• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      藥用植物活性成分調(diào)控p65核轉(zhuǎn)運(yùn)總結(jié)與展望

      2017-09-23 04:43:35袁丹王玉倩黃萍崔校基周欣雨梁盈
      中國中藥雜志 2017年17期

      袁丹 王玉倩 黃萍 崔?;≈苄烙辍×河?/p>

      [摘要] NFκB作為細(xì)胞內(nèi)最重要的核轉(zhuǎn)錄因子,參與許多細(xì)胞內(nèi)信號通路的傳導(dǎo)以及遺傳信息的轉(zhuǎn)錄與調(diào)控,其信號傳導(dǎo)通路主要包括IκB激酶的活化、IκB蛋白降解以及p65的核轉(zhuǎn)運(yùn),其中p65核轉(zhuǎn)運(yùn)結(jié)合DNA是NFκB發(fā)揮作用的關(guān)鍵。NFκB的異常激活是誘發(fā)氧化應(yīng)激、炎癥、癌癥等的主要因素,因此維持NFκB活性平衡和調(diào)控p65的核轉(zhuǎn)運(yùn)對相關(guān)課題的深入研究具有重要的參考意義。該文綜述了藥用植物中主要活性物質(zhì)多酚類、皂苷類、生物堿等對p65核轉(zhuǎn)運(yùn)的調(diào)控作用并對NFκB上游通路進(jìn)行了討論,以期為天然活性物質(zhì)開發(fā)成功能性食品的研究提供參考價(jià)值。

      [關(guān)鍵詞] NFκB; 抑制活化; p65核轉(zhuǎn)運(yùn); 藥用植物活性物質(zhì)

      Summary and prospect of medicinal plant active substances in regulation of

      p65 nuclear translocation

      YUAN Dan, WANG Yuqian, HUANG Ping, CUI Xiaoji, ZHOU Xinyu, LIANG Ying*

      (National Engineering Laboratory for Rice and Byproduct Deep Processing, Central South University of

      Forestry & Technology, Changsha 410004, China)

      [Abstract] As the most important nuclear transcription factors in the cells, NFκB is involved in many intracellular signaling pathways and transcription and regulation of genetic information. The signal transduction pathways mainly include the activation of IκB kinase, degradation of IκB protein and the nuclear translocation of p65. p65 transnuclear binding with DNA is the key for NFκB to play a role. Abnormal activation of NFκB is a major factor in the induction of oxidative stress, inflammation, cancer and so on. Therefore, maintaining the balance of NFκB activity and regulating the nuclear translocation of p65 have great significance for further research on related subjects. In this paper, the regulation effects of the main active substances of medicinal plants (such as polyphenols, saponins, and alkaloids) on p65 nuclear translocation and the upstream pathway of NFκB were discussed, expecting to provide reference for the development of natural active substances for functional food.

      [Key words] NFκB; inhibition of activation; p65 nuclear translocation; medicinal plant active substances

      近年來,隨著國際社會(huì)“回歸大自然”的熱潮以及天然活性物質(zhì)在食品、醫(yī)藥領(lǐng)域的興起,藥用植物活性成分的研究受到了國際科研界的重視。藥用植物活性成分是指從植物體內(nèi)分離提取出來的具有一定醫(yī)療保健功效的有效成分,主要包括多酚類化合物[13]、生物堿[46]、萜類化合物[79]及醌類化合物[1012]等。藥用植物來源的活性物質(zhì)可通過體內(nèi)細(xì)胞信號通路介導(dǎo)轉(zhuǎn)錄因子、生長因子等的表達(dá)而發(fā)揮特定生理作用,具有抗氧化[13]、預(yù)防心腦血管疾病[14]、抗菌[15]、抗癌[1617]等功效,能有效預(yù)防和控制疾病的發(fā)生。這些活性物質(zhì)發(fā)揮生理作用并不都是被直接吸收利用的,而是通過調(diào)控機(jī)體中某些信號途徑來發(fā)揮其生理功能。NFκB作為細(xì)胞內(nèi)最重要的核轉(zhuǎn)錄因子,參與許多細(xì)胞內(nèi)信號通路的傳導(dǎo)以及遺傳信息的轉(zhuǎn)錄與調(diào)控,當(dāng)活性物質(zhì)作用于NFκB通路中的多個(gè)靶點(diǎn)時(shí)便能參與對機(jī)體生理病理過程的調(diào)控。為使藥用植物活性物質(zhì)得到更廣泛的認(rèn)可及利用,本文從NFκB信號通路中關(guān)鍵靶點(diǎn)的特點(diǎn)及其激活途徑出發(fā),結(jié)合國內(nèi)外近年來的研究成果對從藥用植物中提取的活性成分調(diào)控p65核轉(zhuǎn)運(yùn)進(jìn)行了概述,總結(jié)出藥用植物活性物質(zhì)在一定程度上對NFκB信號通路的干預(yù)機(jī)制,為藥用植物的研究及開發(fā)提供一定的理論依據(jù)。

