袁秋華,張自強,徐安平,巫劍波,秦草坪,陳澤匯,林松鑫,張培新
深圳大學(xué)化學(xué)與環(huán)境工程學(xué)院,廣東深圳 518060
【化學(xué)與化工/ChemistryandChemicalEngineering】
羥基磷灰石-殼聚糖復(fù)合膜旋涂法制備及表征
袁秋華,張自強,徐安平,巫劍波,秦草坪,陳澤匯,林松鑫,張培新
深圳大學(xué)化學(xué)與環(huán)境工程學(xué)院,廣東深圳 518060
為制備高效環(huán)保仿生材料,以Na2HPO4和Ca(NO3)2·4H2O為原料,采用化學(xué)沉淀法合成羥基磷灰石粉體,將粉體超聲分散在殼聚糖醋酸溶液中,通過溶液共混和磁力攪拌的方法制備羥基磷灰石-殼聚糖(hydroxyapatite-chitosan, HA-CS)懸浮液.采用旋涂法在不銹鋼304基材表面涂覆HA-CS懸浮液,分別在25 ℃和37 ℃條件下干燥12 h成膜.將兩種HA膜樣分別通過X射線衍射、傅立葉變換紅外光譜、掃描電子顯微鏡、X射線能量色散儀和電子拉力機進行測試.結(jié)果表明,HA-CS復(fù)合材料的拉伸強度達(69.04±1.21)MPa;復(fù)合膜結(jié)晶度好,黏結(jié)致密,無分解,無雜質(zhì);旋涂法能更好的使HA均勻分散在CS中,減少HA微粒的團聚和游離;與25 ℃相比,37 ℃條件下干燥HA膜有助于HA與CS更多更好地結(jié)合,使制得的HA-CS復(fù)合膜具有優(yōu)良性能.為HA-CS復(fù)合膜附著金屬植入物在人體環(huán)境內(nèi)成功生長提供理論參考.
生物材料學(xué);羥基磷灰石;殼聚糖;復(fù)合膜;旋涂法;力學(xué)性能
通常骨缺損(bone defects)是由創(chuàng)傷、腫瘤、感染或先天性肌肉骨骼疾病引起的嚴(yán)重并發(fā)癥[1],在臨床上很常見,傳統(tǒng)的治療方法有自體骨移植、異體骨移植和使用金屬替代材料[2].然而,這3種方法都有各自不足,達不到臨床應(yīng)用所需效果.近年來,組織工程技術(shù)的發(fā)展改善了骨缺損的傳統(tǒng)治療模式,開發(fā)出多種具有修復(fù)和改善組織或器官的仿生材料.其中,羥基磷灰石(hydroxyapatite, HA;Ca10(PO4)6(OH)2)因與生物硬骨組織有相似的組成和結(jié)構(gòu),且具有優(yōu)良的生物相容性、生物活性以及可與骨組織發(fā)生很強的化學(xué)性結(jié)合而無排斥反應(yīng)等特點,作為新型骨替代材料被廣泛應(yīng)用和研發(fā)[3].然而純HA力學(xué)性能不足,自身強度低,韌性和力學(xué)性能的缺陷使其單獨作為骨修復(fù)支架材料存在瑕疵.天然高分子聚合物殼聚糖(chitosan, CS)具有良好的力學(xué)性能、生物可降解性、生物相容性和活性,其自身無毒抑菌,可以促進傷口愈合[4].將HA與CS復(fù)合,有望彌補各自不足,優(yōu)化材料的力學(xué)性能和黏結(jié)能力,從而滿足植入人體的骨替代材料要求.在304不銹鋼板表面涂覆HA-CS復(fù)合材料可作為很好的承重支架材料植入人體,附著于鋼板一側(cè)的復(fù)合膜可促進細(xì)胞黏附、增殖和新骨再生.因此,要保證HA-CS復(fù)合膜與宿主骨組織完美鍵合,提高金屬植入物的骨結(jié)合性能,必須制備出理化性能優(yōu)良的復(fù)合膜.傳統(tǒng)制備薄膜方法有電泳沉積法[5-6]、溶膠-凝膠法[7]、電化學(xué)沉積法[8]、靜電紡絲法[9]、流延溶劑揮發(fā)法[10-11]和離子膠法[12]等,新型涂膜技術(shù)旋涂法因具有設(shè)備簡單、操作易控制、工藝條件溫和等優(yōu)點逐漸成為制備涂膜材料的首選法.
