• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Batch image alignment via subspace recovery based on alternative sparsity pursuit

    2017-09-15 08:59:51XianhuiLinZhuLiangYuZhenghuiGuJunZhangandZhaoquanCai
    Computational Visual Media 2017年3期

    Xianhui Lin,Zhu Liang Yu,Zhenghui Gu,Jun Zhang,and Zhaoquan Cai()

    c○The Author(s)2017.This article is published with open access at Springerlink.com

    Batch image alignment via subspace recovery based on alternative sparsity pursuit

    Xianhui Lin1,Zhu Liang Yu1,Zhenghui Gu1,Jun Zhang2,and Zhaoquan Cai3()

    c○The Author(s)2017.This article is published with open access at Springerlink.com

    The problem ofrobust alignment ofbatches of images can be formulated as a low-rank matrix optimization problem,relying on the similarity of well-aligned images. Going further,observing that the images to be aligned are sampled from a union of low-rank subspaces,we propose a new method based on subspace recovery techniques to provide more robust and accurate alignment.The proposed method seeks a set of domain transformations which are applied to the unaligned images so that the resulting images are made as similar as possible.The resulting optimization problem can be linearized as a series of convex optimization problems which can be solved by alternative sparsity pursuit techniques.Compared to existing methods like robust alignment by sparse and low-rank models,the proposed method can more eff ectively solve the batch image alignment problem, and extract more similar structures from the misaligned images.

    image alignment;subspace recovery; sparse representation; convex optimization;image similarity

    1 Introduction

    With the rapid development of the Internet technologies,a huge amount of visual data canbe found online.These increasing data have the potential for information mining,but also raises some tough issues for preprocessing.In many image data sets,misalignment of images is a common problem in many computer vision and machine learning applications. To deal with this batch image alignment problem,one possible solution is to seek a group of transformations to adjust the unaligned images according to similarity or other measures[1,2].A problem is that such methods are not robust enough to handle corruption or illumination variation which often occur in realworld applications.

    Clearly, if one finds a group of optimal transformations and applies them to the unaligned images,the resulting aligned images will be very similar.If these images are vectorized and arranged as columns of a matrix,the constructed matrix will ideally be of low column rank.Since partial corruption or occlusion will affect the low-rank property,a method called robust alignment by sparse and low-rank decomposition(RASL)[3]was proposed to handle these issues,based on low-rank models. These have recently shown strength in many fields such as signal recovery and dimension reduction[4]. The core of a low-rank model is that high-dimensional data,such as images and video sequences,are drawn from low-dimensional structures which lie in low-rank subspaces[5].This idea is applied to batch image alignment by treating the images as samples from the low-rank subspaces.

    Since linear subspaces are embedded in a highdimensional space[6],it is possible to seek the underlying structures for a batch of images by subspace recovery. However,in practice,highdimensionaldata are seldom drawn from a single lowrank subspace–it is more reasonable to expect thathigh-dimensional data are drawn from several lowrank subspaces rather than just from one.Based on this idea,we propose a method that considers the unaligned images to be lying in a union of lowrank subspaces. Specifically,each aligned image is sampled from one of the union of subspaces, and can be represented as a linear combination of other images in the same subspace[7]. Further consideration ofthe sparse modelin linear subspaces and high-dimensionaldata analysis[6,8],leads us to modelthe subspace recovery problem using a sparse representation.

    In summary,in this paper,we propose a new method for batch image alignment based on seeking a set of optimal transformations via a subspace recovery technique.The proposed method is formulated as an optimization problem which can be approximately solved by linearization and alternative sparsity pursuit. After obtaining the optimal solution,we can recover the underlying structures of a batch of images to deal with misalignment,and remove partial corruption and occlusion.

    2 Problem formulation

    In this section,we formulate the problem of batch image alignment by modeling unaligned images and sparse errors. The aim is to search for a set of transformations and to recover the low-dimensional structures embedded in high-dimensionalspace.

    2.1 Unaligned image model

    Given a set of unaligned images I1,...,Inof the same object,we assume that they can be transformed to similar images which are well-aligned by a set of domain transformationsτ1,...,τn.Stacking the transformed images as vectors,we can construct the matrix:

    where I0i=Ii?τifor i=1,...,n is a well-aligned version of image i and the operator?denotes the transformation applied to produce it.Pixel(x,y)of the transformed image I0iis given by

    Since the aligned images are similar, they can be treated as samples from a union of low-dimensional subspaces.Assuming a suffi cient sampling density,each image can be represented as a linear combination of the other images from the same subspace[9].As shown in Fig.1,compared with the dimension of the entire union of subspaces (i.e.,severalsubspaces of a high-dimensionalspace), the dimension of a single subspace is so small that the representation ofeach image is sparse[10].Thus, we could model that:

    where W ∈Rn×nis a sparse coeffi cient matrix and A∈Rm×nis a self-represented matrix.We may then formulate the batch image alignment problem as

    where‖·‖0represents the?0-norm which counts the number of nonzero entries of the matrix W.