      1 p65核轉(zhuǎn)運(yùn)研究現(xiàn)狀

      正常生理狀態(tài)下,NFκB與抑制蛋白IκB結(jié)合處于失活狀態(tài)存在于細(xì)胞質(zhì)中,不影響細(xì)胞正常的生理活動(dòng),一旦受到外界刺激,NFκB靜息狀態(tài)則被打破而活化,導(dǎo)致下游基因的異常表達(dá),持續(xù)的活性狀態(tài)會(huì)使這種異常加劇,從而誘發(fā)疾??;此外,NFκB活性的降低也被證實(shí)與部分免疫性疾病相關(guān)。因此,維持NFκB活性的平衡對生理功能的穩(wěn)定有重要作用。NFκB發(fā)揮作用主要由其亞基所調(diào)控,而亞基的功能作用取決于亞基結(jié)構(gòu)中是否含有N端Rel同源區(qū)(Rel homology domain,RHD)和C端反式激活結(jié)構(gòu)域(transactivation domain,TD),RHD負(fù)責(zé)與DNA結(jié)合、二聚體化以及核轉(zhuǎn)運(yùn),TD則與轉(zhuǎn)錄活化相關(guān)。p65亞基結(jié)構(gòu)中同時(shí)含有RHD和TD,p50和p52亞基只有RHD而缺乏TD,因此p50和p52同源二聚體無法激活基因轉(zhuǎn)錄,相比之下,異源二聚體p50/p65在細(xì)胞中含量高,有2~3個(gè)獨(dú)立的活性轉(zhuǎn)錄區(qū),此外,p65可直接與NFκB抑制蛋白IκB相偶聯(lián),因此p65的核轉(zhuǎn)運(yùn)對NFκB通路信號轉(zhuǎn)導(dǎo)起到了決定性的作用(圖1)[1820]。NFκB分布的廣泛性使之成為疾病治療中的重要靶點(diǎn),調(diào)控p65核轉(zhuǎn)運(yùn)的研究也受到了國內(nèi)外學(xué)者的廣泛關(guān)注。endprint

      目前國內(nèi)外對于NFκB信號通路中p65核轉(zhuǎn)運(yùn)的研究主要集中于以下幾方面:①其他信號通路與NFκB/p65核轉(zhuǎn)運(yùn)的交聯(lián)作用,最常見的如:MAPK信號通路與NFκB/p65核轉(zhuǎn)運(yùn)之間存在的調(diào)控關(guān)系[2123];②根據(jù)其他活性因子或效應(yīng)器與p65核轉(zhuǎn)運(yùn)之間的協(xié)同或拮抗作用,進(jìn)一步探索這些活性因子或效應(yīng)器作用機(jī)制中尚不明確或仍未知的靶點(diǎn)等,從而更好地了解其分子作用模式,如研究發(fā)現(xiàn)的肽基脯氨酰異構(gòu)酶親環(huán)蛋白A(peptidylprolyl isomerase cyclophilin A,CypA)促進(jìn)NFκB/p65核定位,為抑制腫瘤細(xì)胞增殖提供了新思路——利用CypA的特異性抑制劑調(diào)控p65核轉(zhuǎn)運(yùn)活性[24]。此外,小泛素相關(guān)修飾因子1(small ubiquitinrelated modifier 1, SUMO1)與NFκB/p65核轉(zhuǎn)運(yùn)的拮抗作用也使SUMO1成為抑制肝癌細(xì)胞增殖和遷移的新靶點(diǎn)[25]等;③NFκB/p65核轉(zhuǎn)運(yùn)抑制因子的探索,除了普遍了解的抑制蛋白IκB,還有吳歌等[26]發(fā)現(xiàn)的SIP(steriod receptor coactivatorinteracting protein,類固醇受體協(xié)同激活因子相互作用蛋白)蛋白,Zhu J等[27]發(fā)現(xiàn)的TDP43(transactivation response element DNAbinding protein 43,TAR DNA結(jié)合蛋白43),都是NFκB信號傳導(dǎo)途徑中存在的抑制劑;④檢測分析p65核轉(zhuǎn)運(yùn)的技術(shù)研究,目前已見報(bào)道的有成像流式細(xì)胞術(shù),可同時(shí)評估NFκB/p65磷酸化和核定位[28]。在這些研究中,通過藥用植物活性成分物質(zhì)與NFκB/p65核轉(zhuǎn)運(yùn)的相互作用來例證上述結(jié)果不僅使研究成果更具說服力,也為其實(shí)際利用提供了可靠依據(jù)。

      2 p65核轉(zhuǎn)運(yùn)的調(diào)控劑

      NFκB/p65的入核與出核是維持細(xì)胞動(dòng)態(tài)穩(wěn)定的重要因素,作為體內(nèi)蛋白降解[29]、細(xì)胞增殖[3032]、細(xì)胞凋亡[3334]的關(guān)鍵步驟,目前有關(guān)p65核轉(zhuǎn)運(yùn)的的調(diào)控因子已有一些報(bào)道。根據(jù)其來源不同,可歸為以下4類:微生物源調(diào)控劑、化學(xué)合成物調(diào)控劑、蛋白質(zhì)及多肽類調(diào)控劑、天然來源調(diào)控劑。

      雖然這些調(diào)控劑對p65的核轉(zhuǎn)運(yùn)均有調(diào)節(jié)作用,但不同的調(diào)控劑其作用方式并不相同。Wu S等研究表明大腸桿菌中的Ⅲ型分泌系統(tǒng)(T3SS)效應(yīng)蛋白可通過阻止NFκB途徑中IκB的降解減少由腫瘤壞死因子α(TNFα)和白細(xì)胞介素1β(IL1β)刺激細(xì)胞引發(fā)的NFκB亞基p65核轉(zhuǎn)運(yùn)。在炎癥環(huán)境中,強(qiáng)啡肽117(DYN 117)經(jīng)過生物轉(zhuǎn)化產(chǎn)生的阿片肽物質(zhì)和非阿片肽物質(zhì)片段通過膜受體作用而抑制NFκB/p65核轉(zhuǎn)運(yùn)發(fā)揮其抗炎作用[35]。Kastrati I等研究表明富馬酸二甲酯可通過共價(jià)修飾NFκB轉(zhuǎn)錄因子p65,以阻斷其核轉(zhuǎn)運(yùn),降低其與DNA結(jié)合活性,對于乳腺癌細(xì)胞中NFκB的活性具有明顯抑制作用[36]。

