劉淑貞,周文果,葉偉建,陳江平,巫朝華,陳東清,黃建聯(lián)
(福建安井食品股份有限公司,福建廈門361022)
活性多糖的生物活性及構(gòu)效關(guān)系研究進(jìn)展
劉淑貞,周文果,葉偉建,陳江平,巫朝華,陳東清,黃建聯(lián)*
(福建安井食品股份有限公司,福建廈門361022)
活性多糖來(lái)源廣泛,具有免疫調(diào)節(jié)、抗腫瘤、抗病毒、抗氧化、降血糖等生物活性,且其生物活性與結(jié)構(gòu)密切相關(guān)?;钚远嗵且殉蔀槭称房茖W(xué)和醫(yī)學(xué)領(lǐng)域的研究熱點(diǎn)之一,也是一類重要的保健食品功能因子。對(duì)活性多糖的主要來(lái)源、生物活性及主要作用機(jī)制、構(gòu)效關(guān)系以及發(fā)展前景進(jìn)行綜述,為活性多糖的進(jìn)一步開發(fā)和利用提供理論基礎(chǔ)。
活性多糖;生物活性;作用機(jī)制;構(gòu)效關(guān)系
多糖(polysaccharide)是一類由10個(gè)以上相同或不同單糖通過(guò)糖苷鍵連接而成的高分子化合物,廣泛存在于生物體中。其中具有促進(jìn)機(jī)體健康,控制細(xì)胞分化,調(diào)節(jié)細(xì)胞生長(zhǎng)衰老,參與細(xì)胞識(shí)別、細(xì)胞代謝、胚胎發(fā)育、病毒感染、免疫應(yīng)答等多項(xiàng)生命活動(dòng)的一類多糖稱為生物活性多糖(bioactive polysaccharides)或生物應(yīng)答效應(yīng)物(biological response modifier,BRM)[1]。活性多糖的化學(xué)結(jié)構(gòu)決定其生物活性,活性多糖的構(gòu)效關(guān)系研究可為其生物活性的目的性篩選提供理論指導(dǎo)?;钚远嗵蔷哂邪踩愿?、毒副作用小、療效好、來(lái)源廣等特點(diǎn),近年來(lái)受到國(guó)內(nèi)外學(xué)者的廣泛關(guān)注,成為食品科學(xué)、醫(yī)學(xué)、分子生物學(xué)等領(lǐng)域的研究熱點(diǎn)之一。對(duì)活性多糖的主要來(lái)源、生物活性及主要作用機(jī)制、構(gòu)效關(guān)系以及發(fā)展前景進(jìn)行綜述,以期為活性多糖的深入開發(fā)和利用提供理論參考。
活性多糖來(lái)源廣泛,主要有真菌多糖、海洋生物多糖和植物多糖等。真菌多糖是從真菌菌絲體、子實(shí)體、發(fā)酵液中分離出的一類活性多糖。海洋生物多糖根據(jù)其來(lái)源不同,可分為海藻多糖、海洋動(dòng)物多糖和海洋微生物多糖3類。植物多糖根據(jù)其存在部位可分為細(xì)胞內(nèi)多糖、細(xì)胞壁多糖和細(xì)胞外多糖。香菇多糖、云芝多糖、裂褶多糖和豬苓多糖已應(yīng)用于臨床上,而香菇多糖片、猴頭菇多糖片、靈芝多糖片等真菌多糖類保健品也已投放市場(chǎng)。常見(jiàn)主要活性多糖及來(lái)源見(jiàn)表1。
表1 主要活性多糖及來(lái)源Table 1 Main bioactive polysaccharides and their origins
許多多糖具有免疫調(diào)節(jié)作用,且其調(diào)節(jié)作用是多環(huán)節(jié)多方位的,不僅能夠促進(jìn)免疫器官指數(shù)的增長(zhǎng),激活巨噬細(xì)胞、T淋巴細(xì)胞、B淋巴細(xì)胞、自然殺傷細(xì)胞(natural killer cell,NK)等免疫細(xì)胞,而且能促進(jìn)細(xì)胞因子生成和抗體的產(chǎn)生、激活補(bǔ)體系統(tǒng),從而提高機(jī)體免疫力。