    2.2 Sparse error model

    In general,partial corruption and occlusion may exist which will disrupt the low-dimensional subspaces. Since such errors usually occur in a small region of an image and have arbitrarily large magnitudes(especially for face images),these errors can be modelled as sparse errors[11]. In order to separate them from the well-aligned images,we modify Eq.(4)to

    where E∈Rm×nis the sparse error matrix.

    Our objective is to reconstruct A distributed over a union of low-rank subspaces and to handle the influence of sparse errors.

    3 Solution via iterative linearization and alternative sparsity pursuit

    In this section,we exploit an iterative scheme[3] to obtain a practical solution to the batch image alignment minimisation problem in Eq.(5).

    3.1 Convex relaxation

    The optimization problem in Eq.(5)is nonconvex and NP-hard because of the?0-norm.Fortunately, sparse representation and compressed sensing theory shows that it can be approximately solved by replacing the?0-norm by the?1-norm[4,12,13]. Doing so,Eq.(5)becomes:

    where‖·‖F(xiàn)represents the Frobenius norm andεis the tolerable noise level.

    3.2 Problem linearization

    The nonlinearity of the constraint D?τ=A+ E makes the solution of Eq.(6)intractable. In practice,we assume that the change produced by τis small enough that we can linearize the current estimateτto approximate the constraint. Each transformationτi(an affi ne transformation,etc.) can be represented by a vector of p parameters[14], yieldingτ=[τ1|···|τn]∈ Rp×n. Specifically,if initial transformationsτare known,we can changedenotes the Jacobian of the i th image with regard to the transformation τi,andωidenotes the standard basis for Rn.This allows the problem to be relaxed to the following convex optimization problem in which we seek the optimal A,W,E,Δτ:

    In order to obtain the approximate solution to Eq.(6),we repeatedly linearize about the current estimate ofτand solve a series of optimization problems using Eq.(8).In other words,we seek a small change inτin each iteration,to gradually approximate the correct transformations. In this way,we can obtain approximate transformations[15, 16]to recover the underlying subspaces. The detailed iterative linearization procedure to solve the batch image alignment problem is summarized in Algorithm 1.Iteration stops when the diff erence between the current objective function and the previous one meets a predefined stopping criterion.

    3.3 Solution for inner loop by alternative sparsity pursuit

    In the linearized image alignment problem,a key step is to find the solution to the convex optimization subproblem in Eq.(8)in Step 3,the inner loop of Algorithm 1. The recently developed alternating direction method(ADM)and linearized alternating direction method(LADM)can be applied to solve such problems quickly and effectively[17,18].Before using the ADMand LADM,the augmented Lagrange multiplier(ALM)method[19]is applied to the original problem.Firstly,we define:

    Then the augmented Lagrangian function for Eq.(8)is

    where Y is a Lagrange multiplier matrix,〈·,·〉denotes the inner product operation,andμis a positive penalty parameter.

    In the ADM method,the unknowns in the augmented Lagrangian function are iteratively minimized one by one: in other words,the sparsity of W and E are pursued alternatively until convergence[7].In this case,the iterations are given

    Hence,the solution to Ak+1after one iteration is given by

    Secondly,when updating W and E,considering the constraints in Eq.(8)that A=D?τ+the augmented

    Lagrangian function can be rewritten as

    where?W=I?W.By linearizing the quadratic terms in Eqs.(15)and(16),we can obtain the approximate solutions for W and E as

    whereη1≥ ‖A‖22andη2≥ ‖?W‖22guarantee the solution generated by LADM converges to a KKT (Karush–Kuhn–Tucker)point of Eq.(8)[20].Γα(·) is a soft-thresholding operator defined as

    where sgn(·)represents the sign function.When Γα(x)operates on a matrix,it acts element-wise.

    Finally,the solution toΔτin Eq.(11)is easily obtained as

    where J?idenotes the Moore–Penrose pseudoinverse ofThe Lagrange multiplier matrix Y and penalty parameterμare updated following Eq.(12).The complete procedure for the inner loop of Algorithm 1 using alternative sparsity pursuit is summarized in Algorithm 2.

    4 Experimental results and discussion

    In this section,we verify the proposed method on severaldata sets,including face images,handwritten digits,and video sequences. In all experiments, we select the target regions from unaligned images manually,or by using object detectors(such as a face detector).These target regions are preprocessed to a uniform size,and used as the original unaligned images forming the input to our algorithm.

    4.1 Robustness to sparse errors

    In an experiment on images of a dummy head which contains sparse errors including corruption and occlusion[3],the correctness and robustness of the proposed method are illustrated in Fig.2.In this experiment,the input images are the target regions to align.After alignment,we achieve well-aligned images,and reconstruct the underlying structures shown in Figs.2(b)and 2(c).The average of the original,the aligned and the reconstructed imagesare shown in Fig.2(e).These results demonstrate that the set oftransformations found can successfully dealwith misalignments.Moreover,the sparse errors can be separated by recovering the underlying structures from the union of subspaces. In this experiment,since we do not know which subspace each image belongs to,we cannot arrange the images from the same subspaces together in the data matrix.This leads to a different structure for the estimated coeffi cient matrix ?W in this experiment,shown in Fig.3,and the ideal structure in Fig.1.However,each column of this coeffi cient matrix still has many very small elements which reveals the sparsity of the self-representation of the reconstructed images,and supports the reasoning behind the proposed model.

