• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, characterization and catalytic effect on thermal decomposition of AP: an eco-friendly energetic Bi(III) complex of ANPyO①

    2017-09-15 09:14:47ZHANGRongxianZHONGXiaoshengLUXiaogangKEZhijiangXUJunCHENGJianLIUZuliang
    固體火箭技術 2017年4期
    關鍵詞:催化作用峰溫高氯酸

    ZHANG Rong-xian, ZHONG Xiao-sheng, LU Xiao-gang, KE Zhi-jiang,XU Jun,CHENG Jian, LIU Zu-liang

    (1. School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;2.Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China;3. Jiangsu Research Institute of High-Performance Alloy Material, Danyang 212300, China;4. School of Education Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;5. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    Synthesis, characterization and catalytic effect on thermal decomposition of AP: an eco-friendly energetic Bi(III) complex of ANPyO①

    ZHANG Rong-xian1, ZHONG Xiao-sheng2, LU Xiao-gang1, KE Zhi-jiang1,XU Jun3,CHENG Jian4, LIU Zu-liang5

    (1. School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;2.Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China;3. Jiangsu Research Institute of High-Performance Alloy Material, Danyang 212300, China;4. School of Education Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;5. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    In this research, an eco-friendly, energetic Bi(III) complex of 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO) was synthesized and its structure was characterized by FTIR, elemental analyses and XPS measurements. Based on the results of structure analyses, we speculate that chemical constitution of the complex can be deduced as Bi(C5H4N5O5)3, and the ratio of Bi(III) and ANPyO is 1∶3. The central Bi(III) ion contributes its six empty orbitals to accommodate the long pair electrons from the imine N atoms and N→O O atoms from three different deprotonated ANPyO molecules. Impact sensitivity, friction sensitivity and shock wave sensitivity of Bi(III) complex of ANPyO are 220 cm, 36 kg and 5.8 mm, respectively. The thermal decomposition behavior of Bi(III) complex of ANPyO was studied by TG-DTG and DSC measurements. The thermal decomposition of the complex consists of one endothermic (320.6 ℃) and one exothermic (346.5 ℃) peaks in the temperature range of 50~450 ℃ with 31.2% residue. Meanwhile, the catalytic performance of the complex on the thermal decomposition of ammonium perchlorate (AP) was analyzed by TG-DTG and DSC analyses, the apparent activation energy and pre-exponential factor of pure AP and AP mixture in the low temperature decomposition stage and high temperature decomposition stage were calculated by Kissinger's formula as well. The results show that Bi(III) complex of ANPyO makes the exothermic peak temperatures and activation energy values of high temperature decomposition stage and low temperature decomposition stage for AP decrease by 63.6 ℃, 63.1 ℃, 23.1 kJ/mol and 61.5 kJ/mol, respectively, the apparent exothermic quantity for AP increase by 339.3 J/g, revealing that the complex has good catalytic effects on the thermal decomposition of AP.

    energetic complex;ANPyO;sensitivity;thermal decomposition;catalytic effects

    DIO:10.7673/J.ISSN.1006-2793.2017.04.009

    0 Introduction

    Highly energetic materials have received considerable attention due to their outstanding properties, such as high energy, high density, high heat resistance, and low sensitivity. Therefore, they can be used extensively in advanced conventional weapons, rocket propellants, demilitarization and industrial applications. There is tremendous interest in developing efficient methods to synthesize these molecules, and a well-known method was proposed to constitute the synthesis of 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO)[1]by Ritter and Licht in 1995. ANPyO is a realistic, high-performance energetic material which is thermally stable and insensitive to shock, spark and friction[2], with similar performance, stability and sensitivity to that of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB). ANPyO belongs to a multi-amino, multi-nitro-heterocyclic N-oxide with structure units —N→O and —NH2. It may form stable complexes with a large number of metal ions similar to quinoxaline N1,N4-dioxide[3-4].

    In accordance with previous studies on metal complexes of quinoxaline N1,N4-dioxide derivatives, we selected metals including Cu(II)[5], Co(III)[6], Fe(III)[6], Pb(II)[7]to construct novel ANPyO-based coordination compounds with similar structures to metal complexes of quinoxaline N1,N4-dioxide derivatives. As an interesting new family of energetic complexes, the metal complexes of ANPyO may be used in explosives, propellants and energetic catalysts due to their low sensitivity, high heat resistance, high energy and good catalytic performance on the thermal decomposition of ammonium perchlorate (AP)[5-7]. The asymmetric unit of these metal complexes comprises one central metal canon and two or three deprotonated ANPyO anions. Each central metal canon has a distorted octahedron, coordinated by nitrogen and oxygen from deprotonated ANPyO. This unique coordination mode that ligands direct coordinates with metal ions without additional anions or cations could stabilize entire molecular complexes.

    Bismuth compounds have been widely used in clinics due to their effectiveness and low toxicity in treating a variety of microbial infections, as well as their anti-cancer and radio-therapeutic properties[8-10]. Moreover, they show excellent catalytic performance in the thermal decomposition of double-base (DB) propellants due to their modifying effects on lead compounds. In recent years, bismuth compounds have been used as eco-friendly ballistic modifiers[11-15]. They do not produce blue smoke during combustion, and are therefore useful in lead and mercury minimum-signature propellants[16].

    This study developed a new strategy for the synthesis and characterization of Bi(III) complex of ANPyO (Bi-ANPyO). The sensitivity, thermal decomposition behavior and catalytic performance of Bi-ANPyO were also studied and discussed.

    1 Experiment

    1.1 Materials and instruments

    All chemicals used were analytical grade, and purchased from commercial sources without further purification. FTIR spectra were recorded on a Nicolet-10 infrared spectrometer as KBr pellets with absorption in cm-1. Elemental analysis was performed on a Vario EL III instrument (Elmentar Analysen Systeme GmbH, Germany). XPS was performed with an American Thermo ESCALAB 250 electron spectrometer using Al Kαradiation.