本實驗采用化學(xué)沉淀法合成羥基磷灰石粉體,在304不銹鋼基板表面用旋涂法制備HA-CS復(fù)合膜,并分析在室溫(25℃)和接近人體溫(37℃)兩種干燥條件下對HA-CS復(fù)合膜組成和形貌的影響.
1.1試 劑
四水硝酸鈣(Ca(NO3)2·4H2O)、磷酸氫二鈉(Na2HPO4)和殼聚糖(脫乙酰度≥95%)均購自上海阿拉丁試劑有限公司;氫氧化鈉購自天津百世化工有限公司;無水乙醇和丙酮購自廣州市東紅化工廠.以上試劑均為分析純.
1.2基材預(yù)處理
基材選用10mm×10mm×1mm的304不銹鋼小鋼板,依次用800#、2000#和5000#的SiC水砂紙打磨鋼板表面.將打磨平整光滑的鋼板依次用丙酮、無水乙醇和去離子水超聲清洗各15min.清洗后放入真空干燥箱中50℃恒溫干燥2.5h.
1.3HA-CS復(fù)合膜的制備
采用化學(xué)沉淀法合成羥基磷灰石粉體[13]. 以Ca(NO3)2·4H2O和Na2HPO4為原料,按n(Ca)∶n(P)=1.67∶1.00分別配成0.5mol/L溶液,用恒流滴定泵以2mL/min滴定速度將Na2HPO4溶液滴加到Ca(NO3)2·4H2O溶液中,用1mol/LNaOH溶液控制pH值為10~11,40℃下磁力攪拌,攪拌速度為300r/min.待反應(yīng)完全,恒溫攪拌2h,靜置沉化24h.將沉淀物真空抽濾、洗滌至pH值呈中性,得到的濾餅置于90℃烘箱中干燥12h.烘干的樣品經(jīng)研磨后置于700℃馬弗爐中煅燒3h,得到羥基磷灰石粉體.合成HA的化學(xué)方程式為
Ca10(PO4)6(OH)2+14NaNO3+
6HNO3+40H2O
(1)
溶液混合法制備HA-CS懸浮液.取1.0g殼聚糖(脫乙酰度≥95%)溶于30mL質(zhì)量分?jǐn)?shù)為2%的醋酸溶液中,50℃條件下磁力攪拌2h.待CS完全溶解后,加入1.5g經(jīng)200目篩子過篩后的HA粉末,超聲分散0.5h,恒溫攪拌6h,得到HA-CS懸浮液.
采用旋涂法制備HA-CS復(fù)合膜.將處理過的不銹鋼板光滑面朝上吸附于SC-1B勻膠機旋轉(zhuǎn)臺上,用膠頭滴管取配好的HA-CS懸浮液在鋼板表面滴加1~2滴,以800r/min和2500r/min的啟動速度和恒定速度分別轉(zhuǎn)動10s和30s.如此重復(fù)涂膜3~5次,然后取出鋼板,分別在25℃和37℃條件下干燥12h,最終得到成型的HA-CS復(fù)合膜.