    4.2 Face image alignment

    To further verify the effi cacy ofthe proposed method, we carried out an experiment on more challenging natural face images from the Labeled Faces in the Wild(LFW)database[21].These are real-world face images with uncontrolled misalignments,under varying illumination.About 35 face images of each person were used in the experiment.The unaligned face regions were used as input images.As shown in Fig.4,clearer average faces were obtained afteralignment with the proposed method.

    Algorithm 2 Alternative sparsity pursuit(inner loop) Input:A0∈Rm×n,W0∈Rn×n,E0∈Rm×n, Δτ0∈Rp×n,Ji∈Rm×p,for i=1,...,n,λ,ρ,η1,η2while not converged do Step 1:update A: Ak+1=D?τ+μkYk; Step 2:update W: W k+1=Γ1 n P JiΔτkωiωTi?Ek?1i=1 ?k+1(Ak+1?Wk?Yk/μk)? W k+ATη1; W iik+1=0; μkη1 Step 3:update E: ?Wk+1=I?Wk+1; E k+1=Γλ? ? E k+(Ak+1?Wk+1?Yk/μk)?WTk+1η2; Step 4:updateΔτ: Δτk+1= μkη2 n P ?A′k+1+Ek+1?D?τ+Yk/μk?ωωTi; i=1 J?i Step 5:update Y andμ: Yk+1=Yk+μkf(Ak+1,Wk+1,Ek+1,Δτk+1); μk+1=ρμk. end while Output:solution?A,?E,?W,Δ?τto Eq.(8).

    Fig.2 Representative result with a batch of images of a dummy head.(a)Original unaligned images with partial corruption and occlusion,D. (b)Images aligned by a set of transformations generated by the proposed algorithm,D?τ. (c)Reconstructed underlying structures A,aligned images adjusted for sparse errors. (d)Sparse errors E removed from D?τ:E=D?τ?A.(e)Averages of all components in D,D?τ,and A respectively,showing the accuracy of the proposed method.

    Fig.3 Estimated coeffi cient matrix ?W in the dummy head experiment.

    Since we have no ground truth for these images, we evaluate the experimentalresults according to the similarity of the images:after alignment,the images should be more similar.We thus measure image similarity using peak signal to noise ratio(PSNR) and structural similarity index(SSIM)[22,23]. The mean PSNR and SSIM values for images of each subject are shown in Fig.4,while the mean PSNR and SSIM values for all subjects in the LFW database are given in Tables 1 and 2.They show that the proposed method can reconstruct more similar and general structures from the high-dimensional data than the RASL method[3].These results show the strength ofthe proposed method for batch image alignment.

    We also validated the proposed method using real face images from a video sequence.The video sequence consists of140 frames of AlGore talking[3]. Selecting one from every 7 frames,20 sampled images from the video and their results after alignment are shown in Fig.5.In Figs.5(b)and 5(c),the proposed method successfully aligns the speaker. The estimated coeffi cient matrix of this experiment is shown in Fig.5(d);it is similar to the ideal one in Fig.1. This result shows that the proposed method works well with video sequence data.Since adjacent frames from a video sequence are quitecorrelated,they are drawn from the same subspace with high probability.In contrast,if a frame is far from the current one,the structure of its subspace may differ.This estimated coeffi cient matrix further demonstrates the rationality of using a model based on a union of subspaces in this task.The results in Tables 3 and 4 show that the proposed method is better at processing video sequences than RASL.

    Table 1 Mean PSNRs on LWF (Unit:dB)

    Table 2 Mean SSIMs on LFW

    We can conclude that the proposed method outperforms RASL based on the results ofthe above experiments.The RASL method models data using robust principal component analysis(RPCA)[4], which assumes that data are drawn from a single subspace[5].Unlike RASL,the proposed method reconstructs data from a union of subspaces,which enables it to describe the structure of the data more accurately,leading to better results.

    4.3 Handwritten digit image alignment

    A further kind of data set was used to verify the proposed method. It comprises handwritten digits,which are widely used in machine learning algorithms[24].The images of handwritten digits were taken from the MNIST database[24].We experimented on 100 images of the digit“3”.Results achieved by the proposed method and RASL are shown in Fig.6 and Tables 5 and 6.These results again allow us to conclude that the proposed method leads to better image alignment results.

    Table 3 Mean PSNRs on video example(Unit:dB)

    Table 4 Mean SSIMs on video example

    Table 5 Mean PSNRs for handwritten digits (Unit:dB)

    Table 6 Mean SSIMs on handwritten digits

    Fig.4 Experimental results using real face images.(a)Averages of original unaligned face images of 20 persons from LFW.(b)Mean PSNR of original images and images aligned by two methods,for each person.(c)Average faces using aligned images for each person.(d)Mean PSNR of original images and images reconstructed by two methods,for each person.(e)Average faces using reconstructed images for each person.(f)Mean SSIM of original images and images aligned by two methods,for each person.