活性多糖可促進(jìn)機(jī)體免疫器官的生長(zhǎng)發(fā)育,并可部分恢復(fù)環(huán)磷酰胺引起的免疫器官抑制作用,提高胸腺和脾臟等臟器指數(shù),進(jìn)而提高機(jī)體免疫功能[2]。Ding等[3]發(fā)現(xiàn)龍葵多糖SNLWP-1、SNLAP-1和 SNLAP-2組分在30 mg/kg~100 mg/kg的劑量范圍內(nèi)都能顯著提高荷瘤小鼠的脾臟和胸腺指數(shù)。Chen等[4]給環(huán)磷酰胺免疫抑制小鼠灌胃紅豆杉多糖組分SCP-II,結(jié)果發(fā)現(xiàn)不僅小鼠的脾淋巴細(xì)胞增殖,而且其胸腺指數(shù)和脾臟指數(shù)也提高了。
T淋巴細(xì)胞、B淋巴細(xì)胞是介導(dǎo)機(jī)體特異性免疫的主要細(xì)胞。Xia等[5]在研究鐵皮石斛多糖(dendrobium polysaccharides,DOP)和兩個(gè)純化組分DOP1和DOP2對(duì)小鼠脾臟淋巴細(xì)胞增殖活性的影響時(shí)發(fā)現(xiàn),當(dāng)濃度在100 μg/mL時(shí),三者均能不同程度提高脾淋巴細(xì)胞的增殖活性。也有研究表明,黃芪多糖可提高病理狀態(tài)下外周血T、B淋巴細(xì)胞的增殖,增強(qiáng)淋巴細(xì)胞與內(nèi)皮細(xì)胞的黏附,促進(jìn)淋巴細(xì)胞再循環(huán),增加淋巴細(xì)胞與抗原的接觸機(jī)會(huì),擴(kuò)大免疫反應(yīng)、增強(qiáng)機(jī)體免疫功能[6]。香菇多糖是T細(xì)胞激活劑,在體內(nèi)、體外均能促進(jìn)細(xì)胞毒T淋巴細(xì)胞(cytotoxic T lymphocyte,CTL)的產(chǎn)生,提高CTL的殺傷活力,提高抗體依賴性細(xì)胞毒細(xì)胞(antibody dependent cell-mediated cytotoxic cell,ADCC)活性[7]。Yi等[8]研究發(fā)現(xiàn)龍眼肉中的 3 種純化多糖在100 μg/mL~400 μg/mL的劑量范圍內(nèi)能刺激B淋巴細(xì)胞增殖。
巨噬細(xì)胞是免疫效應(yīng)細(xì)胞,具有免疫防御、免疫監(jiān)視、免疫調(diào)節(jié)以及抗原遞呈等多種免疫功能,它可分泌多種生物活性物質(zhì),通過(guò)遞呈抗原給T淋巴細(xì)胞、B淋巴細(xì)胞,吞噬和清除異物以及衰老和死亡的細(xì)胞,從而參與機(jī)體的非特異性免疫和特異性免疫應(yīng)答。活性多糖對(duì)巨噬細(xì)胞的免疫調(diào)節(jié)作用主要包括:促進(jìn)巨噬細(xì)胞增殖;促使巨噬細(xì)胞產(chǎn)生活性氧簇(reactive oxygen species,ROS),殺傷腫瘤細(xì)胞;促使巨噬細(xì)胞分泌細(xì)胞因子和趨化因子。從蛹蟲草子實(shí)體中提取的多糖CM可通過(guò)激活轉(zhuǎn)錄因子(nuclear factor kappa,NF-kB)、絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPKs)信號(hào)通路來(lái)激活巨噬細(xì)胞,增強(qiáng)小鼠腹腔巨噬細(xì)胞和RAW264.7巨噬細(xì)胞吞噬作用[9]。Schepetkin等[10]從刺柏的果實(shí)中提取分離得到是五種多糖中有兩種能激活巨噬細(xì)胞的免疫活性,誘導(dǎo)巨噬細(xì)胞分泌白細(xì)胞介素-1(interleukin-1,IL-1)、IL-6、IL-10、IL-12和腫瘤壞死因子(tumor necrosis factorα,TNF-α)。藥用刺柏果實(shí)的療效主要是由調(diào)節(jié)巨噬細(xì)胞免疫活性得以實(shí)現(xiàn)的。