1.4測試和表征
采用德國Bruker公司生產(chǎn)的AXS-D-8Advance型X射線衍射儀(X-raydiffraction,XRD)對試樣進行物相鑒定和結(jié)構(gòu)分析,測定條件為,銅靶Cu-Kα輻射(λ=1.5406×10-10m), 光闌狹縫為1mm,衍射角2θ為10°~60°,管電流為40mA,管電壓為40kV, 掃描速度4°/min; 采用日本島津IRAffinity-1傅立葉變換紅外光譜分析儀(Fouriertransforminfraredspectroscopy,FTIR),對樣品進行基團檢測,用KBr作背景樣,測試范圍為400~4000cm-1;采用日本日立S-3400N(II)型掃描電子顯微鏡觀測復(fù)合膜表面形貌,并結(jié)合EDX-能譜儀對HA-CS復(fù)合膜進行元素分析;采用深圳市新三思材料檢測有限公司CMT4304(0.5級)型電子拉力機對HA-CS復(fù)合材料進行力學(xué)性能測試.
2.1樣品的XRD分析
圖1(a)是用沉淀法制備HA粉體的XRD譜圖,與HA的PDF標(biāo)準(zhǔn)譜線(ICDD卡片編號09-0432)基本吻合.圖中HA的晶面如(002)、(102)、(210)、(211)、(112)、(300)、(202)、(310)、(222)、(213)和(004)等均已出現(xiàn)特征衍射峰.其中,(002)、(211)、(112)和(300)4個晶面衍射最強,是其主要衍射峰,未出現(xiàn)其他雜質(zhì)相衍射峰,證明HA結(jié)晶度高且晶型較完整[14].圖1(b)是純CS的XRD圖,在2θ≈20°處有一寬泛的隆起峰,是CS的特征衍射峰.在25℃和37℃條件下,干燥得到HA-CS復(fù)合膜的XRD譜線分別如圖1(c)和(d)所示,兩條譜線HA晶面的衍射峰強度都有所減弱,在2θ≈20°處出現(xiàn)了CS的特征衍射峰,表明HA與CS復(fù)合會改變各自的結(jié)晶度.復(fù)合膜的XRD譜圖中亦無雜質(zhì)相衍射峰出現(xiàn),說明在試驗給定的條件下HA-CS復(fù)合膜并未降解,HA仍保持較高的純度.
圖1 HA(a)、CS(b)和不同干燥條件下HA-CS復(fù)合膜(c、d)的XRD圖Fig.1 XRD patterns of HA(a), CS(b) and HA-CS composite coatings at drying temperatures of25 ℃(c) and 37 ℃(d)
2.2樣品的FTIR分析
圖2 CS(a)、HA(b)和不同干燥條件下HA-CS復(fù)合膜的FTIR圖Fig.2 FTIR spectra of CS(a), HA powders(b) and HA-CS composite coatings at different drying temperatures
圖3 不同干燥條件下HA-CS復(fù)合膜的SEM圖Fig.3 SEM images of HA-CS composite coatings under different drying conditions
2.3樣品的SEM-EDX分析
圖3(a)和(c)為25℃干燥條件下制得HA-CS復(fù)合膜的不同放大倍率SEM照片;圖3(b)和(d)則是37℃干燥條件下制得HA-CS復(fù)合膜的SEM圖.圖3(a)和(b)是放大500倍復(fù)合膜的表面形貌圖,可以看出CS與HA黏結(jié)較好,結(jié)合致密,復(fù)合膜表面無裂紋,無機相均勻地分散在有機相中,且無明顯界限.此外,圖3(b)中復(fù)合膜表面較圖3(a)更為平整、均勻,游離的HA顆粒相對較少.圖3(c)和(d)是放大5000倍的復(fù)合膜表面微結(jié)構(gòu)圖,可清晰看到CS包覆HA顆粒形成的致密結(jié)構(gòu),HA顆粒團聚較少,且復(fù)合膜表面形成許多微孔結(jié)構(gòu),有利于引導(dǎo)成骨細(xì)胞黏附和生長,這也是骨替代材料的一個必要特性.與圖3(c)相比,圖3(d)中HA晶粒尺寸更小,在CS中分散更加均勻,并且復(fù)合膜表層的CS相對減少,更多融入內(nèi)層,表明接近人體溫度(37℃)的干燥條件更適宜理想的HA-CS復(fù)合膜成型.