    DSC studies were performed on a DSC823e METTLER TOLEDO with heating rates of 10 K/min, respectively. TG-DTG analysis was conducted on TGA/SDTA851eMETTLER TOLEDO with a heating rate of 10 K/min, in a flow of dry oxygen-free nitrogen at 30 ml/min.

    The friction sensitivity was measured by applying a Julius Peter apparatus following the BAM method[17]. Impact sensitivity was determined with the Bruceton method on the standard fall hammer apparatus, and the compacted sample was hit with a 2.5 kg drop hammer on the apparatus[18]. Shock sensitivity was determined by a designed shock sensitivity apparatus[19].

    1.2 Synthesis

    1.2.1 Synthesis of ANPyO

    ANPyO was prepared according to the literature[1]. Anal. Calcd.(%):C,27.89; H, 2.32; N, 32.54. Found: C, 27.77; H, 2.35; N, 32.75.

    1.2.2 Synthesis of Bi-ANPyO

    BiCl3(0.315 g, 1.0 mmol) was added into a solution of ANPyO (0.215 g, 1.0 mmol) in ethanol (20 ml) at 80 ℃ for 2 h, then cooled to room temperature and filtered, washed with ethanol and dried in air. An orange-yellow solid powder (0.24 g) was formed in a 85.56% yield (based on ANPyO). Anal. Calcd.(%):C, 21.15;H, 1.41;N, 24.67. Found: C, 21.18; H, 1.45; N, 24.15.

    2 Results and discussion

    2.1 Chemistry

    Elemental analysis(%) of Bi(III) complex of ANPyO: Calcd: C, 21.15; H, 1.41; N, 24.67. Found: C, 21.18; H, 1.45; N, 24.15.The chemical constitution of Bi-ANPyO can be deduced as Bi(C5H4N5O5)3.

    The FTIR spectra curves of ANPyO and its Bi(III) complex were illustrated in Fig.1. The main vibration bands relative to coordination for the ANPyO and its Bi(III) complex were shown in Table 1.

    The FTIR spectra of the Bi-ANPyO (Fig.1) show a similar pattern to those previously reported for metal complexes in the family of quinoxaline N1,N4-dioxide[3-4]. Both strong bands corresponding toVas(NH2) andVs(NH2) of the amino group of 2-position, locates for the ANPyO in the 3448 cm-1and 3283 cm-1region, disappears after coordination. Only one band (V(NH) of medium intensity with 3369 cm-1is observed, in agreement with the presence of a secondary amine.Vas(NH2) andVs(NH2) of the amino group of the 6-position, locates for the ANPyO in the 3448 cm-1and 3283 cm-1region turns to medium after coordination without a significant displacement. The strongV(N→O) stretching mode, locates 1325 cm-1for the ANPyO, also turns to medium after coordination without a significant displacement. As previously reported[3-4], this behavior might support coordination of the ANPyO to Bi(III) through the N→O group and the deprotonated amino group.

    Table 1 Main FTIR bands of ANPyO and its Bi(III) complex

    V:stretching;Vas:asymmetric stretching;Vs:symmetric stretching;s:strong;m:medium.

    The chemical composition of Bi-ANPyO can be further confirmed by XPS measurement. As shown in Fig.2(a), in which discloses the presence of C, N, O and Bi, respectively. XPS spectrum of Bi-ANPyO also exhibits six peaks at 679.2, 465.7, 442.3, 164.7, 160.8 and 24.9 eV, corresponding to Bi4p3, Bi4d3, Bi4d5, Bi4f5, Bi4f7 and Bi5d5 spin-orbit of Bi-ANPyO, respectively, which confirm the formation of bismuth. The presence bismuth can be further confirmed by N 1s and O 1s XPS spectrums of Bi-ANPyO in Fig.2(c) and Fig.2(d), respectively, in which the characteristic peaks are close to 398.2 (Bi-N) and 529.9 (Bi-O) eV. This confirms the formation of Bi-N and Bi-O bonds in the molecular structure of Bi-ANPyO. From Fig.2(b), C 1s XPS spectrum of Bi-ANPyO shows four types of carbon with different chemical states observed, which appear at 283.5(C—H), 284.3(CC), 284.8(C—N) and 286.4 eV(CN), respectively. Fig.2(c) and Fig.2(d) also exhibit the N 1s and O 1s XPS spectrums of Bi-ANPyO, six types of nitrogen and three types of oxygen with different chemical states observed, which appear at 398.2(N—Bi), 398.7(N—H), 401.1(N—C, NC), 404.2(N—O, N→O), 406.0(N—O, NO2), 529.9(O—Bi), 531.2(O—N, N→O) and 533.8 eV(O—N, NO2), respectively. The above results are in agreement with the chemical composition of Bi-ANPyO that we speculated, which are close to the our early study about Co(III) complex of ANPyO.

    The elemental analysis, FTIR and XPS measurements and analyses of Bi-ANPyO might indicate that the central Bi(III) ion contributes its six empty orbitals to accommodate the long pair electrons from the imine N atoms and N→O O atoms from three different deprotonated ANPyO molecules.

    2.2 Sensitivity

    In order to study the stability and hazardous nature of the Bi-ANPyO, we tested the sensitivity properties of the ANPyO and its Bi(III) complex, and compared this with that of TATB and Co(III), Fe(III) complexes of ANPyO. The results were shown in Table 2.