NK細(xì)胞是機(jī)體重要的免疫細(xì)胞,與抗腫瘤、抗病毒感染和免疫調(diào)節(jié)有關(guān),可以直接殺傷靶細(xì)胞。對(duì)B淋巴細(xì)胞、T淋巴細(xì)胞和骨髓干細(xì)胞等均有一定調(diào)節(jié)作用,并通過(guò)分泌細(xì)胞因子來(lái)調(diào)節(jié)機(jī)體免疫功能。Yang等[11]研究發(fā)現(xiàn)連續(xù)7 d給小鼠灌胃油菜花粉多糖可增強(qiáng)荷肉瘤S180細(xì)胞小鼠和黑色素瘤細(xì)胞小鼠脾臟中NK的活性,且存在劑量依賴效用。從獼猴桃根部提取的多糖和4種純化的多糖可通過(guò)促進(jìn)荷瘤小鼠脾臟NK細(xì)胞對(duì)K562細(xì)胞的殺傷活性來(lái)抑制腫瘤的生長(zhǎng)[12]。Guang等[13]研究發(fā)現(xiàn)月見(jiàn)草多糖對(duì)小鼠H22腫瘤具有抑制增殖作用,同時(shí)促進(jìn)NK細(xì)胞對(duì)小鼠淋巴瘤細(xì)胞的殺傷活性。
從冬蟲夏草的子實(shí)體中提取的多糖可通過(guò)調(diào)節(jié)IL-4、IL-17、IL-5等多種細(xì)胞因子的分泌水平來(lái)提高經(jīng)電力輻射小鼠的免疫活性[14]。菖蒲根莖中的一種果膠多糖可刺激小鼠巨噬細(xì)胞IL-12和一氧化氮(NO)的產(chǎn)生,同時(shí)誘導(dǎo)人外周血單核細(xì)胞TNF-α的分泌[15]。Grace等[16]研究了從姜黃中提取的一種多糖組分H2的免疫活性,發(fā)現(xiàn)它可提高人外周血單核細(xì)胞轉(zhuǎn)化生長(zhǎng)因子(transform growth factor-β,TGF-β)、TNF-α、粒細(xì)胞巨噬細(xì)胞刺激因子(granulocyte-macrophage colonystimulating factor,GM-CSF)、IL-1α、IL-5、IL-6、IL-8、IL-10、IL-13等細(xì)胞因子的分泌水平。
補(bǔ)體系統(tǒng)是機(jī)體重要的免疫防御因素,在機(jī)體的非特異性和特異性免疫效應(yīng)過(guò)程中發(fā)揮作用,并參與炎癥反應(yīng)和多種病例過(guò)程。Zhu等[17]從杜仲樹皮中分離出一種水溶性蛋白多糖EWDS-2,它可通過(guò)經(jīng)典途徑和替代途徑抑制補(bǔ)體活性,其CH50和AP50值分別為(282±11)μg/mL和(144±17)μg/mL。不同來(lái)源多糖的免疫調(diào)節(jié)功能及作用機(jī)制見(jiàn)表2。
表2 不同來(lái)源多糖的免疫調(diào)節(jié)功能及作用機(jī)制Table 2 Immunomodulation and its mechanism of different polysaccharides
抗腫瘤是多糖的重要生物學(xué)活性,其在體內(nèi)外實(shí)驗(yàn)中均表現(xiàn)出良好的抑瘤效果,且毒副作用小。目前,對(duì)多糖抗腫瘤的研究已成為生物醫(yī)藥領(lǐng)域的研究熱點(diǎn)。
多糖抗腫瘤作用主要有兩種方式:一種是通過(guò)提高宿主免疫功能間接抑制或殺滅腫瘤細(xì)胞;另一種是直接作用于腫瘤細(xì)胞,通過(guò)影響腫瘤細(xì)胞膜生化、抗自由基、誘導(dǎo)腫瘤細(xì)胞分化和凋亡,影響腫瘤細(xì)胞超微結(jié)構(gòu)而發(fā)揮直接抗腫瘤作用。