通過EDX能譜儀測得37℃干燥條件下制得HA-CS復(fù)合膜的元素組成如圖4.由圖4可見,復(fù)合膜主要由C、O、P和Ca組成,其原子百分比分別為9.21%、58.11%、12.43%和20.25%,證實了FTIR中檢測到官能團的存在.此外,HA-CS復(fù)合膜中n(Ca)∶n(P)=20.25∶12.43=1.63, 該值接近羥基磷灰石Ca和P的理論摩爾比1.67(n(Ca)∶n(P)=10∶6), 證明本方案合成的HA基本滿足人體硬骨組織Ca和P摩爾比要求.
圖4 37 ℃干燥條件下HA-CS復(fù)合膜的EDX圖Fig.4 EDX image of HA-CS composite coatings drying at 37 ℃
2.4樣品的力學(xué)性能測試
將制備的HA-CS懸浮液澆注在玻璃模具中,在37℃干燥條件下得到HA-CS復(fù)合材料,裁剪成10mm×40mm樣品,用電子拉力機測試其力學(xué)性能,測試溫度為25℃,測試距離為20mm,拉伸速度為20mm/min.樣品連續(xù)測試10次,其力學(xué)性能如下:拉伸強度為(69.04±1.21)MPa,斷裂伸長率為(4.05±0.26)%,彈性模量為(3447±17.52)MPa.HA-CS復(fù)合材料的平均拉伸強度達到(69.04±1.21)MPa,優(yōu)于文獻[17-18]報道的同等比例HA-CS復(fù)合材料的力學(xué)性能,且能滿足骨替代材料所需的機械強度,可配合金屬植入物研究作為支架材料[19-20]植入人體.
3.D 提示:根據(jù)2Al+6HCl==2AlCl3+3H2↑,2Al+2NaOH+2H2O==2NaAlO2+3H2↑可知,Al無論是與鹽酸反應(yīng)還是與NaOH溶液反應(yīng),相同質(zhì)量的鋁屑完全反應(yīng)生成的H2的物質(zhì)的量相同。若產(chǎn)生H2的體積比為1∶3,說明兩份鋁的質(zhì)量比為1∶3。故選D項。
HA與CS之間的結(jié)合效果直接影響其復(fù)合材料的性能,本研究采用旋涂法在金屬基材(304不銹鋼板)表面成功涂覆HA-CS復(fù)合膜,改善了傳統(tǒng)涂膜方法HA在CS中分散不均的缺憾,提高了復(fù)合膜的理化性能.通過XRD、FTIR、SEM、EDX和電子拉力機對樣品進行分析測試,結(jié)果表明,HA-CS復(fù)合膜黏結(jié)較好,膜表面較平整、無裂痕,且形成利于引導(dǎo)組織細(xì)胞生長的微孔結(jié)構(gòu)[21],復(fù)合材料力學(xué)性能也能滿足骨修復(fù)材料所需的機械強度.此外,在接近人體溫(37℃)干燥條件下復(fù)合膜性能更佳,也為HA-CS復(fù)合膜附著金屬植入物在人體環(huán)境內(nèi)能成功生長提供了理論依據(jù).
/
:
[1] Li Ye, Chen Shukui, Li Long, et al. Bone defect animal models for testing efficacy of bone substitute biomaterials[J]. Journal of Orthopaedic Translation,2015,3(3):95-104.