    ANPyO belongs to a multi-amino, multi-nitro-heterocyclic compound with the molecular structure of symmetry. The intramolecular, intermolecular hydrogen bonds are formed by the amino and nitro groups[20]. The molecular structure of ANPyO is planar, which is similar to the structure of graphite. When the ANPyO is stimulated by the external energy, the energy can flow in the entire planar, reducing the energy stimulus on the single ANPyO molecule. At the same time, the planar structure is similar to graphite, and can be used as a boundary lubricant. It can effectively reduce friction between interfaces and particles, as well as the probability of hot spot occurrence. This is the main reason for the lower sensitivity of ANPyO. In addition, the π-electron conjugated effect and the amino donor effect are also responsible for the low sensitivity of ANPyO.

    Table 2 Sensitivity test results of ANPyO and its Bi(III) complex

    CompoundImpactsensitivity/cmFrictionsensitivity/kgshocksensitivity/mmANPyO252365.6Bi(ANPyO)3220365.8Fe(AN-PyO)3272365.8Co(AN-PyO)3276365.8TATB320364.5

    When ANPyO forms energetic complexes with metals, i.e., Co(III), Fe(III), Pb(II), the crystal structure of the energetic complexes relative to ANPyO experienced two alterations. On one hand, when the crystal structure of the energetic complexes went from the ANPyO plane layered structure to the three-dimensional network structure, the intermolecular hydrogen bonds became weak. This is not condutive to reducing sensitivity of the energetic complexes. On the other hand, the unique coordination mode of the ANPyO direct coordinate with metals without additional anion or cation stabilizing the entire molecular complex. This helps to reduce the sensitivity of the energetic complexes. The sensitivity of the energetic complexes changes in the relative ANPyO depending on the combined results of two aspects. Our early study shows that Co(III), Fe(III) complexes of ANPyO exhibit lower sensitivity compared to that of ANPyO. From the analysis above, we deduce that the form of coordinate bonds and chelation might be the main reasons for the lower sensitivity in the Co(III) and Fe(III) complexes. As shown in Table 2, the impact sensitivity, friction sensitivity and shock wave sensitivity of Bi-ANPyO are 220 cm,36 kg and 5.8 mm, respectively. This clearly indicates that the sensitivity of Bi-ANPyO increases slightly compared to that of ANPyO. From the above analysis, we deduce that the form of Bi(III) might be the main reasons for the higher sensitivity in the Bi-ANPyO.

    2.3 Thermal decomposition behavior

    DSC and TG-DTG measurements were conducted to identify the thermal behavior of Bi(III) complex of ANPyO. DSC and TG-DTG curves of Bi(III) complex of ANPyO under the linear heating rate of 10 K/min were shown in Fig.3 and Fig.4.

    As shown in Fig.3, the thermal decomposition of the Bi(III) complex is divided into three stages. The first step is a slow weight loss process, with 26.2% mass loss from the initial mass in the temperature range of 264.9~331.4 ℃, which reaches the largest rate at 313.6 ℃. Corresponding to the DSC curve of the Bi(III) complex, which shows that there is one endothermic peak in the first step, within the range of 259.6~330.5 ℃.This is the endothermic decomposition process, with an endothermic peak of 320.6 ℃. The second step is a fast weight loss process, with 25.1% mass loss from the initial mass in the temperature range of 331.4~402.3 ℃, which reaches the largest rate at 350.9 ℃. Corresponding to the DSC curve of the Bi(III) complex, which shows that there is one exothermic peak in the second step, with the range of 330.5~364.5 ℃. A sharp exothermic peak is shown in the DSC curve with a peak temperature of 346.5 ℃. The third step is a slow weight loss process with 17.5% mass loss from the initial mass in the temperature range of 402.3~518.2 ℃, which reaches the largest rate at 467.2 ℃. The DSC curve of the Bi(III) complex shows that there is no obvious change in the third step. The mass fraction of the final residue is 31.2%, calculating that the final decomposition product might be Bi2O3.

    2.4 Catalytic effects on the thermal decomposition of AP

    2.4.1 TG-DSC analyses

    AP is the common oxidizer in composite solid propellants, and its thermal decomposition characteristics greatly influence the combustion behavior of solid propellants[21-22]. In order to provide theoretical support to further performance studies combustion catalysts, this study explore how the Bi(III) complex of ANPyO promotes thermal decomposition of AP. The catalytic performance of the complex on the thermal decomposition of AP was analyzed by TG-DTG and DSC measurements, and the results were shown in Fig.5, Fig.6 and Fig.7 (complex and AP were mixed at a mass ratio of 5∶95).

    Results of the TG-DTG measurements of pure AP and AP with 5% Bi(III) complex of ANPyO were shown in Fig.5 and Fig.6, respectively. As shown in Fig.5, the thermal decomposition of pure AP occurs in two weight loss steps. The 21% weight loss at low temperature(264.3~345.1℃) is attributed to the partial decomposition of AP. The 79% weight loss at high temperature(345.1~409.7℃) is caused by the complete decomposition of the intermediate to volatile products. The TG-DTG curves for the thermal decomposition of AP in the presence of Bi(III) complexes of ANPyO are shown in Fig.6. As shown in Fig.6, there are noticeable changes in the decomposition pattern. The thermal decomposition of AP catalyzed by Bi(III) complex of ANPyO contains only one step, corresponding to 98.5% weight loss. AP is completely decomposed at the lower temperature in a shorter time.

    The DSC curves for pure AP and AP in the presence of Bi(III) complex of ANPyO were also shown in Fig.7. The endothermic peak at 242.3 ℃ is due to a crystallographic transition. The exothermic peaks at 332.2 ℃ and 432.5 ℃ in Fig.7 are attributed to the low-temperature decomposition (LTD) process and the high-temperature decomposition (HTD) process of AP, corresponding to the two weight loss steps. The DSC curve of AP in the presence of Bi(III) complexes of ANPyO shows that the Bi(III) complex of ANPyO additive has no effects on the crystallographic transition temperature, but leading to significant changes in the decomposition pattern.