    Fig.5 Experimental results for real face images from a video sequence.(a)20 original frames of unaligned faces selected from a 140-frame video.(b)Frames after alignment.(c)Reconstructed underlying structures.(d)Coeffi cient matrix.

    Fig.6 Experimental results for handwritten“3”digits.(a)100 original images from MNIST.(b)and(d)were generated by RASL,(c)and (e)by our proposed method.The red circles mark some obvious diff erences between two method,which support that conclusion that our proposed method is more accurate.

    5 Conclusions

    In this paper,a new method for batch image alignment has been proposed which can handle sparse errors.Several experiments have verified the robustness of the proposed method,as well as its effectivity and superiority.Compared to existing methods,the proposed method is better at extracting the generalunderlying structures from high-dimensionaldata with misalignment and sparse errors.It could readily be extended to deal with 3D structures or much higher-dimensionaldata;this will be studied in our further work.

    Acknowledgements

    This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61573150,61573152,61370185,61403085, and 51275094),and Guangzhou Project Nos. 201604016113 and 201604046018.

    [1]Frey, B.J.; Jojic, N.Transformation-invariant clustering using the EMalgorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.25, No.1,1–17,2003.

    [2]Pluim,J.P.W.;Maintz,J.B.A.;Viergever,M. A.Mutual-information-based registration of medical images:A survey.IEEE Transactions on Medical Imaging Vol.22,No.8,986–1004,2003.

    [3]Peng,Y.;Ganesh,A.;Wright,J.;Xu,W.;Ma, Y.RASL:Robust alignment by sparse and lowrank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.34,No.11,2233–2246,2012.

    [4]Cand`es,E.J.;Li,X.;Ma,Y.;Wright,J.Robust principal component analysis?Journal of the ACM Vol.58,No.3,Article No.11,2011.

    [5]Liu,G.;Lin,Z.;Yan,S.;Sun,J.;Yu,Y.;Ma, Y.Robust recovery of subspace structures by lowrank representation.IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.35,No.1,171–184,2013.

    [6]Elhamifar,E.;Vidal,R.Sparse subspace clustering. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2790–2797,2009.

    [7]Bian,X.;Krim,H.BI-sparsity pursuit for robust subspace recovery.In: Proceedings of the IEEE International Conference on Image Processing,3535–3539,2015.

    [8]Rubinstein,R.; Faktor,T.;Elad,M.K-SVD dictionary-learning for the analysis sparse model.In: Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing,5405–5408, 2012.

    [9]Bian,X.;Krim,H.Robust subspace recovery via bi-sparsity pursuit.arXiv preprint arXiv:1403.8067, 2014.

    [10]Elad, M.Sparse and redundant representation modeling—What next? IEEE Signal Processing Letters Vol.19,No.12,922–928,2012.

    [11]Wright,J.;Yang,A.Y.;Ganesh,A.;Sastry,S.S.;Ma, Y.Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.31,No.2,210–227,2009.

    [12]Cand`es,E.J.;Romberg,J.K.;Tao,T.Stable signal recovery from incomplete and inaccurate measurements.Communications on Pure and Applied Mathematics Vol.59,No.8,1207–1223,2006.

    [13]Donoho,D.L.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution.Communications on Pure and Applied Mathematics Vol.59,No.6,797–829,2006.

    [14]Ma,Y.;Soatto,S.;Kosecka,J.;Sastry,S.S.An Invitation to 3-D Vision:From Images to Geometric Models,Volume 26.Springer Science&Business Media,2012.

    [15]Baker,S.;Matthews,I.Lucas–Kanade 20 years on:A unifying framework.International Journal of Computer Vision Vol.56,No.3,221–255,2004.

    [16]Vedaldi,A.;Guidi,G.;Soatto,S.Joint data alignment up to(lossy)transformations.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1–8,2008.

    [17]Boyd,S.;Parikh,N.;Chu,E.;Peleato,B.;Eckstein, J.Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends R○ in Machine Learning Vol. 3,No.1,1–122,2011.

    [18]Liu,G.;Lin,Z.;Yu,Y.Robust subspace segmentation by low-rank representation.In:Proceedings of the 27th International Conference on Machine Learning, 663–670,2010.

    [19]Rockafellar,R.T.Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control Vol.12,No.2,268–285, 1974.

    [20]Lin,Z.;Liu,R.;Su,Z.Linearized alternating direction method with adaptive penalty for low-rank representation.In:Proceedings of the Advances in Neural Information Processing Systems 24,612–620, 2011.

    [21]Huang,G.B.;Ramesh,M.;Berg,T.;Learned-Miller, E.Labeled faces in the wild:A database for studying face recognition in unconstrained environments. Technical Report 07-49,University of Massachusetts, Amherst,2007.

    [22]Hore,A.;Ziou,D.Image quality metrics:PSNR vs.SSIM.In:Proceedings of the 20th International Conference on Pattern Recognition,2366–2369,2010.