      其中一些調(diào)控劑的作用已得到較全面的研究,但由于大多數(shù)經(jīng)研究證實(shí)并生產(chǎn)使用的調(diào)控劑都屬于非天然來源,其本身具有的毒性或可能誘發(fā)的持久性免疫抑制作用,使得它們的應(yīng)用被限制,找尋研發(fā)長效安全的調(diào)控核轉(zhuǎn)運(yùn)的物質(zhì)成了新的挑戰(zhàn)。

      藥用植物活性物質(zhì)的物理化學(xué)性質(zhì)穩(wěn)定,大多是藥用植物自身免疫體系或防御體系的組成部分,都是可作為膳食的生物活性物質(zhì),對于人類健康的維持以及亞健康的預(yù)防都具有重要作用。藥用植物活性成分物質(zhì)的生理功能現(xiàn)已研究闡明的有抗氧化、降血壓、降膽固醇、抗炎癥、抗癌等[3738],對它們的作用機(jī)制的探索也不斷深入。眾多的體內(nèi)外實(shí)驗(yàn)研究表明,許多活性物質(zhì)都能通過抑制NFκB活性、調(diào)控p65的核轉(zhuǎn)運(yùn)來發(fā)揮其生理活性,有效抑制炎癥、腫瘤等的產(chǎn)生或增殖作用[5,39]。

      3 藥用植物活性物質(zhì)對p65核轉(zhuǎn)運(yùn)的調(diào)控

      根據(jù)Gilmore T D等[40]統(tǒng)計(jì)的700多種NFκB調(diào)控劑,其作用機(jī)制主要為以下3類:①通過調(diào)控引起NFκB活性失衡的胞外刺激因子或與NFκB通路有交聯(lián)作用的其他信號通路中的關(guān)鍵因子發(fā)揮作用;②通過調(diào)控IKK復(fù)合物、IκB蛋白磷酸化調(diào)控NFκB/p65轉(zhuǎn)核運(yùn)的數(shù)量與強(qiáng)度;③調(diào)控NFκB/p65入核后與DNA的特異性結(jié)合活性而調(diào)控NFκB/p65核轉(zhuǎn)運(yùn)的活性。

      3.1 通過胞外或其他信號通路因子的間接調(diào)節(jié) 細(xì)胞內(nèi)NFκB的調(diào)控是一個(gè)精細(xì)而又復(fù)雜的過程,除了TNFα、炎癥因子、LPS以及紫外線等外界刺激因素可直接影響NFκB的活性,其他信號通路中的關(guān)鍵因子對它也有一定的調(diào)節(jié)作用。因此,在對NFκB/p65核轉(zhuǎn)運(yùn)的調(diào)控研究中,部分藥用植物活性物質(zhì)是通過調(diào)節(jié)胞外信號傳導(dǎo)或與NFκB通路相關(guān)聯(lián)的其他信號因子來間接調(diào)控NFκB/p65核轉(zhuǎn)運(yùn)的。

      YouChang Oh等[41]研究發(fā)現(xiàn)白藜蘆醇抵抗炎癥是通過抑制細(xì)胞外部刺激誘導(dǎo)的IL8產(chǎn)生、MAPK/p38和ERK1/2磷酸化,以及NFκB活化和IκB蛋白的降解,從而減少細(xì)胞核內(nèi)p65的表達(dá)而抑制促炎因子的轉(zhuǎn)錄表達(dá);Dong WenPeng等[42]研究發(fā)現(xiàn)白藜蘆醇預(yù)處理亞急性腸炎小鼠試驗(yàn)組中NFκB/p65從細(xì)胞質(zhì)向細(xì)胞核的轉(zhuǎn)運(yùn)被大大抑制了,這一過程需要激活SIRT1(Sirtuin 1,依賴于煙酰胺腺嘌呤二核苷酸NAD+的組蛋白脫乙酰酶)NFκB途徑;另外,Haigis M C等[43]提出SIRT1可以與NFκB的RelA/p65亞基相互作用并通過RelA/p65的去乙?;瘉硪种破滢D(zhuǎn)錄某些氨基酸;從而推測白藜蘆醇保護(hù)亞急性腸炎的作用機(jī)制是通過激活SIRT1NFκB通路抑制p65核轉(zhuǎn)運(yùn)實(shí)現(xiàn)的。Tang F等[44]發(fā)現(xiàn)人參皂苷Rg1(ginsenoside Rg1)增加了炎癥小鼠細(xì)胞質(zhì)中p65的表達(dá),降低了小鼠腹主動(dòng)脈縮窄及中心肌細(xì)胞的核內(nèi)p65的表達(dá),結(jié)果表明Rg1通過抑制TNFα/NFκB信號通路減輕了患病小鼠的心臟肥大;Wong V K等[45]發(fā)現(xiàn)柴胡皂苷Ssd(saikosaponind)在癌細(xì)胞中通過NFκB增強(qiáng)TNFα的抗癌效力也存在相同的作用機(jī)制。Hwang Y P等[46]證明了抗侵入性二氫青蒿素DHA可通過抑制PKCa/Raf/ERK和JNK磷酸化與還原,阻斷NFκB/p65轉(zhuǎn)移到細(xì)胞核中,發(fā)揮DHA抑制纖維肉瘤細(xì)胞的侵襲及轉(zhuǎn)移作用。Qian Z等[47]發(fā)現(xiàn)桑樹果實(shí)二氯甲烷提取物(mulberry fruitdichloromethane extract,MBFDE,成分為亞油酸和亞麻酸乙酯)處理炎癥細(xì)胞后其中的炎癥反應(yīng)被抑制,結(jié)果表明MBFDE對胞內(nèi)NFκB/p65核轉(zhuǎn)運(yùn)調(diào)控是通過抑制MAPK/pERK活化來阻止NFκB信號傳導(dǎo)的。綜上,藥用植物活性成分通過調(diào)節(jié)胞外信號及其他通路中關(guān)鍵信號因子對p65核轉(zhuǎn)運(yùn)的影響是顯而易見的,這種從源頭對NFκB的調(diào)控避免了活性失衡傳導(dǎo)至細(xì)胞內(nèi)部后引起復(fù)雜多變的生理反應(yīng),為尋求藥物靶點(diǎn)等提供了更有針對性的方向。endprint