    The exothermic band of the system of the Bi(III) complex of ANPyO with AP had one broad peak and two flat peaks, suggesting a complicated mechanism of decomposition. The HTD peak of the mixture system (368.9 ℃) is 63.6 ℃, which is lower than of pure AP. The LTD peak of the mixture system (269.1 ℃) is 63.1 ℃, which is lower than of pure AP. Furthermore, the decomposition heat of the mixture systems (825.6 J/g) is 339.3 J/g higher than the corresponding value of pure AP.

    2.4.2 Non-isothermal reaction kinetics

    Kinetic parameters of the overall decomposition processes of pure AP[23]and AP in the presence of Bi(III) complex of ANPyO, calculated by the Kissinger's method[24], were given in Table 3. Specifically, for pure AP (Table 3), the calculated activation energies (Ek) of the LTD and HTD are 173.9 and 185.6 kJ/mol, respectively. However, in the presence of the Bi(III) complex of ANPyO additive, theEkof the AP decomposition in the LTD and HTD processes considerably decreases to 112.4 and 162.5 kJ/mol, respectively. The above results indicate that Bi(III) complex of ANPyO not only influences the primary dissociation of AP, but also accelerates the completely decomposition of AP. Clearly, Bi(III) complex of ANPyO exhibits a better catalytic activity on AP, which is consistent with the TG-DSC results. Furthermore, as shown in Table 3, Bi(III) complex of ANPyO significantly increases the overall heat in the HTD and LTD processes during the decomposition of AP.

    It can be inferred that the Bi(III) complex of ANPyO decomposes and releases a large amount of heat itself. This enhances the total heat of the mixture, as well as the formation of Bi2O3at the nano-sized level on the AP surface[23], which may contribute to its catalytic effect on the thermal decomposition of AP. Obviously, AP decomposition is accelerated in the presence of the Bi(III) complex of ANPyO.

    Table 3 Kinetic parameters of pure AP and AP mixtures in LTD and HTD processes calculated by the Kissinger's method

    3 Conclusions

    In conclusion, this study demonstrate a facile strategy to prepare for an energetic Bi(III) complex of ANPyO, and characterize its structure with FTIR spectroscopy, elemental and XPS analyses. The complex formula is Bi(C5H4N5O5)3. Tests on impact sensitivity, friction sensitivity and shock wave sensitivity of the complex reveal that the complex is slightly more sensitive to mechanical stimuli than ANPyO. TG-DTG and DSC analyses show that the thermal decomposition of the complex consists one endothermic and one exothermic peaks in the temperature range of 50~450 ℃ with 31.2% residue. TG-DTG and DSC analyses show that the complex exhibits good catalytic effects on the thermal decomposition of AP.

    Acknowledgements

    We gratefully acknowledge the financial support from Nanjing University of Science and Technology and Xi'an Modern Chemistry Research Institute. This work is supported by Five-Year (2011~2015) Pre-research Project (NO.62201070102) and Doctoral Innovation Program Foundation of Jiangsu Province (CXLX12 0646).

    [1] Ritter H,Licht H H. Synthesis and reactions of dinitrated amino and diaminopyridines[J]. Journal of Heterocyclic Chemistry,1995,32(2): 585-590.

    [2] Cheng J,Yao Q Z,Zhou X L,et al. Novel synthesis of 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Organic Chemistry,2008,28(11):1943-1947.

    [3] Urquiola C,Vieites M,Torre M H,et al. Cytotoxic palladium complexes of bioreductive quinoxaline N1,N4-dioxide prodrugs[J]. Bioorganic & Medicinal Chemistry,2009,17(4): 1623-1629.

    [4] Tarallo M B,Urquiola C,Monge A,et al. Design of novel iron compounds as potential therapeutic agents against tuberculosis[J]. Journal of Inorganic Biochemistry,2010,104(11): 1164-1170.

    [5] Liu J J,Liu Z L,Cheng J. Synthesis,crystal structure and properties of a novel tetra-nuclear Cu complex of ANPyO[J]. Journal of Solid State Chemistry,2013,197: 198-203.

    [6] Liu J J,Liu Z L,Cheng J,et al. Synthesis,crystal structure and properties of energetic complexes constructed from transition metal cations (Fe and Co) and ANPyO[J]. RSC Advances,2013,3(9): 2917-2923.

    [7] Liu J J,Liu Z L,Cheng J,et al. Synthesis,crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb2(C5H3N5O5)2(NMP)·NMP]n[J]. Journal of Solid State Chemistry,2013,200: 43-48.

    [8] Yang N,Sun H. Biocoordination chemistry of bismuth: recent advances[J]. Coordination Chemistry Reviews,2007,251(17): 2354-2366.

    [9] Brogan A P,Verghese J,Widger W R,et al. Bismuth-dithiol inhibition of the Escherichia coli rho transcription termination factor[J]. Journal of Inorganic Biochemistry,2005,99(3): 841-851.

    [10] Kotani T,Nagai D,Asahi K,et al. Antibacterial properties of some cyclic organobismuth (III) compounds[J]. Antimicrobial Agents and Chemotherapy,2005,49(7): 2729-2734.

    [11] Warren L C. Lead free and nitrogen free propellant formulation for next generation tactical missile applications includes zirconium carbide and ballistic additive from bismuth salicylate or bismuth citrate[P]. US. 2001,Patent: 6168677.

    [12] Neidert J B. Solid double base rocket propellants-contains Gp=IIA metal ions pref. calcium or strontium nitrate as burn rate modifiers[P].US.1994,Patent:5372070.

    [13] Thompson S B. Lead-free burn rate modifier for double base propellants comprising a normal or monobasic bismuth salt and a mixture of monobasic copper salicylate and di:hydroxy-benzoate[P]. US. 1997,Patent: 5652409.