    [23]Wang,Z.;Bovik,A.C.;Sheikh,H.R.;Simoncelli, E.P.Image quality assessment:From error visibility to structural similarity.IEEE Transactions on Image Processing Vol.13,No.4,600–612,2004.

    [24]LeCun,Y.;Cortes,C.;Burges,C.J.C.The MNIST database of handwritten digits.2010.Available at http://yann.lecun.com/exdb/mnist.

    Zhu Liang Yu received his B.S.E.E. and M.S.E.E.degrees,both in electronic engineering,from Nanjing University of Aeronautics and Astronautics, China,in 1995 and 1998,respectively, and his Ph.D.degree from Nanyang Technological University,Singapore,in 2006.He joined the Center for Signal Processing,Nanyang Technological University,in 2000 as a research engineer,then had been a group leader from 2001.In 2008,he joined the College of Automation Science and Engineering,South China University of Technology and was promoted to full professor in 2010.His research interests include signal processing,pattern recognition, machine learning and their applications in communications, biomedical engineering,robotics,etc.

    Zhenghui Gu received her Ph.D. degree from Nanyang Technological University in 2003.From 2002 to 2008, she was with the Institute for Infocomm Research,Singapore. She joined the College of Automation Science and Engineering,South China University of Technology,in 2009 as an associate professor. She was promoted to full professor in 2015. Her research interests include signalprocessing and pattern recognition.

    Jun Zhang received his bachelor and master degrees in computer science from Xiangtan University,Xiangtan,China, in 2002 and 2005,respectively,and his doctor degree in pattern recognition and intelligent systems from South China University of Technology,China,in 2012.He was a postdoctoral research fellow in electronic engineering with the University of South California,Los Angeles,USA,from 2015 to 2016. He is currently an associate professor with the School of Information Engineering,Guangdong University of Technology,Guangzhou,China,where he has been the head ofthe Electrical Engineering Department since March 2016. His current research interests include compressive sensing and biomedical signal processing.

    Zhaoquan Cai was born in 1970. He received his bachelor degree from South China University of Technology, Guangzhou,and master degree from Huazhong University of Science and Technology,Wuhan,China.He is now a professor in the School of Computer Science,Huizhou University,and also a member of CCF.His research interests include computer networks,intelligent computing,and databases.

    Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License(http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journalare available free of charge from http://www.springer.com/journal/41095. To submit a manuscript,please go to https://www. editorialmanager.com/cvmj.

    his bachelor degree in automation from South China Agricultural University, Guangzhou, China,in 2014.He is now a master candidate supervised by Prof.Zhu Liang Yu in the College of Automation Science and Engineering,South China University of Technology.His research interests include machine learning and computer vision.

    1 College of Automation Science and Engineering,South China University of Technology,Guangzhou,China.E-mail:X.Lin,xhlin129@163.com;Z.L.Yu,zlyu@scut. edu.cn;Z.Gu,zhgu@scut.edu.cn.

    2 School of Information Engineering, Guangdong University of Technology,Guangzhou,China.E-mail: zhangjun7907@hotmail.com.