      3.2 IKK,IκB調(diào)節(jié) IKK激酶是NFκB通路活化的關(guān)鍵激酶,盡管上游信號途徑各不相同,但最終都匯聚在IKK激酶,IKK激酶的激活,誘導(dǎo)IκB蛋白的磷酸化和泛素化,IκB蛋白被降解,使得p65亞基從二聚體中釋放出來迅速從細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞核,完成IKKIκBNFκB通路的活化,從而發(fā)揮一系列生理作用。因此,在NFκB/p65核轉(zhuǎn)運(yùn)的過程中,IKK激酶的活性強(qiáng)弱是決定NFκB/p65能否進(jìn)行核轉(zhuǎn)運(yùn)的關(guān)鍵因素。病理狀態(tài)下,NFκB活性失調(diào),IKK激酶的高表達(dá)導(dǎo)致p65核轉(zhuǎn)運(yùn)失控,進(jìn)一步加速了機(jī)體紊亂。在眾多藥用植物活性成分對NFκB/p65核轉(zhuǎn)運(yùn)的研究中,效應(yīng)物所表現(xiàn)出來的調(diào)控作用很大一部分都與調(diào)節(jié)IKK激酶活性、IκB蛋白磷?;敖到庥嘘P(guān):Wang F等[48]發(fā)現(xiàn)二氫丹參酮能抑制TNFα誘導(dǎo)IκBα的磷酸化與降解,減少p65的磷酸化與核內(nèi)p65的數(shù)量。Lee S G等[49]發(fā)現(xiàn)藍(lán)莓、黑莓及黑醋栗的漿果花色素苷對炎癥細(xì)胞中NFκB/p65向細(xì)胞核的轉(zhuǎn)移都有顯著的減弱作用,直接影響腫瘤壞死因子α的分泌,結(jié)果表明花色素苷可以通過抑制IKK激酶的活性及IκB蛋白的降解調(diào)控NFκB/p65的核轉(zhuǎn)運(yùn)發(fā)揮其抗腫瘤作用。Liu J等[50]研究發(fā)現(xiàn)來自犬瘟根的stauntoside B(甾體類化合物)通過將IKKα/β和IKK的磷酸化表達(dá)降低至正常水平,阻止NFκB的活化以及p65核轉(zhuǎn)運(yùn),stauntoside B對NFκB信號通路的強(qiáng)抑制作用證明了其在與NFκB信號通路相關(guān)的炎癥疾病中具有生物活性,這對將其研制成抗炎藥物提供了新的方向。Jiang Q等[51]對Lunasin(大豆中具有ArgGlyAsp基序的活性肽)抑制乳腺癌細(xì)胞遷移及侵襲的研究、Goto H等[5]對冬葉青小檗皮層中小檗堿抗原發(fā)性淋巴瘤的研究、Buhrmann C等[52]對姜黃根莖中的姜黃素抗炎的研究、Kannaiyan R等[53]對雷公藤根莖中的雷公藤紅素抑制骨髓瘤細(xì)胞增殖的研究中都證明了這些活性物質(zhì)是通過抑制IKK激酶活性、IκB磷?;徒到鈦硪种芅FκB/p65核轉(zhuǎn)運(yùn)的活性,從而發(fā)揮各項(xiàng)生理作用。