    [14] Li N,Zhao F Q,Gao H X,et al. Thermokinetics of the formation reactions of metal (Li,Na,Pb,Cu) salts of 3-nitro-1,2,4-triazol-5-one[J]. Acta Physico-Chimica Sinica,2013,29(10): 2101-2106.

    [15] Song X Z,Zhao F Q,Liu Z R,Thermal decomposition mechanism,non-isothermal reaction kinetics of bismuth citrate and its catalytic effect on combustion of double-base propellant[J]. Chemical Journal of Chinese Universities,2006,27(1):125-128.

    [16] Yi J H,Zhao F Q,Hong W L,et al. Effects of Bi-NTO complex on thermal behaviors,nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant[J]. Journal of Hazardous Materials,2010,176(1): 257-261.

    [17] Meyer R,Kohler J. Explosives,4th revised and extended edition[M].Weinhein,VCH publishers,New York,1993:197-199.

    [18] Dixon W J,Mood A M. A method for obtaining and analyzing sensitivity data[J]. Journal of the American Statistical Association,1948,43(241): 109-126.

    [19] Liu Z T,Lao Y L. Initiating explosive experimental[M]. Beijing: Press of Beijing Institute of Technology,1995:238-250.

    [20] Hollins R A,Merwin L H,Nissan R A,et al. Aminonitropyridines and their N-oxides[J]. Journal of Heterocyclic Chemistry,1996,33(3): 895-904.

    [21] Chen L J,Li L P,Li G S. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds,2008,464(1): 532-536.

    [22] Cui P,Li F S,Zhou J,et al. Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate[J]. Propellants,Explosives,Pyrotechnics,2006,31(6): 452-455.

    [23] Cheng J,Zhang R X,Liu Z L,et al. Thermal decomposition mechanism of Co-ANPyO/CNTs nanocomposites and their application to the thermal decomposition of ammonium perchlorate[J]. RSC Advances,2015,5(62):50278-50288.

    (編輯:薛永利)

    ANPyO Bi(III)含能配合物的合成、表征、熱分解行為及其對高氯酸銨熱分解的催化作用

    張蓉仙1,鐘笑笙2,陸小剛1,柯志江1, 徐 駿3,成 健4,劉祖亮5

    (1.江蘇大學 化學化工學院,鎮(zhèn)江 212013;2.南京信息工程大學 雷丁學院,南京 210044;3.江蘇高性能合金材料研究院,丹江 212300;4.浙江工業(yè)大學 安全科學與工程系,杭州 310014;5.南京理工大學 化工學院,南京 210094)

    合成了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO) Bi(III)含能配合物,采用FTIR、元素分析和XPS光電子能譜表征了含能配合物的結構。根據(jù)結構表征結果推測,ANPyO Bi(III)含能配合物的分子式為Bi(C5H4N5O5)3,金屬離子與配體的配比為1∶3。其中,可能的配位方式為:每個配體ANPyO 2-位的氨基脫去一個氫原子,分別以NH和N→O結構單元中N原子和O原子與Bi(III)形成配位鍵。ANPyO Bi(III)含能配合物的撞擊感度、摩擦感度和沖擊波感分別為220 cm、36 kg和5.8 mm。采用TG-DTG和DSC測試考察了ANPyO Bi(III)含能配合物的熱分解行為,配合物在50~450 ℃范圍內(nèi)熱分解過程由一個吸熱熔融峰和分解放熱峰組成,相應的峰溫分別為320.6 ℃和346.5 ℃,配合物熱分解剩余殘渣量為31.2%。同時,考察了配合物對高氯酸銨熱分解的催化作用,并采用Kissinger法對純AP和AP混合物熱分解過程低溫分解階段和高溫分解階段的表觀活化能和指前因子進行了計算。結果表明,ANPyO Bi(III)含能配合物可使高氯酸銨高溫分解階段和低溫分解階段的峰溫提前63.6 ℃和63.1 ℃,表觀活化能降低23.1 kJ/mol和61.5 kJ/mol,表觀分解熱增加339.3 J/g??砂l(fā)現(xiàn),ANPyO Bi(III)含能配合物對AP的熱分解具有顯著的催化作用。

    含能配合物;ANPyO;感度;熱分解行為;催化作用

    date:2015-12-25;Revised date:2016-10-09。

    V512 Document Code:A Article ID:1006-2793(2017)04-0448-08

    Biography:Zhang Rong-xian(1966—),female, doctor, specialty: The flow field and thermal structure of solid rocket motor。E-mail:rong@ujs.edu.cn