    3 School of Computer Science,Huizhou University, Huizhou,China.E-mail:caizhaoquan@139.com().

    Manuscript

    2016-12-31;accepted:2017-02-22

    在线视频色国产色| 亚洲久久久国产精品| 久久精品人人爽人人爽视色| 99在线视频只有这里精品首页| 日本三级黄在线观看| 精品久久久精品久久久| 国产精品久久久av美女十八| 欧美激情高清一区二区三区| bbb黄色大片| 91大片在线观看| 757午夜福利合集在线观看| 免费看a级黄色片| 国产精品日韩av在线免费观看 | 一边摸一边抽搐一进一出视频| 久久人人97超碰香蕉20202| 免费高清视频大片| 免费在线观看黄色视频的| 我的亚洲天堂| 999久久久国产精品视频| 免费在线观看完整版高清| 麻豆av在线久日| 国产精品久久电影中文字幕| 一级黄色大片毛片| 午夜福利,免费看| а√天堂www在线а√下载| 性少妇av在线| 亚洲自偷自拍图片 自拍| 日本五十路高清| 女性生殖器流出的白浆| 性少妇av在线| 欧美激情久久久久久爽电影 | 国产高清videossex| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 91麻豆av在线| 天天一区二区日本电影三级 | 欧美中文综合在线视频| 国产精品一区二区精品视频观看| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| x7x7x7水蜜桃| 丁香六月欧美| 国产野战对白在线观看| av视频在线观看入口| 狂野欧美激情性xxxx| 搡老熟女国产l中国老女人| 人人妻,人人澡人人爽秒播| 成人免费观看视频高清| 女人精品久久久久毛片| 熟妇人妻久久中文字幕3abv| 久久国产乱子伦精品免费另类| 天天添夜夜摸| 午夜福利成人在线免费观看| netflix在线观看网站| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看| 一二三四在线观看免费中文在| 日韩欧美一区视频在线观看| 青草久久国产| 国产激情欧美一区二区| 日韩欧美国产一区二区入口| 淫秽高清视频在线观看| 欧美中文日本在线观看视频| 精品福利观看| 美女高潮喷水抽搐中文字幕| 国产极品粉嫩免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 午夜影院日韩av| 少妇裸体淫交视频免费看高清 | 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 成人永久免费在线观看视频| 久久狼人影院| 久久九九热精品免费| 黑人欧美特级aaaaaa片| 身体一侧抽搐| 亚洲狠狠婷婷综合久久图片| 亚洲avbb在线观看| 亚洲国产高清在线一区二区三 | 久久中文字幕一级| 午夜久久久在线观看| 久热爱精品视频在线9| 国产欧美日韩一区二区三| 日韩大码丰满熟妇| 一级毛片高清免费大全| 午夜福利18| 免费观看人在逋| 99久久综合精品五月天人人| 一级a爱视频在线免费观看| 精品国产美女av久久久久小说| 亚洲人成电影观看| 日日爽夜夜爽网站| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费| 亚洲av日韩精品久久久久久密| 热99re8久久精品国产| 看黄色毛片网站| 精品人妻1区二区| 搡老妇女老女人老熟妇| 正在播放国产对白刺激| 日韩免费av在线播放| 久久久久久久午夜电影| 91麻豆av在线| 欧美日韩黄片免| 国产一区二区在线av高清观看| 人人妻人人澡人人看| av电影中文网址| 麻豆成人av在线观看| 欧美在线黄色| 国产高清有码在线观看视频 | 国产精品日韩av在线免费观看 | 久久天堂一区二区三区四区| 女警被强在线播放| 一区二区三区国产精品乱码| 免费看a级黄色片| 国产成人精品无人区| 黄色丝袜av网址大全| 亚洲 欧美 日韩 在线 免费| 大陆偷拍与自拍| 成年女人毛片免费观看观看9| 欧美日韩精品网址| 欧美日本中文国产一区发布| 可以免费在线观看a视频的电影网站| 欧美不卡视频在线免费观看 | 日韩 欧美 亚洲 中文字幕| 老鸭窝网址在线观看| 欧美大码av| 纯流量卡能插随身wifi吗| 免费高清在线观看日韩| 国内久久婷婷六月综合欲色啪| 亚洲精品在线美女| 欧美日韩亚洲综合一区二区三区_| 中出人妻视频一区二区| 欧美亚洲日本最大视频资源| 91av网站免费观看| 黑人欧美特级aaaaaa片| 国产亚洲精品第一综合不卡| 久久精品成人免费网站| 亚洲av成人一区二区三| 18禁国产床啪视频网站| 免费在线观看亚洲国产| 侵犯人妻中文字幕一二三四区| 长腿黑丝高跟| 久久久久久亚洲精品国产蜜桃av| 亚洲人成网站在线播放欧美日韩| or卡值多少钱| 熟女少妇亚洲综合色aaa.| 一边摸一边做爽爽视频免费| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 两个人看的免费小视频| 亚洲自拍偷在线| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清 | 色尼玛亚洲综合影院| 国产午夜福利久久久久久| 亚洲中文av在线| 少妇的丰满在线观看| 亚洲熟女毛片儿| 琪琪午夜伦伦电影理论片6080| 成人国语在线视频| 亚洲精品中文字幕在线视频| 亚洲国产精品成人综合色| 久久热在线av| 美女高潮喷水抽搐中文字幕| 免费不卡黄色视频| 久久国产精品影院| 国内毛片毛片毛片毛片毛片| 淫妇啪啪啪对白视频| 国产av在哪里看| 啪啪无遮挡十八禁网站| 精品高清国产在线一区| 久久精品国产清高在天天线| 性欧美人与动物交配| 久久国产精品影院| 日本免费a在线| 国产激情久久老熟女| 身体一侧抽搐| 日本 欧美在线| 脱女人内裤的视频| 国产精品久久久久久精品电影 | 国产1区2区3区精品| 精品久久久久久,| 久久精品成人免费网站| 99国产精品一区二区三区| 宅男免费午夜| 欧美一级毛片孕妇| 亚洲 国产 在线| 69av精品久久久久久| 国内精品久久久久精免费| 成人三级黄色视频| 久9热在线精品视频| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区综合在线观看| 少妇粗大呻吟视频| 高清黄色对白视频在线免费看| 亚洲在线自拍视频| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 在线播放国产精品三级| 香蕉国产在线看| 国产亚洲欧美98| 