[2] 徐小燕,劉濤濤,鄭 軍,等.殼聚糖/羥基磷灰石骨修復(fù)材料的研究進展[J].材料導(dǎo)報,2012,26(8):102-106. Xu Xiaoyan, Liu Taotao, Zheng Jun, et al. Progress of chitosan/hydroxyapatite bone repairing materials[J]. Materials Review,2012,26(8):102-106.(in Chinese)
[3] 袁秋華,張自強,巫劍波,等.羥基磷灰石-殼聚糖復(fù)合膜的制備及研究進展[J].廣東化工,2016,43(14):75-78. Yuan Qiuhua, Zhang Ziqiang, Wu Jianbo, et al. Preparation and progress of hydroxyapatite-chitosan composite coatings[J]. Guangdong Chemical Industry,2016,43(14):75-78.(in Chinese)
[4] Dumont V C, Mansur A A P, Carvalho S M, et al. Chitosan and carboxymethyl-chitosan capping ligands: effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes[J]. Materials Science and Engineering C,2016,59:265-277.
[5] Zhong Zhenyu, Qin Jinli, Ma Jun. Electrophoretic deposition of biomimetic zinc substituted hydroxyapatite coatings with chitosan and carbon nanotubes on titanium[J]. Ceramics International,2015,41(7):8878-8884.
[6] Deen I, Pang X, Zhitomirsky I. Electrophoretic deposition of composite chitosan-halloysite nanotube-hydroxyapatite films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,410(18):38-44.
[7] Stefan S, Gerald F, Ales D, et al. Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology[J]. Carbohydrate Polymers,2013,93(1):285-290.
[9] Majid A, Mohammad I, Jabir I, et al. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution[J]. Journal of the Taiwan Institute Chemical Engineers,2014,45(2):518-526.
[10] 李瑞欣,張西正,郝慶新,等.微米級煅燒羥基磷灰石/殼聚糖復(fù)合膜的制備及性能[J].復(fù)合材料學(xué)報,2013,30(1):103-111. Li Ruixin, Zhang Xizheng, Hao Qingxin, et al. Preparation and properties of micro-hydroxyapatite/chitosan composite membrane[J]. Acta Materiae Compositae Sinica,2013,30(1):103-111.(in Chinese)
[11] Cheng Xianmiao, Li Yubao, Zuo Yi, et al. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration[J]. Materials Science and Engineering C,2009,29(1):29-35.
[12] Zhang Jian, Jia Jinpeng, Kim J P, et al. Ionic colloidal molding as a biomimetic scaffolding strategy for uniform bone tissue regeneration[J]. Advanced Materials,2017:1605546. doi:10.1002/adma.201605546
[13] 巫劍波,秦草坪,袁秋華,等.濕化學(xué)法合成羥基磷灰石晶體及其表征[J].深圳大學(xué)學(xué)報理工版,2015,32(5):465-472. Wu Jianbo, Qin Caoping, Yuan Qiuhua, et al. Synthesis and characterization of hydroxyapatite crystals using wet chemistry methods[J]. Journal of Shenzhen University Science and Engineering,2015,32(5):465-472.(in Chinese)
[14] 袁秋華,巫劍波,秦草坪,等.羥基磷灰石-聚乳酸復(fù)合膜的制備與表征[J].深圳大學(xué)學(xué)報理工版,2016,33(1):10-17. Yuan Qiuhua, Wu Jianbo, Qin Caoping, et al. Preparation and characterization of hydroxyapatite-polylactic acid HA-PLA composite film[J]. Journal of Shenzhen University Science and Engineering,2016,33(1):10-17.(in Chinese)
[15] Rogina A, Ivankovic'M, Ivankovic'H. Preparation and characterization of nano-hydroxyapatite within chitosan matrix[J]. Materials Science and Engineering C,2013,33(8):4539-4544.