    猜你喜歡
    催化作用峰溫高氯酸
    RDX熱分解特性及HMX對其熱穩(wěn)定性的影響
    含能材料(2020年2期)2020-02-19 08:10:18
    一類具有自動催化作用和飽和定律的雙分子模型的圖靈不穩(wěn)定性和霍普夫分歧
    探究仿真教學法在護理專業(yè)高效課堂中的應用
    淺談硫酸在高中階段涉及有機化學反應中的應用
    酸溶-高氯酸氧化光度法測定錳礦石中全錳的含量
    高氟高氯酸性廢水處理實驗研究
    煤氣化過程中鈣催化作用的研究進展
    化工進展(2015年3期)2015-11-11 09:05:36
    對稱性破缺:手性高氯酸乙酸·二(乙二胺)合鋅(Ⅱ)的合成與結構
    熱分析法研究ADN與推進劑組分的相互作用及相容性①
    3,6-二肼基-1,2,4,5-四嗪與固體推進劑組分的相互作用
    火炸藥學報(2013年4期)2013-01-29 07:33:30
    久久精品成人免费网站| 国产亚洲精品av在线| 一卡2卡三卡四卡精品乱码亚洲| 中亚洲国语对白在线视频| а√天堂www在线а√下载| 国产三级黄色录像| 亚洲成av片中文字幕在线观看| 美女免费视频网站| 国产精品影院久久| 午夜免费成人在线视频| 18禁观看日本| 999久久久国产精品视频| 999精品在线视频| 动漫黄色视频在线观看| 香蕉久久夜色| 色综合婷婷激情| 久久久久久久久中文| 久久久久精品国产欧美久久久| 亚洲国产中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲成a人片在线一区二区| 日本撒尿小便嘘嘘汇集6| 18禁黄网站禁片午夜丰满| 18禁裸乳无遮挡免费网站照片 | 可以在线观看毛片的网站| 亚洲国产精品久久男人天堂| 成人三级做爰电影| 亚洲免费av在线视频| 亚洲伊人色综图| 成人特级黄色片久久久久久久| 一二三四在线观看免费中文在| 国产亚洲精品久久久久久毛片| 麻豆成人av在线观看| 国产精品98久久久久久宅男小说| 成年版毛片免费区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美久久黑人一区二区| 级片在线观看| www.精华液| 成人三级做爰电影| 多毛熟女@视频| 两个人看的免费小视频| 一级毛片女人18水好多| 久久精品国产综合久久久| 欧美乱码精品一区二区三区| 欧美绝顶高潮抽搐喷水| 一本综合久久免费| 国产精品乱码一区二三区的特点 | 亚洲熟妇中文字幕五十中出| www.999成人在线观看| 久久久久久大精品| 国产精品精品国产色婷婷| 国产亚洲精品久久久久5区| 亚洲黑人精品在线| 久久精品国产亚洲av高清一级| 搡老妇女老女人老熟妇| 色播亚洲综合网| 免费看美女性在线毛片视频| 香蕉丝袜av| cao死你这个sao货| 如日韩欧美国产精品一区二区三区| 久99久视频精品免费| 成人手机av| 久久午夜亚洲精品久久| 亚洲成a人片在线一区二区| 成人18禁在线播放| 精品国内亚洲2022精品成人| 搞女人的毛片| 97人妻天天添夜夜摸| 日本免费一区二区三区高清不卡 | 久99久视频精品免费| 久久精品国产99精品国产亚洲性色 | tocl精华| 在线观看免费午夜福利视频| 国产麻豆69| 亚洲免费av在线视频| 欧美另类亚洲清纯唯美| 国产高清videossex| 夜夜躁狠狠躁天天躁| 国产成人免费无遮挡视频| 亚洲一区二区三区不卡视频| 久久国产精品影院| 老司机靠b影院| 日韩精品青青久久久久久| 在线观看免费视频网站a站| 久久精品影院6| 国产av精品麻豆| 51午夜福利影视在线观看| 午夜福利视频1000在线观看 | 777久久人妻少妇嫩草av网站| 亚洲精品中文字幕在线视频| 午夜免费成人在线视频| 色综合亚洲欧美另类图片| 天堂动漫精品| 极品教师在线免费播放| 亚洲国产欧美一区二区综合| 大香蕉久久成人网| 久久久国产成人免费| 成人国语在线视频| 熟女少妇亚洲综合色aaa.| 黄色a级毛片大全视频| 亚洲国产欧美网| 老司机在亚洲福利影院| 久久精品91蜜桃| 日本五十路高清| av欧美777| 国产黄a三级三级三级人| 免费看美女性在线毛片视频| 午夜福利在线观看吧| 在线观看免费午夜福利视频| 精品欧美一区二区三区在线| 久久影院123| 日日爽夜夜爽网站| 美女国产高潮福利片在线看| 亚洲三区欧美一区| 精品人妻1区二区| 国产一区在线观看成人免费| 国产精品,欧美在线| 国产精品九九99| 亚洲国产欧美一区二区综合| 久久久国产成人免费| aaaaa片日本免费| 两个人看的免费小视频| 在线十欧美十亚洲十日本专区| 国产精品1区2区在线观看.| 天天躁夜夜躁狠狠躁躁| avwww免费| 亚洲中文av在线| 国产精品 国内视频| 亚洲美女黄片视频| 亚洲美女黄片视频| 亚洲片人在线观看| 色综合站精品国产| 日韩高清综合在线| 国产区一区二久久| 啦啦啦观看免费观看视频高清 | 日韩三级视频一区二区三区| 90打野战视频偷拍视频| a在线观看视频网站| 久久草成人影院| 国产精品电影一区二区三区| 亚洲一区中文字幕在线| 一进一出抽搐gif免费好疼| 日本五十路高清| 99精品欧美一区二区三区四区| 极品教师在线免费播放| 桃红色精品国产亚洲av| 成人国语在线视频| 国产精品野战在线观看| 欧美不卡视频在线免费观看 | 极品人妻少妇av视频| 亚洲男人的天堂狠狠| 丝袜美足系列| 一边摸一边做爽爽视频免费| 人人妻人人澡欧美一区二区 | 桃色一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 色婷婷久久久亚洲欧美| 成人特级黄色片久久久久久久| 99re在线观看精品视频| 亚洲熟妇熟女久久| 一级片免费观看大全| 97超级碰碰碰精品色视频在线观看| 久久香蕉激情| 亚洲精品美女久久久久99蜜臀| 国产av精品麻豆| 国产成人精品在线电影| 如日韩欧美国产精品一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲午夜理论影院| 欧美日韩黄片免| 男女下面进入的视频免费午夜 | 国产高清视频在线播放一区| 日本欧美视频一区| 欧美黄色片欧美黄色片| a级毛片在线看网站| e午夜精品久久久久久久| 亚洲欧洲精品一区二区精品久久久| 看黄色毛片网站| 色哟哟哟哟哟哟| 久久狼人影院| 黑丝袜美女国产一区| 国产亚洲av嫩草精品影院| 99久久综合精品五月天人人| 99国产精品99久久久久| 午夜两性在线视频| 久久狼人影院| 久久人妻福利社区极品人妻图片| 一区在线观看完整版| 国产高清videossex| 日韩精品中文字幕看吧| 日韩精品青青久久久久久| 亚洲久久久国产精品| av网站免费在线观看视频| x7x7x7水蜜桃| 亚洲情色 制服丝袜| 九色亚洲精品在线播放| 久久久国产欧美日韩av| 国产av一区二区精品久久| av视频在线观看入口| 一进一出抽搐动态| 我的亚洲天堂| 亚洲欧美激情在线| 国产又色又爽无遮挡免费看| 成在线人永久免费视频| 99精品久久久久人妻精品| 久久伊人香网站| 少妇熟女aⅴ在线视频| 村上凉子中文字幕在线| 国产黄a三级三级三级人| 大香蕉久久成人网| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 99久久久亚洲精品蜜臀av| 国产不卡一卡二| 国产伦人伦偷精品视频| 精品无人区乱码1区二区| 人妻丰满熟妇av一区二区三区| 精品福利观看| 啦啦啦免费观看视频1| 免费观看人在逋| 在线av久久热| 9191精品国产免费久久| 成人av一区二区三区在线看| 午夜福利,免费看| 母亲3免费完整高清在线观看| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 一二三四在线观看免费中文在| avwww免费| 老鸭窝网址在线观看| www.