孫斌,李明,陳東平,田曼陽,陳懷俠
(湖北大學(xué)化學(xué)化工學(xué)院,湖北 武漢 430062)
核殼Fe3O4磁微粒制備及其農(nóng)殘磁固相萃取應(yīng)用
孫斌,李明,陳東平,田曼陽,陳懷俠
(湖北大學(xué)化學(xué)化工學(xué)院,湖北 武漢 430062)
通過溶膠-凝膠法在四氧化三鐵納米粒子表面包覆二氧化硅,其后通過3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)在SiO2表面接枝雙鍵,加熱條件下與單體甲基丙烯酸(MAA)和交聯(lián)劑乙二醇二甲基丙烯酸酯(EGDMA)發(fā)生聚合反應(yīng)。最終得到磁性聚合物微球,并將其應(yīng)用于橙汁樣品中殺蟲劑類農(nóng)藥的分離富集,優(yōu)化了萃取條件如洗脫劑種類和體積、吸附時(shí)間、酸度、離子強(qiáng)度等,建立橙汁樣品中甲萘威、異丙威、克百威的固相微萃取-高效液相色譜(SPME-HPLC)分離分析方法,并進(jìn)行了方法考察和橙汁中的農(nóng)藥殘留分析.
功能化核殼Fe3O4;磁固相萃取;甲萘威;異丙威;克百威
在農(nóng)業(yè)生產(chǎn)中,為了作物增產(chǎn)而提高經(jīng)濟(jì)效益,農(nóng)藥尤其是殺蟲劑的使用與日俱增,勢必造成環(huán)境和食品的農(nóng)藥殘留問題,而空氣、水和食品中的農(nóng)藥殘留會(huì)嚴(yán)重威脅人們的健康。氨基甲酸酯類殺蟲劑對(duì)農(nóng)業(yè)害蟲具有內(nèi)吸、觸殺、選擇性強(qiáng)等特效,被廣泛用于糧食和瓜果蔬菜等生產(chǎn)中[1-4]. 所以,食品中該類農(nóng)藥殘留檢測對(duì)于食品安全質(zhì)量控制具有十分重要的意義.
近年來,環(huán)境和果蔬中農(nóng)藥殘留的檢測分析備受關(guān)注[5-7]. 然而,在實(shí)際樣品分析時(shí),由于基質(zhì)復(fù)雜,農(nóng)藥殘留量低,農(nóng)藥殘留的直接檢測難以實(shí)現(xiàn). 因此快速靈敏、高選擇性的樣品前處理是準(zhǔn)確測定食品農(nóng)殘的關(guān)鍵步驟. 磁固相萃取(Magnetic solid phase extraction,MSPE)是一種新型的樣品前處理方法[8],該方法簡單快速、成本低、提取高效,有機(jī)溶劑使用量少,已經(jīng)應(yīng)用于生物制藥、環(huán)境分析、食品檢測等領(lǐng)域[9-11]. 納米Fe3O4表面聚合功能化是MSPE的有效吸附介質(zhì)[12-13].
本文中用分散聚合法制備表面聚合的核殼納米Fe3O4磁性微粒,利用紅外光譜、熱重分析和掃描電鏡對(duì)磁性聚合物微球進(jìn)行結(jié)構(gòu)表征. 通過磁固相萃取條件的優(yōu)化,建立了操作簡單、靈敏快速的甲萘威、異丙威和克百威MSPE-HPLC分析方法,并應(yīng)用于橙汁樣品農(nóng)殘分析,結(jié)果滿意.
1.1 儀器與試劑 儀器:LC-CT310型高效液相色譜儀(江蘇天瑞儀器股份有限公司);UV310型紫外可見檢測器(江蘇天瑞儀器股份有限公司);SMT-C18色譜柱(美國Supelco Technologies,DE);Kertone 型超純水機(jī)(坷爾頓公司);JHX2H微型漩渦混合儀(京輝科技有限公司);XYH型真空干燥箱(南京百萬機(jī)械儀器有限公司);可調(diào)式移液器(上海);CP213分析天平(上海五相儀器有限公司);超聲儀(美國Branson200公司 );SPECTRUM ONE型紅外光譜儀(美國Perkin Elmer公司);DIAMOND TG/DTA型熱重分析儀(美國Perkin Elmer公司);X-650型掃描電子顯微鏡(日本Hitachi公司).