多糖能夠通過(guò)激活免疫系統(tǒng),增強(qiáng)機(jī)體免疫力來(lái)實(shí)現(xiàn)抗腫瘤作用。多糖不僅能激活單核巨噬細(xì)胞、T淋巴細(xì)胞、B淋巴細(xì)胞、NK細(xì)胞、促進(jìn)網(wǎng)狀內(nèi)皮系統(tǒng)的吞噬功能、誘導(dǎo)免疫調(diào)節(jié)因子的表達(dá);還能促進(jìn)IL-1、IL-2、TNF和干擾素(interferon,IFN)等細(xì)胞因子的生成,也可以增加免疫器官的重量,延緩因放療或化療導(dǎo)致的免疫器官的衰老或衰退;還可提高彈力廓清指數(shù),增強(qiáng)吞噬功能,排除侵入機(jī)體的異物,從而達(dá)到抑瘤效果。
Wang等[27]研究發(fā)現(xiàn)人參多糖不能直接殺傷K562細(xì)胞、HL-60細(xì)胞和kGlα細(xì)胞,但可通過(guò)激活小鼠巨噬細(xì)胞,促使其釋放TNF-α、IL-1、IL-6和NO等細(xì)胞因子,從而具有潛在的抗腫瘤活性。茶樹花多糖通過(guò)提高血漿IFN-γ、IL-2水平和T淋巴細(xì)胞亞群的CD4+及CD4+/CD8+的比例,增強(qiáng)巨噬細(xì)胞吞噬功能和延遲變態(tài)反應(yīng),從而提高機(jī)體對(duì)腫瘤S180的防御能力[28]。Fan等[29]連續(xù)4周給荷H22瘤細(xì)胞的小鼠灌胃龍須菜酸性多糖(GLSPs),結(jié)果GLSPs處理組小鼠外周血中CD8+細(xì)胞數(shù)量、血清中IL-2水平和巨噬細(xì)胞的吞噬活性均增加,腫瘤細(xì)胞體積變小,表明GLSPs可通過(guò)增強(qiáng)荷瘤小鼠的免疫力而達(dá)到抗小鼠肝癌的目的。Chen等[30]發(fā)現(xiàn)羊棲菜粗多糖可顯著促進(jìn)腫瘤小鼠腹腔巨噬細(xì)胞釋放TNF-α和IL-2,提高血清中TNF-α水平,促進(jìn)脾臟細(xì)胞的增殖,從而抑制A549腫瘤細(xì)胞的生長(zhǎng)。
Jin等[31]連續(xù)15 d給Lewis肺癌小鼠腹膜注射低劑量牛膝多糖(ABPS)發(fā)現(xiàn),Lewis肺癌細(xì)胞被阻滯于G2/M期,從而腫瘤細(xì)胞的生長(zhǎng)受到抑制。Li等[32]通過(guò)體外MTT試驗(yàn)研究了人參多糖純化組分PGPW1對(duì)膀胱124細(xì)胞的作用,結(jié)果發(fā)現(xiàn),PGPW1能有效抑制腫瘤細(xì)胞的增殖和轉(zhuǎn)移,且存在劑量效應(yīng)。當(dāng)歸多糖APS-1d可通過(guò)上調(diào)Bax基因產(chǎn)物、下調(diào)Bcl-2基因產(chǎn)物而誘導(dǎo)宮頸癌細(xì)胞(Hela)凋亡[33]。Fan等[34]發(fā)現(xiàn)人參果膠多糖WGPA-3-RG和WGPA-3-HG可在體外抑制L-929細(xì)胞的遷移。海參精多糖(SCSP)的純化組分SCSP A2濃度為10 mg/mL時(shí),對(duì)培養(yǎng)72 h的Hela細(xì)胞和HepG2細(xì)胞的抑制率分別為80.28%和83.11%,表明SCSP具有顯著的體外抗腫瘤活性[35]。不同來(lái)源多糖的抗腫瘤功能及作用機(jī)制見(jiàn)表3。
表3 不同來(lái)源多糖的抗腫瘤功能及作用機(jī)制Table 3 Anti-tumor activity and its mechanism of different polysaccharides
活性多糖可改善糖尿病患者的臨床癥狀、控制并發(fā)癥的發(fā)生,同時(shí)不易發(fā)生低血糖癥狀,毒副作用小。機(jī)體的糖脂代謝聯(lián)系緊密,糖代謝絮亂發(fā)生的同時(shí)伴隨著脂代謝絮亂,研究發(fā)現(xiàn),天然活性多糖除了具有較好的降血糖功能,還具有較強(qiáng)的降血脂作用。