      3.3 NFκB/p65 DNA結(jié)合活性調(diào)節(jié) 經(jīng)過激活后的NFκB/p65亞基進(jìn)入細(xì)胞核后與DNA結(jié)合啟動(dòng)或抑制相關(guān)基因的轉(zhuǎn)錄表達(dá),在這一過程中,新合成的IκB會(huì)進(jìn)入細(xì)胞核內(nèi)與NFκB結(jié)合并從細(xì)胞核轉(zhuǎn)出至細(xì)胞質(zhì)中,抑制p65的核轉(zhuǎn)運(yùn)。所以,對NFκB/p65與DNA結(jié)合活性的調(diào)節(jié)對p65核轉(zhuǎn)運(yùn)的調(diào)控也具有重要作用。藥用植物活性成分對其結(jié)合活性的調(diào)節(jié)已有部分報(bào)道,Chow YuhLit等[54]證實(shí)來自山姜果實(shí)中的豆蔻明發(fā)揮抗炎作用是通過減弱NFκB與DNA結(jié)合活性而中斷NFκB/p65核轉(zhuǎn)運(yùn)而實(shí)現(xiàn)的。Lu Yue等[11]研究表明虎杖根莖中的大黃素可抑制NFκB亞基p65的核轉(zhuǎn)運(yùn)及其轉(zhuǎn)核后與同源DNA的結(jié)合活性,且這一過程與IKK激酶磷酸化、IκB的降解等有一定的相關(guān)性。然而,關(guān)于這之間更精準(zhǔn)的作用關(guān)系或是否還存在其他因子使其有聯(lián)系仍是未知。

      迄今,初步探索出的對NFκB/p65核轉(zhuǎn)運(yùn)有調(diào)控作用的藥用植物活性成分眾多,但對其作用機(jī)制的揭示闡述卻鮮有報(bào)道。綜上,這些活性成分對NFκB/p65核轉(zhuǎn)運(yùn)的調(diào)控是作用于“上游信號IKK激酶IκB蛋白NFκB/p65”這一途徑的不同靶點(diǎn)(表1)或不同階段(圖2)而實(shí)現(xiàn)的;不僅如此,不同的作用途徑之間還存在著相互影響的關(guān)系,正因如此,調(diào)控p65核轉(zhuǎn)運(yùn)研究的復(fù)雜性與高效性推動(dòng)著針對相應(yīng)靶點(diǎn)藥用植物活性成分的開發(fā)方興未艾。

      4 總結(jié)與展望

      藥用植物在全世界各地都有廣泛的分布,而中國作為藥用植物種類最豐富的國家之一,對于這一寶貴資源的開發(fā)利用也只是冰山一角,絕大部分藥用植物并未物盡其用。隨著病理及營養(yǎng)學(xué)的不斷深入研究,這些藥用植物中小分子活性物質(zhì)的生物學(xué)活性逐漸被證實(shí),在炎癥、腫瘤等亟待攻克的世界生命科學(xué)難題中顯示出了巨大的潛能。

      營養(yǎng)學(xué)及醫(yī)學(xué)界對干預(yù)NFκB信號通路調(diào)控p65核轉(zhuǎn)運(yùn)來治療炎癥、腫瘤等疾病及相關(guān)功能性食品、藥品的開發(fā)愈發(fā)重視,其中藥用植物活性物質(zhì)所表現(xiàn)出來的效用使其具有更廣闊的應(yīng)用前景。但就現(xiàn)狀而言,絕大部分藥用植物活性成分病理作用機(jī)制并未研究清楚,對其調(diào)控NFκB/p65核轉(zhuǎn)運(yùn)上游信號通路傳導(dǎo)機(jī)制仍不系統(tǒng)透徹。Fraser C C[68]提出G蛋白偶聯(lián)受體(GPCR)亞基Gq介導(dǎo)了NFκB在炎癥和癌癥中的作用,分別通過磷脂肌醇(protein kinase C,PKC)信號途徑(GqPKCIKKNFκB)和腺苷酸環(huán)化酶(adenylate cyclase,AC)作用下的蛋白激酶A(protein kinase A,PKA)途徑(GqACPKANFκB)。之后Patial S等[69]研究表明在G蛋白偶聯(lián)受體激酶5(GRK5)缺失的巨噬細(xì)胞中LPS誘導(dǎo)的NFκB/p65核轉(zhuǎn)運(yùn)被阻斷,NFκB的活性被抑制,有效減少巨噬細(xì)胞中產(chǎn)生炎癥因子;Yuki Ohba等[70]表明G蛋白偶聯(lián)激酶6(GRK6)以激酶活性依賴性方式增強(qiáng)TNFα誘導(dǎo)的NFκB信號傳導(dǎo)。推測G蛋白偶聯(lián)受體(GPCRs)可能是NFκB/p65核轉(zhuǎn)運(yùn)的一個(gè)上游靶信號蛋白,但外源性的活性物質(zhì)是否通過GPCRsNFκB通路發(fā)揮作用以及是否存在其他上游信號蛋白與NFκB活化相關(guān)還有待進(jìn)一步研究探索。雖然藥用植物活性成分對NFκB/p65核轉(zhuǎn)運(yùn)的調(diào)控有密切關(guān)系,但只有在分子水平上對其作用機(jī)制及介導(dǎo)這一過程的關(guān)鍵蛋白進(jìn)行深入的研究,才能為促進(jìn)藥用植物活性成分的綜合利用提供更有力的佐證。

      [參考文獻(xiàn)]

      [1] Babu P V, Si H, Liu D. Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NFkappaBmediated mechanism [J]. Mol Nutr Food Res, 2012, 56(9): 1424.endprint

      [2] EssafiBenkhadir K, Refai A, Riahi I, et al. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPSinduced inflammation in human THP1derived macrophages through NFkappaB, p38MAPK and Akt inhibition [J]. Biochem Biophys Res Commun, 2012, 418(1): 180.

      [3] Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLRNFkappaB signaling pathway [J]. Immunobiology, 2011, 216(3): 367.

      [4] Fu R H, Hran H J, Chu C L, et al. Lipopolysaccharidestimulated activation of murine DC2.4 cells is attenuated by nbutylidenephthalide through suppression of the NFkappaB pathway [J]. Biotechnol Lett, 2011, 33(5): 903.