亚洲精品国产一区二区精华液| 国产亚洲精品综合一区在线观看 | 美女国产高潮福利片在线看| 成人亚洲精品一区在线观看| 9色porny在线观看| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 久久香蕉精品热| 叶爱在线成人免费视频播放| 啦啦啦韩国在线观看视频| 免费少妇av软件| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 亚洲九九香蕉| 精品高清国产在线一区| 亚洲激情在线av| 操美女的视频在线观看| 一进一出抽搐gif免费好疼| 大型av网站在线播放| 日日爽夜夜爽网站| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网| 波多野结衣一区麻豆| 又黄又爽又免费观看的视频| 极品教师在线免费播放| 成人欧美大片| 深夜精品福利| 亚洲精品国产色婷婷电影| 精品人妻1区二区| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 岛国视频午夜一区免费看| 色综合欧美亚洲国产小说| 悠悠久久av| 电影成人av| 亚洲av片天天在线观看| 久久久久久国产a免费观看| 可以免费在线观看a视频的电影网站| 国产精品野战在线观看| 操出白浆在线播放| 日韩欧美国产在线观看| 精品高清国产在线一区| 亚洲av成人不卡在线观看播放网| 国产成人精品在线电影| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品男人的天堂亚洲| 亚洲一码二码三码区别大吗| 多毛熟女@视频| 日本黄色视频三级网站网址| 久久久水蜜桃国产精品网| 精品国产一区二区久久| 熟妇人妻久久中文字幕3abv| 欧美黑人精品巨大| 国产色视频综合| 国产精品野战在线观看| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| av有码第一页| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 男人的好看免费观看在线视频 | 日本在线视频免费播放| 亚洲国产看品久久| 国产成人欧美在线观看| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 999精品在线视频| 中国美女看黄片| 少妇熟女aⅴ在线视频| 久久久久久久午夜电影| 国产成人免费无遮挡视频| 国产一卡二卡三卡精品| 国产精品久久电影中文字幕| 91成人精品电影| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣一区麻豆| 在线观看66精品国产| 一夜夜www| 精品高清国产在线一区| videosex国产| 一级毛片女人18水好多| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 在线免费观看的www视频| 老司机福利观看| 村上凉子中文字幕在线| 性少妇av在线| 波多野结衣高清无吗| 一区二区三区精品91| 曰老女人黄片| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 成在线人永久免费视频| 热re99久久国产66热| 国产精品二区激情视频| 国产av一区在线观看免费| 美女大奶头视频| 别揉我奶头~嗯~啊~动态视频| 黄色成人免费大全| 日日干狠狠操夜夜爽| 午夜福利影视在线免费观看| 大陆偷拍与自拍| 99国产精品99久久久久| 久久久久久大精品| 亚洲国产欧美网| 国产精品九九99| 国产在线精品亚洲第一网站| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 亚洲第一av免费看| 美女高潮到喷水免费观看| 欧美一级a爱片免费观看看 | 91字幕亚洲| 久久久久九九精品影院| 欧美成人午夜精品| a级毛片在线看网站| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 757午夜福利合集在线观看| 欧美日韩乱码在线| 少妇熟女aⅴ在线视频| 91av网站免费观看| 久久精品亚洲精品国产色婷小说| 大陆偷拍与自拍| 在线国产一区二区在线| 国产精品九九99| 欧美最黄视频在线播放免费| 欧美日本中文国产一区发布| 日日摸夜夜添夜夜添小说| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片 | av天堂在线播放| 日韩有码中文字幕| 好男人电影高清在线观看| 在线观看日韩欧美| 男人舔女人的私密视频| 久久这里只有精品19| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片 | 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 午夜两性在线视频| www.www免费av| 亚洲午夜精品一区,二区,三区| 99国产综合亚洲精品| 咕卡用的链子| 欧美日韩乱码在线| 99国产精品一区二区三区| 日韩欧美免费精品| 色播在线永久视频| 国内毛片毛片毛片毛片毛片| 亚洲午夜理论影院| 国产午夜精品久久久久久| 最近最新中文字幕大全电影3 | 亚洲中文字幕日韩| 天天躁夜夜躁狠狠躁躁| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 国产成人欧美| 亚洲国产欧美一区二区综合| 韩国av一区二区三区四区| 国产精品久久久人人做人人爽| av福利片在线| 亚洲一区中文字幕在线| 欧美激情极品国产一区二区三区| 伦理电影免费视频| 在线视频色国产色| 99在线视频只有这里精品首页| 熟妇人妻久久中文字幕3abv| 亚洲av成人av| 校园春色视频在线观看| 久久久久亚洲av毛片大全| 一区二区三区精品91| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 欧美大码av| 亚洲国产看品久久| 免费不卡黄色视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一区二区三区色噜噜| 一个人观看的视频www高清免费观看 | 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 一边摸一边做爽爽视频免费| 最好的美女福利视频网| x7x7x7水蜜桃| 亚洲国产欧美日韩在线播放| 最近最新免费中文字幕在线| 久久久久久久久中文| 欧美激情 高清一区二区三区| 精品久久久久久成人av| 不卡一级毛片| 日韩三级视频一区二区三区| 99久久国产精品久久久| 