活性多糖降血糖作用具有多靶點(diǎn)、多環(huán)節(jié)、多途徑的特點(diǎn),主要包括:調(diào)節(jié)糖代謝,促進(jìn)肝糖原合成或者抑制肝糖原分解;調(diào)節(jié)糖代謝激素水平,促進(jìn)胰島素的分泌;增強(qiáng)機(jī)體的抗氧化能力;通過(guò)受體信號(hào)傳導(dǎo)調(diào)節(jié)糖代謝酶的活性從而抑制糖異生作用,促進(jìn)葡萄糖的利用,進(jìn)而改善糖代謝絮亂和胰島素抵抗。桑葉多糖通過(guò)提高四氧嘧啶糖尿病小鼠抗氧化能力,使胰島素分泌增加,同時(shí)提高肝HK、PK活性等綜合作用,促使血糖進(jìn)入肝細(xì)胞,使肝糖原合成增加,葡萄糖氧化分解加快,從而達(dá)到調(diào)節(jié)糖代謝、降低血糖、改善糖尿病癥狀的作用[48]。肖遐等[49]研究發(fā)現(xiàn)百合多糖可減緩糖尿病大鼠體質(zhì)量的負(fù)增長(zhǎng);還能降低空腹血糖和丙二醛的含量,升高胰島素含量;同時(shí)增強(qiáng)己糖激酶、琥珀酸脫氫酶和總超氧化物歧化酶(superoxide dismutase,SOD)的活性。靈芝子實(shí)體的水提取物可以通過(guò)抑制肝臟中的磷酸醇丙酮酸羧基酶的活性來(lái)降低II型糖尿病小鼠的血糖的作用[50]。
活性多糖還具有較好的降血脂功能,目前研究發(fā)現(xiàn)黃芪多糖、南瓜多糖、茶多糖、桑葉多糖、黑木耳多糖、滸苔多糖、玉米多糖等均具有降血脂作用?;钚远嗵强赏ㄟ^(guò)增加腸的蠕動(dòng)和促進(jìn)膽固醇向膽酸轉(zhuǎn)化,從而增加膽汁酸的排泄量,抑制膽固醇(cholesterol,TC)的吸收以及TC在體內(nèi)的沉積。Qiong等[51]給高血脂兔子喂養(yǎng)枸杞粗多糖和純化多糖,10 d后,高血脂兔子血漿中TC和甘油三酯(triglyceride,TG)濃度降低,同時(shí)高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)的濃度顯著升高,這說(shuō)明枸杞多糖具有降血脂作用。馬齒莧粗多糖可顯著降低糖尿病小鼠的空腹血糖濃度、血清TC和TG的濃度,并可顯著提高高密度脂蛋白和血漿胰島素水平,說(shuō)明其具有降糖降脂作用[52]。
活性多糖對(duì)艾滋病病毒、皰疹病毒及流感病毒等具有良好的抑制作用,具有抗病毒活性的多糖多為硫酸多糖。經(jīng)硫酸化修飾后的淫羊藿多糖可顯著提高雞胚成纖維細(xì)胞抵抗雞傳染性法氏囊病毒感染的能力,且抗病毒能力與其硫酸基取代度和多糖含量有一定相關(guān)性[53]?;钚远嗵强赏ㄟ^(guò)抑制病毒的吸附、干擾病毒復(fù)制和提高機(jī)體免疫來(lái)發(fā)揮抗病毒作用。硫酸化藻酸鹽多糖通過(guò)與病毒囊膜上識(shí)別宿主細(xì)胞表面受體的糖蛋白結(jié)合來(lái)干擾感染過(guò)程,從而達(dá)到抑制單純皰疹病毒 1 型(HSV-1)病毒的作用[54]。Dong 等[55]發(fā)現(xiàn)落葵多糖組分具有較好的抗II型單純皰疹病毒的作用,它可干擾病毒侵入宿主細(xì)胞,刺激宿主產(chǎn)生中和抗體,同時(shí)提高黏膜免疫球蛋白(IgA)的分泌水平。
Kang等[56]采用LPS刺激RAW264.7的炎癥模型,考察穴狀昆布純化多糖組分的抗炎活性,發(fā)現(xiàn)其可顯著抑制RAW264.7細(xì)胞分泌NO和前列腺素(prostaglandin,PG),下調(diào)誘導(dǎo)型一氧化氮合酶和環(huán)氧合酶的蛋白表達(dá)。Hong等[57]從梨形棱螺的足肌中分離得到兩種水溶性多糖BPS-1和BPS-2,發(fā)現(xiàn)二者對(duì)二甲苯誘導(dǎo)的鼠耳腫脹均有抑制作用,當(dāng)濃度為1 mg/mL時(shí)二者的抑制率分別為57.56%和56.26%。