精华液| 欧美日韩瑟瑟在线播放| 一级a爱片免费观看的视频| 免费女性裸体啪啪无遮挡网站| 99久久精品国产亚洲精品| 久久 成人 亚洲| 亚洲一区二区三区色噜噜| 精品乱码久久久久久99久播| 中国美女看黄片| 欧美一级毛片孕妇| 亚洲av成人一区二区三| 成人国产一区最新在线观看| 亚洲中文av在线| 午夜福利视频1000在线观看 | 国产亚洲av高清不卡| 波多野结衣av一区二区av| 国产精品爽爽va在线观看网站 | 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 黄片播放在线免费| 亚洲欧美激情在线| 免费在线观看完整版高清| 人成视频在线观看免费观看| 老司机福利观看| 国产精品国产高清国产av| 亚洲国产毛片av蜜桃av| 日本a在线网址| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看 | 最新在线观看一区二区三区| 亚洲专区字幕在线| 亚洲自拍偷在线| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 中文字幕精品免费在线观看视频| 亚洲精品一区av在线观看| 99国产综合亚洲精品| 精品无人区乱码1区二区| 精品高清国产在线一区| 日韩免费av在线播放| 午夜福利免费观看在线| 免费在线观看黄色视频的| 看片在线看免费视频| 国产高清视频在线播放一区| 国产欧美日韩精品亚洲av| 午夜精品在线福利| www.熟女人妻精品国产| 麻豆成人av在线观看| 欧美午夜高清在线| 高清毛片免费观看视频网站| 精品一区二区三区av网在线观看| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| 男人的好看免费观看在线视频 | 亚洲av成人av| 久久午夜亚洲精品久久| 亚洲情色 制服丝袜| 亚洲成人久久性| 久久香蕉国产精品| 国产麻豆成人av免费视频| 一级毛片高清免费大全| 自线自在国产av| 国产成人精品在线电影| 性欧美人与动物交配| 美女国产高潮福利片在线看| 一区福利在线观看| 亚洲七黄色美女视频| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 精品国产美女av久久久久小说| 夜夜爽天天搞| 成人18禁在线播放| 亚洲欧美日韩另类电影网站| 国产91精品成人一区二区三区| 午夜精品在线福利| 九色国产91popny在线| 妹子高潮喷水视频| 亚洲熟妇熟女久久| 久99久视频精品免费| 国产1区2区3区精品| 午夜精品国产一区二区电影| 亚洲无线在线观看| 免费不卡黄色视频| 757午夜福利合集在线观看| 亚洲国产看品久久| 亚洲黑人精品在线| 91大片在线观看| 日韩免费av在线播放| 国产av精品麻豆| 亚洲国产中文字幕在线视频| 亚洲电影在线观看av| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 国产1区2区3区精品| 一级a爱片免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 九色国产91popny在线| ponron亚洲| 日韩视频一区二区在线观看| 中文字幕色久视频| 一级a爱视频在线免费观看| 亚洲久久久国产精品| 午夜老司机福利片| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 精品卡一卡二卡四卡免费| 男人舔女人下体高潮全视频| 久久精品成人免费网站| 可以在线观看毛片的网站| 免费看a级黄色片| 夜夜爽天天搞| 黑人欧美特级aaaaaa片| 神马国产精品三级电影在线观看 | 午夜激情av网站| 国产精品一区二区三区四区久久 | 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 亚洲成人久久性| 久久中文字幕一级| 国产成人啪精品午夜网站| 999久久久精品免费观看国产| 啦啦啦 在线观看视频| 在线av久久热| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 亚洲欧美激情综合另类| 免费无遮挡裸体视频| 91精品三级在线观看| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 少妇的丰满在线观看| 日本黄色视频三级网站网址| 国产成人精品在线电影| 国产精品 欧美亚洲| 嫩草影视91久久| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 国产亚洲精品第一综合不卡| 国产精品久久视频播放| 久久青草综合色| 美女午夜性视频免费| 校园春色视频在线观看| 不卡av一区二区三区| 1024香蕉在线观看| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 亚洲狠狠婷婷综合久久图片| 人妻久久中文字幕网| 免费在线观看影片大全网站| 香蕉丝袜av| 久久影院123| 村上凉子中文字幕在线| www.www免费av| 在线国产一区二区在线| 一区二区日韩欧美中文字幕| 一级作爱视频免费观看| 在线永久观看黄色视频| 老鸭窝网址在线观看| 可以在线观看毛片的网站| 一级a爱片免费观看的视频| 久久精品91无色码中文字幕| 中文字幕高清在线视频| 国产高清激情床上av| 性少妇av在线| 国产精品免费视频内射| 免费高清在线观看日韩| 级片在线观看| 涩涩av久久男人的天堂| 给我免费播放毛片高清在线观看| 香蕉久久夜色| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区 | 久久久久久久久久久久大奶| 亚洲色图综合在线观看| 婷婷六月久久综合丁香| 免费在线观看亚洲国产| 