[16] 李 健,韓志軍,魏 延,等.納米羥基磷灰石/殼聚糖復(fù)合微球的原位仿生制備及表征[J].無機材料學(xué)報,2014,29(12):1327-1332. Li Jian, Han Zhijun, Wei Yan, et al. In situ biomimetic fabrication and characterization of nano-hydroxyapatite/chitosan composite microspheres[J]. Journal of Inorganic Materials,2014,29(12):1327-1332.(in Chinese)
[17] 程先苗,李玉寶,張 利,等.納米羥基磷灰石/殼聚糖復(fù)合膜的制備和表征[J].功能材料,2008,39(6):983-986. Cheng Xianmiao, Li Yubao, Zhang Li, et al. Preparation and characterization of nano-hydroxyapatie/chitosan composite membrane for guided bone regeneration[J]. Journal of Functional Materials,2008,39(6):983-986.(in Chinese)
[18] Li Xingyi, Nan Kaihui, Shi Shuai, et al. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering[J]. International Journal of Biological Macromolecules,2012,50(1):43-49.
[19] Wang Xiaojian, Xu Shanqing, Zhou Shiwei, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review[J]. Biomaterials,2016,83:127-141.
[20] Carradò A, Perrin-Schmitt F, Le Q V, et al. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration[J]. Dental Materials,2017,33(3):321-332.
[21] Salerno A, Fernández- Gutiérrez M, Román del Barrio J S, et al. Macroporous and nanometre scale fibrous PLA and PLA- HA composite scaffolds fabricated by a bio safe strategy[J]. The Royal Society of Chemistry,2014,4(16):61491-61502.
【中文責(zé)編:晨兮;英文責(zé)編:新谷】
Preparationandcharacterizationofhydroxyapatite-chitosancompositecoatingsusingaspin-coatingtechnique
YuanQiuhua,ZhangZiqiang,XuAnping,WuJianbo,QinCaoping,ChenZehui,LinSongxin,andZhangPeixin
CollegeofChemistryandEnvironmentalEngineering,ShenzhenUniversity,Shenzhen518060,GuangdongProvince,P.R.China
Based on a chemical precipitation method, the hydroxyapatite powders were prepared using Na2HPO4and Ca(NO3)2·4H2O as raw materials. The powders were dispersed into chitosan-acetic acid solution with the aid of continuous ultrasonic agitation to prepare hydroxyapatite-chitosan (HA-CS) suspension via solution blending and magnetic stirring. Hydroxyapatite-chitosan composite coatings were fabricated on304-type stainless steel substrates by a spin-coating technique, then dried at25℃ and37℃ for12h, respectively. The two synthesized samples were characterized and tested by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and electronic tensile machine. The results indicate the tensile strength of HA-CS composites reaches up to (69.04±1.21) MPa, and the coatings display good crystallinity, good adhesion, high purity and little decomposition. In addition, by means of spin-coating technique, HA could be evenly dispersed in CS and there are no aggregated or free HA particles in the coatings. The HA-CS composite coatings show better performance when drying at37℃ than at25℃, which is more conducive to combine interaction between HA and CS.
biomaterials science; hydroxyapatite; chitosan; composite coatings; spin-coating technique; mechanical property
2016-11-01;Revised:2017-02-27;Accepted:2017-06-08
Associate professor Yuan Qiuhua. E-mail: yuanqiuh@szu.edu.cn
R 318.08
:Adoi:10.3724/SP.J.1249.2017.05451
Foundation:National Nature Science Foundation of China (21471102); Shenzhen Science and Technology Basic Research Foundation (JCYJ20150525092941007)
:Yuan Qiuhua, Zhang Ziqiang, Xu Anping, et al. Preparation and characterization of hydroxyapatite-chitosan composite coatings using a spin-coating technique[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(5): 451-456.(in Chinese)
國家自然科學(xué)基金資助項目(21471102);深圳市科技基礎(chǔ)研究計劃資助項目(JCYJ20150525092941007)
袁秋華(1967—),男,深圳大學(xué)副教授、博士.研究方向:無機仿生材料.E-mail:yuanqiuh@szu.edu.cn
引文:袁秋華,張自強,徐安平,等.羥基磷灰石-殼聚糖復(fù)合膜旋涂法制備及表征[J]. 深圳大學(xué)學(xué)報理工版,2017,34(5):451-456.