在正常情況下,人體內(nèi)自由基的產(chǎn)生和清除處于動(dòng)態(tài)平衡,當(dāng)人體各器官發(fā)生衰老時(shí),機(jī)體內(nèi)的自由基動(dòng)態(tài)平衡被打破,人體內(nèi)的自由基含量升高,多出的自由基不斷對(duì)人體組織進(jìn)行攻擊,致使功能衰竭,從而呈現(xiàn)衰老的癥狀。研究發(fā)現(xiàn),活性多糖具有清除自由基、抑制脂質(zhì)過(guò)氧化和提高抗氧化酶活性的功能,能夠有效的延緩衰老。
Wang等[58]研究了液態(tài)發(fā)酵培養(yǎng)的冬蟲夏草菌絲體多糖在體內(nèi)外的抗氧化活性,體內(nèi)試驗(yàn)結(jié)果表明,冬蟲夏草菌絲體多糖使小鼠血液中谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)和 SOD 的活性增加,丙二醛含量(mada content,MDA)下降;而在體外,冬蟲夏草菌絲體多糖能較好的抑制超氧陰離子自由基和羥自由基。Chen等[59]利用卵巢小鼠模型研究靈芝多糖對(duì)其血清抗氧化酶活性的影響發(fā)現(xiàn),靈芝多糖處理組小鼠的血清抗氧化酶活性顯著提高,同時(shí)MDA顯著降低。猴頭菌多糖可顯著提高皮膚組織中抗氧化酶(SOD、CAT和GSH-Px)和薄膜型基質(zhì)金屬蛋白酶TMP-1的活性,降低MDA和脂質(zhì)過(guò)氧化水平,提高衰老小鼠皮膚中羥脯氨酸和膠原蛋白水平,可見(jiàn)猴頭菌多糖具有抗氧化和延緩衰老的作用[60]。淡竹葉多糖能顯著增強(qiáng)小鼠的學(xué)習(xí)和記憶能力,具有抗衰老作用,主要通過(guò)增強(qiáng)小鼠血清、肝和腦組織中的SOD、GSHPx活力、減少M(fèi)DA含量,抑制小鼠脾臟及胸腺萎縮和腦神經(jīng)元的死亡來(lái)實(shí)現(xiàn)[61]。
此外,活性多糖還具有抗輻射[62]、抗凝血[63]、抗血栓[64]、抗突變[65]等作用。
活性多糖化學(xué)結(jié)構(gòu)是其生物活性的基礎(chǔ)。多糖的構(gòu)效關(guān)系指多糖的一級(jí)結(jié)構(gòu)和高級(jí)結(jié)構(gòu)與其生物活性的關(guān)系。由于多糖結(jié)構(gòu)的復(fù)雜性,到目前為止,多糖構(gòu)效關(guān)系的研究并不完善。
多糖的一級(jí)結(jié)構(gòu)包括單糖的組成、糖苷鍵的類型、連接順序、異頭碳構(gòu)型、分子量、分支的位置與長(zhǎng)短、取代度等,這些因素對(duì)多糖的生物活性均有一定的影響。研究表明,具有突出生物活性的葡聚糖多以(1→3)糖苷鍵連接。一般以β-(1→6)連接為主的D-葡聚糖活性較低,以β-(1→3)-D-葡聚糖為主鏈或β-(1→3)-D-葡聚糖占優(yōu)勢(shì)的多糖就有較強(qiáng)的生物活性,但支鏈上必須有β-(1→6)鍵[66]。具有抗腫瘤活性的甘露多糖為(1→6)鍵型,活性半乳糖則以(1→3)糖苷鍵連接。異頭碳構(gòu)型與多糖生物活性的關(guān)系目前沒(méi)有明確的結(jié)論,一般認(rèn)為β構(gòu)型的多糖活性較高。香菇多糖、裂褶多糖、灰樹花多糖等已應(yīng)用于臨床的抗腫瘤多糖藥物均是以β-(1→3)糖苷鍵為主的葡聚糖真菌多糖[67]。
