fēng)險(xiǎn)預(yù)測的精度高于傳統(tǒng)模型,具有較高的數(shù)據(jù)安全和網(wǎng)絡(luò)安全保障能力。
參考文獻(xiàn)
[1] 徐倩漪,齊芳.基于機(jī)器學(xué)習(xí)的通信網(wǎng)絡(luò)非結(jié)構(gòu)化大數(shù)據(jù)分析算法研究[J].激光雜志,2016,37(10):125?128.
[2] 梁聰剛,王鴻章.微分進(jìn)化算法的優(yōu)化研究及其在聚類分析中的應(yīng)用[J].現(xiàn)代電子技術(shù),2016,39(13):103?107.
[3] M?LLER L F, OLIVEIRA R R. Survivor: an enhanced controller placement strategy for improving SDN survivability [C]// Proceedings of IEEE Global Communications Conference. Austin: IEEE, 2014: 1909?1915.
[4] DIN D R, HUANG J S. Multicast backup reprovisioning problem for Hamiltonian cycle?based protection on WDM networks [J]. Optical fiber technology, 2014, 20(2): 142?157.
[5] REN Tianpeng, YUN Chau, GUAN Yongliang. High?order intensity modulations for OSTBC in free?space optical MIMO communications [J]. Wireless communications letters, IEEE, 2013, 2(6): 607?610.
[6] 蔣本立,張小平.大數(shù)據(jù)網(wǎng)絡(luò)的均衡調(diào)度平臺(tái)設(shè)計(jì)與改進(jìn)[J].現(xiàn)代電子技術(shù),2016,39(6):62?65.
[7] 薛勝軍,胡敏達(dá),許小龍.云環(huán)境下公平性優(yōu)化的資源分配方法[J].計(jì)算機(jī)應(yīng)用,2016,36(10):2686?2691.
[8] ZHANG Q, ZHU Q Y, ZHANI M F, et al. Dynamic service placement in geographically distributed clouds [J]. IEEE journal of selected areas in communications, 2013, 31(12): 762?772.
[9] 王祥斌.數(shù)據(jù)挖掘技術(shù)在入侵檢測系統(tǒng)中的應(yīng)用研究[J].計(jì)算機(jī)測量與控制,2012,20(2):13?16.endprint