成人永久免费在线观看视频| av天堂在线播放| 久久久久国内视频| 国产亚洲精品一区二区www| 亚洲精品美女久久久久99蜜臀| 美女扒开内裤让男人捅视频| 日本五十路高清| 99香蕉大伊视频| 亚洲欧美精品综合一区二区三区| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av香蕉五月| 日本vs欧美在线观看视频| 国产高清视频在线播放一区| 亚洲美女黄片视频| 久久久国产成人免费| 变态另类成人亚洲欧美熟女 | 香蕉国产在线看| 非洲黑人性xxxx精品又粗又长| 亚洲五月色婷婷综合| or卡值多少钱| 精品久久久久久久久久免费视频| 日韩精品免费视频一区二区三区| www国产在线视频色| 此物有八面人人有两片| 国产欧美日韩综合在线一区二区| 老熟妇仑乱视频hdxx| 午夜精品久久久久久毛片777| 激情视频va一区二区三区| 亚洲国产欧美一区二区综合| 99国产精品一区二区三区| 变态另类丝袜制服| 成人18禁高潮啪啪吃奶动态图| 美女大奶头视频| 很黄的视频免费| 好男人电影高清在线观看| 国产成人影院久久av| 午夜福利成人在线免费观看| 午夜激情av网站| 国产成人精品无人区| 搞女人的毛片| 天天添夜夜摸| 真人做人爱边吃奶动态| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 国产成年人精品一区二区| 欧美久久黑人一区二区| 成人国产综合亚洲| 黄频高清免费视频| 黄色成人免费大全| 国产极品粉嫩免费观看在线| 久久国产精品男人的天堂亚洲| 亚洲天堂国产精品一区在线| 久久久国产精品麻豆| 少妇熟女aⅴ在线视频| 天天一区二区日本电影三级 | 免费无遮挡裸体视频| 日韩高清综合在线| 97碰自拍视频| 人妻久久中文字幕网| 精品国产美女av久久久久小说| 欧美最黄视频在线播放免费| 亚洲无线在线观看| 精品福利观看| 亚洲精华国产精华精| 亚洲成人久久性| 亚洲一区高清亚洲精品| 国产私拍福利视频在线观看| 91精品国产国语对白视频| 亚洲精品中文字幕一二三四区| 久久香蕉精品热| 人人妻人人澡人人看| 啦啦啦免费观看视频1| 精品第一国产精品| 大陆偷拍与自拍| 成人国产综合亚洲| 久久久国产成人免费| 日韩成人在线观看一区二区三区| 国产高清videossex| av有码第一页| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 精品一品国产午夜福利视频| 亚洲 欧美一区二区三区| 日韩欧美免费精品| 精品不卡国产一区二区三区| 国产精品秋霞免费鲁丝片| 波多野结衣av一区二区av| 在线播放国产精品三级| 亚洲精品国产精品久久久不卡| 又黄又粗又硬又大视频| 中国美女看黄片| ponron亚洲| 大码成人一级视频| 深夜精品福利| 美国免费a级毛片| 啪啪无遮挡十八禁网站| 麻豆久久精品国产亚洲av| 男女下面插进去视频免费观看| 日韩精品中文字幕看吧| 久久久国产精品麻豆| 色综合婷婷激情| 免费高清视频大片| 亚洲av成人一区二区三| 欧美激情高清一区二区三区| 精品久久久久久久人妻蜜臀av | 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 国产精品精品国产色婷婷| 亚洲国产欧美网| 亚洲av电影在线进入| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 中文字幕久久专区| 99国产极品粉嫩在线观看| 国产成人欧美在线观看| 国产精品国产高清国产av| 国产成人精品久久二区二区91| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 午夜成年电影在线免费观看| 亚洲成人精品中文字幕电影| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 一本久久中文字幕| 亚洲中文字幕日韩| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| 宅男免费午夜| 国内精品久久久久精免费| 啦啦啦 在线观看视频| 91精品国产国语对白视频| 长腿黑丝高跟| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区 | 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网| 日本vs欧美在线观看视频| 嫩草影视91久久| 狂野欧美激情性xxxx| 精品欧美一区二区三区在线| 乱人伦中国视频| 三级毛片av免费| 欧美日本亚洲视频在线播放| 日本vs欧美在线观看视频| 嫩草影视91久久| 久久这里只有精品19| 欧美日本亚洲视频在线播放| 首页视频小说图片口味搜索| 久久国产精品男人的天堂亚洲| 午夜精品在线福利| 久久影院123| 久久久久久久午夜电影| 国产精品电影一区二区三区| 啦啦啦 在线观看视频| 国产亚洲精品综合一区在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 51午夜福利影视在线观看| av免费在线观看网站| 制服诱惑二区| 韩国精品一区二区三区| 欧美成人免费av一区二区三区| 欧美黑人精品巨大| 九色国产91popny在线| 欧美日韩中文字幕国产精品一区二区三区 | 多毛熟女@视频| 黄片小视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产精品二区激情视频| 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 精品国产国语对白av| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 99在线视频只有这里精品首页| 男人舔女人的私密视频| 女人被狂操c到高潮| 一进一出好大好爽视频| 高潮久久久久久久久久久不卡| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 色播亚洲综合网| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 欧美+亚洲+日韩+国产| www国产在线视频色| 黄色女人牲交| 亚洲欧美日韩高清在线视频| 久久精品人人爽人人爽视色| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 纯流量卡能插随身wifi吗| 国产成人欧美在线观看| 国产精品,欧美在线| 一级毛片女人18水好多| 亚洲性夜色夜夜综合| 国产精品99久久99久久久不卡| 午夜福利视频1000在线观看 |