試劑:甲萘威(99.5%)、異丙威(99.5%)、克百威(99.5%)購自迪馬科技有限公司;正硅酸乙酯(TEOS)、丙基三甲氧基硅烷(MPS)(阿拉丁,上海);氯化亞鐵(II)(FeCl2·4H2O,天津);氯化鐵(FeCl3·6H2O,天津);2,2-偶氮-2-異丁腈(AIBN)(V-60,上海試劑四廠,分析純);2-甲基-2-丙烯酸-1,2-乙二醇酯(EGDMA,美國Sigma公司,使用前用NaOH溶液多次處理,再用超純水分多次萃取后用干燥劑進(jìn)行干燥);甲基丙烯酸(MAA,天津,分析純,使用前減壓蒸餾);甲醇和乙腈(色譜純,美國Tedia公司).1.2 材料合成
1.2.1 合成Fe3O4納米粒子[14]將1.72 g的FeCl2·4H2O和4.72 g的FeCl3·6H2O溶解在80 mL超純水中,在氮?dú)獗Wo(hù)下高速攪拌(800 r/min). 隨著溫度升高到80 ℃,緩慢加入氨水10 mL,在該溫度下反應(yīng)30 min.將產(chǎn)品進(jìn)行磁分離,以超純水清洗納米材料,60 ℃真空干燥.
1.2.2 合成Fe3O4@SiO2[15]稱取0.3 g Fe3O4于50 mL三頸燒瓶中,加入50 mL乙醇和4 mL超純水,超聲15 min,加入5 mL 氨水和2 mL TEOS(正硅酸乙酯). 室溫下攪拌反應(yīng)24 h. 磁鐵分離,用乙醇和超純水沖洗磁材料,60 ℃真空干燥.
1.2.3 合成Fe3O4@SiO2@MPS[16]稱取0.15 g Fe3O4@SiO2于100 mL三頸燒瓶中,加入30 mL無水甲苯和1 mL MPS,60 ℃水浴反應(yīng)5 h,磁鐵分離,并用乙醇清洗磁材料,60 ℃真空干燥.
1.2.4 合成功能化核殼磁微粒 稱取0.1 g 上述合成的Fe3O4@SiO2@MPS懸浮在20 mL甲苯中(于50 mL三頸燒瓶中),攪拌1 h,加入170 mL MAA,繼續(xù)攪拌1 h,加入1.9 mL EGDMA和0.08 g AIBN,60 ℃反應(yīng)24 h,產(chǎn)物用磁鐵分離,用乙醇洗凈,60 ℃真空干燥,得到表面聚合Fe3O4磁微粒.
1.3 色譜條件 流動(dòng)相為甲醇溶液,V甲醇∶V水=65∶35;流速:1.0 mL/min;柱溫:30 ℃;進(jìn)樣量:20 μL;測試波長:208 nm和280 nm.
1.4 磁固相萃取 磁固相萃取過程如圖1所示,10 mg磁微粒分別以1 mL甲醇和超純水清洗活化后,加入20 mL 200 ng mL-1甲萘威、異丙威、克百威混合標(biāo)準(zhǔn)溶液,超聲30 min,磁分離,棄去上清液,加入1 mL甲醇洗脫目標(biāo)物,洗脫液以0.22 μm濾膜過濾,進(jìn)行高效液相色譜分析. 所有實(shí)驗(yàn)均采用回收率(ER)作為評(píng)價(jià)標(biāo)準(zhǔn),其定義為:
其中:Celu——洗脫液中分析物的濃度;C0——樣品溶液中分析物的濃度;Velu——洗脫液的體積;Vaq——樣品溶液的體積.
圖1 磁固相萃取
復(fù)合磁材料的熱重分析(TGA)見圖3,可知,300 ℃到450 ℃時(shí),磁性材料有一個(gè)快速減重過程,說明磁材料良好的熱穩(wěn)定性,滿足磁固相微萃取的室溫提取要求.
圖2 Fe3O4(a),F(xiàn)e3O4@SiO2(b),F(xiàn)e3O4@SiO2@MPS(c) 和磁性微粒(d)的傅立葉紅外光譜
圖3 磁性微粒熱重(TGA)曲
Fe3O4(a)、Fe3O4@SiO2(b)和復(fù)合磁微粒(c)的掃描電鏡圖如圖4所示. 可以看出,表面聚合磁微粒粒徑約為800 nm,遠(yuǎn)遠(yuǎn)大于Fe3O4和Fe3O4@SiO2,表明表面聚合物的形成.