国产亚洲av高清不卡| 国产av精品麻豆| 免费观看精品视频网站| 一区二区日韩欧美中文字幕| 国产成人av教育| 亚洲成人免费电影在线观看| 亚洲七黄色美女视频| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 欧美久久黑人一区二区| 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕| 亚洲色图av天堂| 免费观看人在逋| 中文字幕高清在线视频| 日韩欧美三级三区| 大码成人一级视频| 999久久久国产精品视频| 欧美成人一区二区免费高清观看 | 亚洲精品中文字幕在线视频| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频 | 精品午夜福利视频在线观看一区| 国产99白浆流出| 欧美在线一区亚洲| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 久久伊人香网站| 村上凉子中文字幕在线| 在线观看日韩欧美| 黄色成人免费大全| 搡老妇女老女人老熟妇| 国产成人av激情在线播放| 亚洲精品久久成人aⅴ小说| 女人精品久久久久毛片| 999精品在线视频| 国产精品久久视频播放| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 91大片在线观看| 一区福利在线观看| 久久久国产成人精品二区| 黄色 视频免费看| 亚洲精品久久国产高清桃花| 欧美激情高清一区二区三区| 满18在线观看网站| 精品卡一卡二卡四卡免费| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 在线视频色国产色| 亚洲人成伊人成综合网2020| 亚洲 欧美 日韩 在线 免费| 最近最新免费中文字幕在线| 好看av亚洲va欧美ⅴa在| 天堂√8在线中文| 天堂影院成人在线观看| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| 精品电影一区二区在线| 久久性视频一级片| 一级a爱视频在线免费观看| 国产高清有码在线观看视频 | 欧美黑人欧美精品刺激| 法律面前人人平等表现在哪些方面| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 999精品在线视频| 99riav亚洲国产免费| 欧美激情久久久久久爽电影 | 成人永久免费在线观看视频| 女性生殖器流出的白浆| 精品国产乱子伦一区二区三区| 在线永久观看黄色视频| 成熟少妇高潮喷水视频| 亚洲国产毛片av蜜桃av| 欧美色欧美亚洲另类二区 | 国产麻豆成人av免费视频| 亚洲精品国产区一区二| 一级,二级,三级黄色视频| 好看av亚洲va欧美ⅴa在| 久久婷婷人人爽人人干人人爱 | 欧美乱码精品一区二区三区| 午夜精品国产一区二区电影| 国产精品日韩av在线免费观看 | 日韩一卡2卡3卡4卡2021年| 久久久久久久久中文| 亚洲中文字幕一区二区三区有码在线看 | 男男h啪啪无遮挡| 免费高清视频大片| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 亚洲男人的天堂狠狠| 搡老岳熟女国产| 可以免费在线观看a视频的电影网站| 免费看a级黄色片| av片东京热男人的天堂| 嫩草影视91久久| 欧美日韩福利视频一区二区| 欧美亚洲日本最大视频资源| 成人手机av| 亚洲精品中文字幕在线视频| 亚洲成av人片免费观看| 亚洲电影在线观看av| 一本久久中文字幕| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 亚洲欧美日韩另类电影网站| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 大香蕉久久成人网| 久久香蕉精品热| 男人的好看免费观看在线视频 | 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 国产一区二区三区视频了| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 麻豆国产av国片精品| 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 丝袜在线中文字幕| 别揉我奶头~嗯~啊~动态视频| 纯流量卡能插随身wifi吗| 可以在线观看的亚洲视频| ponron亚洲| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产中文字幕在线视频| 国产91精品成人一区二区三区| 欧美久久黑人一区二区| 中文字幕人妻丝袜一区二区| 日日爽夜夜爽网站| 亚洲av电影在线进入| 咕卡用的链子| 久久中文字幕人妻熟女| 国产精品亚洲美女久久久| 欧美日韩乱码在线| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 欧美日韩精品网址| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 午夜福利视频1000在线观看 | 一级片免费观看大全| 变态另类成人亚洲欧美熟女 | 少妇 在线观看| 这个男人来自地球电影免费观看| 亚洲中文字幕日韩| 亚洲成av人片免费观看| 999精品在线视频| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人一区二区三区免费视频网站| 亚洲欧美日韩另类电影网站| 久久精品成人免费网站| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 啦啦啦韩国在线观看视频| videosex国产| 午夜福利影视在线免费观看| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 国产一区在线观看成人免费| 多毛熟女@视频| 深夜精品福利| 麻豆一二三区av精品| av在线天堂中文字幕| 亚洲最大成人中文| 久久久久国内视频| 亚洲中文字幕一区二区三区有码在线看 | 久久人妻熟女aⅴ| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 丝袜在线中文字幕| 久久这里只有精品19| 久久国产乱子伦精品免费另类| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 亚洲色图综合在线观看| 国内毛片毛片毛片毛片毛片| 岛国在线观看网站| 桃红色精品国产亚洲av| 男人舔女人的私密视频| www国产在线视频色| 久热这里只有精品99| 亚洲在线自拍视频| videosex国产| 欧美日韩瑟瑟在线播放| 18禁裸乳无遮挡免费网站照片 | 亚洲国产欧美网|