      [5] Goto H, Kariya R, Shimamoto M, et al. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NFκB pathway [J]. Cancer Sci, 2012, 103(4): 775.

      [6] Ershun Z, Yunhe F, Zhengkai W, et al. Cepharanthine attenuates lipopolysaccharideinduced mice mastitis by suppressing the NFkappaB signaling pathway [J]. Inflammation, 2014, 37(2): 331.

      [7] Wang Y, Huang Z, Wang L, et al. The antimalarial artemisinin inhibits proinflammatory cytokines via the NFkappaB canonical signaling pathway in PMAinduced THP1 monocytes [J]. Int J Mol Med, 2011, 27(2): 233.

      [8] Bi W Y, Fu B D, Shen H Q, et al. Sulfated derivative of 20(S)ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NFkappa B pathways in LPSinduced RAW264.7 macrophages [J]. Inflammation, 2012, 35(5): 1659.

      [9] Mathema V B, Koh Y S, Thakuri B C, et al. Parthenolide, a sesquiterpene lactone, expresses multiple anticancer and antiinflammatory activities [J]. Inflammation, 2012, 35(2): 560.

      [10] Reuter S, Prasad S, Phromnoi K, et al. Embelin suppresses osteoclastogenesis induced by receptor activator of NFkappaB ligand and tumor cells in vitro through inhibition of the NFkappaB cell signaling pathway [J]. Mol Cancer Res: MCR, 2010, 8(10): 1425.

      [11] Lu Y, Suh S J, Li X, et al. Citreorosein, a naturally occurring anthraquinone derivative isolated from Polygoni Cuspidati Radix, attenuates cyclooxygenase2dependent prostaglandin D2 generation by blocking Akt and JNK pathways in mouse bone marrowderived mast cells [J]. Food Chem Toxicol, 2012, 50(3/4): 913.

      [12] Song S H, Min H Y, Han A R, et al. Suppression of inducible nitric oxide synthase by (-)isoeleutherin from the bulbs of Eleutherine americana through the regulation of NFkappaB activity [J]. Int Immunopharmacol, 2009, 9(3): 298.endprint

      [13] Seiquer I, Rueda A, Olalla M, et al. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco2 cell assays. Comparative study with extra virgin olive oil [J]. Food Chem, 2015, 188(2): 496.

      [14] Andujar I, Recio M C, Giner R M, et al. Cocoa polyphenols and their potential benefits for human health [J]. Oxidat Med Cell Longev, 2012, 2012(9): 906252.

      [15] Abdelwahab S I, Zaman F Q, Mariod A A, et al. Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen [J]. J Sci Food Agr, 2010, 90(15): 2682.

      [16] Abliz G, Mijit F, Hua L, et al. Anticarcinogenic effects of the phenolicrich extract from abnormal Savda Munziq in association with its cytotoxicity, apoptosisinducing properties and telomerase activity in human cervical cancer cells (SiHa) [J]. BMC Complement Alternat Med, 2015, 15(1): 23.

      [17] Afzal M, Safer A M, Menon M. Green tea polyphenols and their potential role in health and disease [J]. Inflammopharmacology, 2015, 23(4): 151.

      [18] Chen F E, Huang D B, Chen Y Q, et al. Crystal structure of p50/p65 heterodimer of transcription factor NFκB bound to DNA [J]. Nature, 1998, 391(6665): 410.

      [19] Ghosh S, Gifford A M, Riviere L R, et al. Cloning of the ~50 DNA binding subunit of NκB: homology to rel and dorsal [J]. Cell, 1990, 62(5): 1019.

      [20] Sen R B D. lnducibility of K lmmunoglobulin enhancerbingding protein NFκB by a posttranslational mechanism [J]. Cell, 1986, 47: 921.

      [21] Fazal F, Bijli K M, Minhajuddin M, et al. Essential role of cofilin1 in regulating thrombininduced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM1) expression in endothelial cells [J]. J Biol Chem, 2009, 284(31): 21047.

      [22] Chen J, Zhang J, Cao J, et al. Inflammatory MAPK and NFkappaB signaling pathways differentiated hepatitis potential of two agglomerated titanium dioxide particles [J]. J Hazard Mater, 2016, 304: 370.

      [23] Kim H I, Hong S H, Ku J M, et al. Tonggyutang, a traditional Korean medicine, suppresses proinflammatory cytokine production through inhibition of MAPK and NFkappaB activation in human mast cells and keratinocytes [J]. BMC Complement Alternat Med, 2017, 17(1): 186.

      [24] Sun S, Guo M, Zhang J B, et al. Cyclophilin A (CypA) interacts with NFκB subunit, p65/RelA, and contributes to NFκB activation signaling [J]. PLoS ONE, 2014, 9(8): 96211.endprint

      [25] Liu J, Tao X, Zhang J, et al. Small ubiquitinrelated modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation [J]. Oncotarget, 2016, 7(16): 22206.

      [26] 吳歌,王丹丹,孫露洋.SIP蛋白調(diào)節(jié)p65核轉(zhuǎn)位的作用機(jī)制[J]. 中國生物化學(xué)與分子生物學(xué)報(bào),2011,27(8): 728.

      [27] Zhu J, Cynader M S, Jia W. TDP43 inhibits NFκB activity by blocking p65 nuclear translocation [J]. PLoS ONE, 2015, 10(11): e0142296.