圖4 Fe3O4(a),F(xiàn)e3O4@SiO2(b)和復(fù)合磁微粒 (c)的掃描電鏡
2.2 磁固相萃取條件優(yōu)化
2.2.1 洗脫劑種類選擇 分別以1 mL的甲醇、乙腈和不同配比的甲醇和乙腈混合液為洗脫劑,對(duì)10 mL 200 ng mL-1甲萘威、異丙威、克百威的混標(biāo)溶液的磁萃取進(jìn)行洗脫分析. 結(jié)果表明,不同洗脫劑洗脫效果相當(dāng),因乙腈毒性較大,因此洗脫液選擇甲醇.
2.2.2 吸附時(shí)間考察 分別考察吸附20、30、40、50、60和70 min時(shí)的萃取回收率,結(jié)果發(fā)現(xiàn),隨著吸附時(shí)間增加,回收率升高,在60 min以后趨于穩(wěn)定,因此,吸附時(shí)間選擇60 min.2.2.3 洗脫液體積考察 選擇0.4、0.6、0.8、1.0、1.2和1.4 mL的甲醇洗脫,結(jié)果發(fā)現(xiàn),當(dāng)洗脫液體積由0.4 mL增加到1.0 mL時(shí),回收率隨之升高,再增大洗脫液體積,回收率變化不大,因此洗脫液體積選擇1.0 mL.2.2.4 溶液酸度考察 克百威、甲萘威、異丙威強(qiáng)堿性中易分解,所以用H3PO4分別調(diào)節(jié)溶液pH為2、3、4、5、6、7,進(jìn)行磁固相微萃取. 結(jié)果顯示,pH為7時(shí),目標(biāo)物回收率最佳,因而選擇溶液pH為7.
2.3 實(shí)際樣品應(yīng)用 對(duì)超市中購買的鮮橙多樣品,經(jīng)過0.22 μm濾膜過濾后,取濾液10 mL于培養(yǎng)皿中,加10 mg磁材料,超聲60 min. 磁分離后,加入1.0 mL甲醇,超聲10 min,洗脫液過濾后進(jìn)行HPLC分析. 結(jié)果顯示,樣品未檢測出甲萘威、異丙威、克百威農(nóng)藥殘留.
表1 克百威、甲萘威和異丙威的線性范圍、檢測限和定量限
表2 加標(biāo)回收率和精密度
表3 本方法和其他分析方法的比較
圖5 208 nm(A)和280 nm(B)下空白橙汁樣品直接進(jìn)樣(1)、加標(biāo)進(jìn)樣(2)、經(jīng)SPME富集(3)后的色譜
以表面分散聚合法制備了Fe3O4聚合磁微粒,并進(jìn)行了材料形貌、結(jié)構(gòu)、穩(wěn)定性和吸附性能表征. 在優(yōu)化的MSPE條件下,建立了克百威、甲萘威和異丙威的MSPE-HPLC分離分析方法,并應(yīng)用于實(shí)際橙汁樣品分析.結(jié)果表明,此方法具有良好的回收率和富集效果,檢測限低,能滿足橙汁樣品中農(nóng)藥殘留的檢測分析.
[1] Chen T W, Fu F F, Chen Z X, et al. Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry[J]. J Chromatogr A, 2009, 1216(15): 3217-3222.
[2] Chen T W, Fu F F, Chen Z X, et al. Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry[J]. J Chromatogr A, 2009, 1216(15):3217-3222.
[3] Moffatt F, Cooper P A, Jessop K M. Comparison of capillary electrochromatography with high-performance liquid chromatography for the analysis of pirimicarb and related compounds[J]. J Chromatogr A, 1999,855(1):215-226.
[4] Carabias-Martinez R, Rodriguez-Gonzalo E, Paniagua-Marcos P H. Analysis of pesticide residues in matrices with high lipid contents by membrane separation coupled on-line to a high-performance liquid chromatography system[J]. J Chromatogr A, 2000, 869(1/2):427-439.
[5] Dzuman Z, Zachariasova M, Veprikova Z, M. et al. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids[J]. Anal Chem Acta, 2015, 863: 29-40.
[6] Jia W, Chu X G, Ling Y, et al. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole orbit rap mass spectrometry[J]. J Chromatogr A, 2014, 1347: 122-128.
[7] Xiao Z M, Yang Y X, Li Y, et al. Determination of neonicotinoid insecticides residues in eels using subcritical water extraction and ultra-performance liquid chromatography-tandem mass spectrometry[J]. Anal Chem Acta, 2013, 777: 32-40.
[8] Madi F, Assadi Y, Hosseini M. Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector[J]. J Chromatogr A, 2006, 1101 (1/2): 307-312.
[9] Lambropoulou D A, Psillakis E, Albanis T A. Single-drop microextraction for the analysis of organophosphorus insecticides in water[J]. Anal Chim Acta, 2004, 516 (1/2): 205-211.
[10] Wood D C, Miller J M, Christ I. Sample prep. perspectives: headspace liquid micro-extraction[J]. LCGC North Am, 2004, 22 (6): 516-522.
[11] Tankevicinte A, Kazlauskas R, Vickackalte V. Headspace extraction of alcohols into a single drop[J]. Analyst, 2001, 126 (10): 1674-1677.
[12] Jiang C Z, Sun Y, Yu X. Removal of sudan dyes from water with C18-functional ultra fine magnetic silica nano particles[J]. Talanta, 2012, 89: 38-46.
[13] Men H F, Liu H Q, Zhang Z L. Synthesis, properties and application research of atrazine Fe3O4@SiO2magnetic molecularly imprinted polymer[J]. Environ Sci, 2012, 19(6): 2271-2280.
[14] Zhang M, Zhang Z, Liu Y. Preparation of core-shell magnetic ion-imprinted polymer for selective extraction of Pb(II) from environmental samples[J]. Chem Environ Sci, 2011, 178: 443-450.
[15] Kong X, Gao R, He X. Synthesis and characterization of the core-shell magnetic molecularly imprinted polymer (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed[J]. J Chromatogr A, 2012, 1245: 8-16. [16] Karimi M, Aboufazeli F, Zhad H R. Determination of sulfonamides in chicken meat by magnetic molecularly imprinted polymer coupled to HPLC-UV[J]. Food Anal Chem, 2014, 7(1): 73-80.
[17] Nogueira J M F, Sandra T, Sandra P. Considerations on ultra trace analysis of carbamates in water samples[J]. J Chromatogr A, 2003, 996: 133-140.
[18] Wu Q H, Zhou X, Li Y M. Graphene-coated fiber for solid-phase microextraction of triazine herbicides in water samples[J].Anal Bioanal Chem, 2009, 393: 1755-1761.
[19] Zhang J, Lee H K. Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography-mass spectrometry to the determination of carbamate pesticides[J]. J Chromatogr A, 2006, 1117: 31-37.
(責(zé)任編輯 胡小洋)
Preparation of nano Fe3O4magnetic polymer microspheres and theirapplication in magnetic solid phase microextraction for pesticide residual
SUN Bin, LI Ming, CHEN Dongping, TIAN Manyang, CHEN Huaixia
(College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062,China)
Fe3O4@SiO2microspheres were prepared by sol-gel method and then magnetic silica colloids with surface modification byγ-methacryloxypropyl trimethoxy silane were synthesized. This composite material was prepared by dispersion polymerization of MAA and EGDMA in the presence of Fe3O4@SiO2@MPS microspheres with the surface containing abundant reactive double bonds. The resultant sorbent materials were applied to separation and concentration of carbaryl, isoprocarb and carbofuran. The eluent type, volume, adsorption time, acidity and ionic strength were investigated, in detail. Under the optimized conditions, a simple and sensitive SPME-HPLCmethod for the determination of carbaryl, isoprocarb and carbofuran in orange juice had been developed.
Fe3O4@SiO2; SPME-HPLC; carbaryl; isoprocarb; carbofuran
2017-01-15
國家自然科學(xué)基金(2009CDB364)資助
孫斌(1989-),男,碩士生;陳懷俠,通信作者,教授,E-mail:hxch@hubu.edu.cn
1000-2375(2017)05-0480-05
TB383
A
10.3969/j.issn.1000-2375.2017.05.008