      [28] Maguire O, O′Loughlin K, Minderman H. Simultaneous assessment of NFkappaB/p65 phosphorylation and nuclear localization using imaging flow cytometry [J]. J Immunol Methods, 2015, 423: 3.

      [29] Schakman O, Dehoux M, Bouchuari S, et al. Role of IGFI and the TNFalpha/NFkappaB pathway in the induction of muscle atrogenes by acute inflammation [J]. Am J Physiol Endocrinol Metab, 2012, 303(6): 729.

      [30] Ye X, Yuan L, Zhang L, et al. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF7 promoted by 17betaestradiol [J]. Asian Pac J Cancer Preven, 2014, 15(12): 5001.

      [31] Wang Y, Lu P, Zhang W, et al. GEN27, a newly synthetic isoflavonoid, inhibits the proliferation of colon cancer cells in inflammation microenvironment by suppressing NFκB pathway [J]. Med Inf, 2016, 2016: 1.

      [32] Shimizu H, Bolati D, Adijiang A, et al. NFκB plays an important role in indoxyl sulfateinduced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells [J]. Ajp Cell Physiol, 2011, 301(301): C1201.

      [33] Rui L X, Shu S Y, Jun W J, et al. The dual induction of apoptosis and autophagy by SZC014, a synthetic oleanolic acid derivative, in gastric cancer cells via NFkappaB pathway [J]. Tumour Bio, 2016, 37(4): 5133.

      [34] Chen G, Chen Y, Chen H, et al. The effect of NFkappaB pathway on proliferation and apoptosis of human umbilical vein endothelial cells induced by intermittent high glucose [J]. Mol Cell Bioche, 2011, 347(1/2): 127.

      [35] Rahiman S S F, Morgan M, Gray P, et al. Dynorphin 117 and its Nterminal biotransformation fragments modulate lipopolysaccharidestimulated nuclear factorkappa B nuclear translocation, interleukin1beta and tumor necrosis factoralpha in differentiated THP1 cells [J]. PLoS ONE, 2016, 11(4): e0153005.

      [36] Kastrati I, Siklos M I, CalderonGierszal E L, et al. Dimethyl fumarate inhibits the nuclear factor kappaB pathway in breast cancer cells by covalent modification of p65 protein [J]. J Biol Chem, 2016, 291(7): 3639.endprint

      [37] 趙芹, 吳修, 李效尊, 等. 蓮(Nelumbo nucifera)不同部位活性物質(zhì)及其藥理作用研究進(jìn)展[J]. 分子植物育種,2016,14(7): 1864.

      [38] 趙文竹, 張瑞雪, 于志鵬, 等.食源性植物糖蛋白研究進(jìn)展[J]. 食品工業(yè)科技,2016,37(16): 389.

      [39] Liu S H, Lu T H, Su C C, et al. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NFkappaB signaling pathway [J]. Am J Chin Med, 2014, 42(4): 869.

      [40] Gilmore T D, Herscovitch M. Inhibitors of NFκB signaling: 785 and counting [J]. Oncogene, 2006, 25(51): 6887.

      [41] Oh Y C, Kang O H, Choi J G, et al. Antiinflammatory effect of resveratrol by inhibition of IL8 production in LPSinduced THP1 cells [J]. Am J Chin Med, 2009, 37(6): 1203.

      [42] Dong W, Li F, Pan Z, et al. Resveratrol ameliorates subacute intestinal ischemiareperfusion injury [J]. J Surg Res, 2013, 185(1): 182.

      [43] Haigis M C, Sinclair D A. Mammalian sirtuins: biological insights and disease relevance [J]. Ann Rev Pathol Mechan Dis, 2010, 5(1): 253.

      [44] Tang F, Lu M, Yu L, et al. Inhibition of TNFαmediated NFκB activation by ginsenoside Rg1 contributes the attenuation of cardiac hypertrophy induced by abdominal aorta coarctation [J]. J Cardiovas Pharmacol, 2016, 68(4): 257.

      [45] Wong V K W, Zhang M M, Zhou H, et al. Saikosaponind enhances the anticancer potency of TNFα via overcoming its undesirable response of activating NFKappa B signalling in cancer cells [J]. Evid Based Complement Alternat Med, 2013, 2013(4): 745295.

      [46] Yong P H, Yun H J, Kim H G, et al. Suppression of PMAinduced tumor cell invasion by dihydroartemisinin via inhibition of PKCα/Raf/MAPKs and NFκB/AP1dependent mechanisms [J]. Bioche Pharmacol, 2010, 79(12): 1714.

      [47] Qian Z, Wu Z, Huang L, et al. Mulberry fruit prevents LPSinduced NFκB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice [J]. Sci Rep, 2015, 5: 17348.

      [48] Wang F, Ma J, Wang K S, et al. Blockade of TNFalphainduced NFkappaB signaling pathway and anticancer therapeutic response of dihydrotanshinone I [J]. Int Immunopharmacol, 2015, 28(1): 764.

      [49] Lee S G, Kim B, Yang Y, et al. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NFkappaB independent of NRF2mediated mechanism [J]. J Nutr Biochem, 2014, 25(4): 404.

      [50] Liu J, Tang J, Zuo Y, et al. Stauntoside B inhibits macrophage activation by inhibiting NFκB and ERK MAPK signalling [J]. Pharmacol Res, 2016, 111: 303.endprint

      [51] Jiang Q, Pan Y, Cheng Y, et al. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase2/9 via the FAK/Akt/ERK and NFκB signaling pathways [J]. Oncol Rep, 2016, 36(1): 253.

      [52] Buhrmann C, Mobasheri A, Busch F, et al. Curcumin modulates nuclear factor kappaB (NFkappaB)mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3kinase/Akt pathway [J]. J Biol Chem, 2011, 286(32): 28556.

      [53] Kannaiyan R, Hay H S, Rajendran P, et al. Celastrol inhibits proliferation and induces chemosensitization through downregulation of NFkappaB and STAT3 regulated gene products in multiple myeloma cells [J]. Bri J Pharmacol, 2011, 164(5): 1506.

      [54] Chow Y L, Lee K H, Vidyadaran S, et al. Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFNgamma/LPSstimulated BV2 microglia via NFkappaB signalling pathway [J]. Int Immunopharmacol, 2012, 12(4): 657.

      [55] 宋來新,張長城,王婷,等. 淫羊藿總黃酮通過抑制 MAPK /NFκB 信號通路減輕自然衰老大鼠腦組織炎癥反應(yīng)[J]. 中國藥理學(xué)通報(bào), 2017, 33(1): 84.

      [56] Yang J, Li Q, Zhou X D, et al. Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NFkappaB activity via EGFRPI3KAkt/ERK MAPKinase signaling in human airway epithelial cells [J]. Mol Cell Biochem, 2011, 351(1/2): 29.

      [57] Cui L, Feng L, Zhang Z H, et al. The antiinflammation effect of baicalin on experimental colitis through inhibiting TLR4/NFkappaB pathway activation [J]. Int Immunopharmacol, 2014, 23(1): 294.

      [58] Yeh J L, Hsu J H, Hong Y S, et al. Eugenolol and glycerylisoeugenol suppress LPSinduced iNOS expression by downregulating NFkappaB AND AP1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages [J]. Pharmacology, 2011, 24(2): 345.

      [59] Chai X, Guan Z, Yu S, et al. Design, synthesis and molecular docking studies of sinomenine derivatives [J]. Bioorg Med Chem Lett, 2012, 22(18): 5849.

      [60] Sung B, Ahn K S, Aggarwal B B. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NFkappaB signaling pathway [J]. Cancer Res, 2010, 70(8): 3259.

      [61] Liu X H, Pan L L, Yang H B, et al. Leonurine attenuates lipopolysaccharideinduced inflammatory responses in human endothelial cells: involvement of reactive oxygen species and NFkappaB pathways [J]. Eur J Pharm, 2012, 680(1/3): 108.

      [62] 周代星,占成業(yè),何雪心. 甲基蓮心堿對 Ang II誘導(dǎo)血管平滑肌細(xì)胞增殖及ERK/NFκB通路的影響 [J]. 中國新藥雜志,2009,18(15): 1440.endprint

      [63] Zhu T, Wang D X, Zhang W, et al. Andrographolide protects against LPSinduced acute lung injury by inactivation of NFkappaB [J]. PLoS ONE, 2013, 8(2): e56407.

      [64] 王海燕,覃慧林,張永峰,等. 木瓜三萜對佐劑性關(guān)節(jié)炎大鼠關(guān)節(jié)滑膜組織中Akt,NFκB 和促炎因子的表達(dá)影響[J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2017, 23(5): 141.

      [65] Bento A F, Marcon R, Dutra R C, et al. βCaryophyllene inhibits dextran sulfate sodiuminduced colitis in mice through CB2 receptor activation and PPARgamma pathway [J]. Am J Pathol, 2011, 178(3): 1153.

      [66] Hafeez B B, Jamal M S, Fischer J W, et al. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NFkappaB signaling pathways [J]. Int J Cancer, 2012, 131(9): 2175.

      [67] Karki R, Park C H, Kim D W. Extract of buckwheat sprouts scavenges oxidation and inhibits proinflammatory mediators in lipopolysaccharidestimulated macrophages (RAW264.7) [J]. J Integr Med, 2013, 11(4): 246.

      [68] Fraser C C. G proteincoupled receptor connectivity to NFkappaB in inflammation and cancer [J]. Int Rev Immunol, 2008, 27(5): 320.

      [69] Patial S, Shahi S, Saini Y, et al. Gprotein coupled receptor kinase 5 mediates lipopolysaccharideinduced NFκB activation in primary macrophages and modulates inflammation in vivo in mice [J]. J Cell Physiol, 2011, 226(5): 1323.

      [70] Ohba Y, Nakaya M, Watari K, et al. GRK6 phosphorylates IkappaBalpha at Ser(32)/Ser(36) and enhances TNFalphainduced inflammation [J]. Biochem Biophys Res Commun, 2015, 461(2): 307.

      [責(zé)任編輯 張寧寧]endprint

      乾安县| 东城区| 弥渡县| 曲沃县| 巩留县| 彭阳县| 井冈山市| 大石桥市| 万州区| 怀柔区| 郓城县| 绥化市| 阳山县| 宁津县| 合阳县| 繁峙县| 桓台县| 大渡口区| 叶城县| 关岭| 化隆| 桃园县| 临漳县| 襄垣县| 武义县| 武城县| 庆城县| 高陵县| 开远市| 仁怀市| 蓬溪县| 神农架林区| 普安县| 宜宾县| 防城港市| 鹿邑县| 五河县| 兰坪| 宁明县| 漳平市| 油尖旺区|