分支度(degree of branch,DB)指多糖每個(gè)重復(fù)單元所具有的分支數(shù)目。DB過(guò)大或過(guò)小都無(wú)法使多糖達(dá)到理想的生物活性。研究發(fā)現(xiàn),以葡萄糖為分支的各種分子量的葡聚糖DB在0.20~0.33內(nèi)抗腫瘤作用最強(qiáng)。支鏈對(duì)多糖生物活性的影響不僅與分支度有關(guān),與支鏈的長(zhǎng)短也有關(guān)系,主要是由于支鏈的存在能夠調(diào)節(jié)糖鏈的空間結(jié)構(gòu)。茯苓多糖由于支鏈過(guò)長(zhǎng)而不具有抗腫瘤活性,需經(jīng)過(guò)控制氧化水解程度,降低支鏈長(zhǎng)度,才具有活性[68]。此外,多糖中取代基的種類和有無(wú)取代基對(duì)其生物活性也有較大的影響。取代基可通過(guò)一定的化學(xué)方式進(jìn)行添加或者消除,常用于多糖修飾改造的方法有降解法、硫酸化、乙酰化、磷酸化、烷基化、羧甲基化等。大多數(shù)經(jīng)過(guò)硫酸酯化的多糖具有明顯的抗病毒、抗腫瘤和抗凝血等活性。硫酸根對(duì)多糖抗HIV病毒是必須的,且其抑制HIV的活性大小和分子中硫酸根含量和位置有關(guān)。
一般而言,把較高分子量的多糖降解為較低的分子量,能顯著提高其生物活性。但是并非分子量越低越好,因?yàn)榉肿恿窟^(guò)低,無(wú)法形成多糖產(chǎn)生活性的聚合結(jié)構(gòu)。不同多糖產(chǎn)生生物活性的最佳分子量的范圍不同。研究發(fā)現(xiàn)巖藻多糖的抗衰老作用與組分具有適當(dāng)?shù)姆肿恿?、較高的硫酸基含量以及含有鼠李糖、木糖和半乳糖有關(guān)[69]。
一般認(rèn)為,高級(jí)結(jié)構(gòu)對(duì)多糖生物活性的影響較初級(jí)結(jié)構(gòu)大,但是多糖的高級(jí)結(jié)構(gòu)與生物活性之間的關(guān)系還未十分清楚?;钚远嗵堑母呒?jí)結(jié)構(gòu)有A、B、C、D型4種:A型為可拉伸帶狀,B型為屈曲狀螺旋,C型為皺紋型帶狀,D型為曲狀線圖。具有B型結(jié)構(gòu)的多糖有增強(qiáng)免疫功能,A型活性小,C型和D型一般不具有活性[70]。有研究表明,多糖的空間立體構(gòu)型對(duì)其生物活性影響顯著,具有三股螺旋結(jié)構(gòu)的葡聚糖大多具有免疫活性,如具有抗腫瘤活性的香菇多糖具有三股螺旋立體結(jié)構(gòu)而具有免疫調(diào)節(jié)作用的裂褶多糖具有由P63的螺旋對(duì)稱形成的類似三螺旋結(jié)構(gòu)。Surenjav等[71]發(fā)現(xiàn)具有三股螺旋結(jié)構(gòu)的香菇多糖L-I1、L-I3對(duì)S180荷瘤小鼠的腫瘤抑制率分別為54.5%、70.0%,用二甲亞砜處理后,其三股螺旋立體結(jié)構(gòu)破壞,腫瘤抑制率降低至16.7%、4.2%。
此外,多糖的溶解度、黏度、旋光度、電荷密度等理化性質(zhì)對(duì)其生物活性也有一定的影響。
近年來(lái)活性多糖的分離純化、結(jié)構(gòu)和生物活性研究取得了一定的進(jìn)展,但多糖的研究還落后于蛋白質(zhì)和核酸,其原因主要在于活性多糖的研究起步較晚,加之其結(jié)構(gòu)復(fù)雜,分離純化過(guò)程中雜質(zhì)難以去除等問(wèn)題,制約著活性多糖的開發(fā)和利用。隨著X光衍射技術(shù)、原子力顯微鏡、核磁共振等技術(shù)的發(fā)展,為活性多糖的研究提供了更大的空間和技術(shù)方法。通過(guò)分子水平、受體水平、基因調(diào)控水平研究其在體內(nèi)的作用機(jī)制以及利用化學(xué)修飾手段增強(qiáng)其活性等都將成為今后的研究重點(diǎn)。
由于活性多糖具有多種生物活性,兼具有效、低毒等優(yōu)勢(shì),使其在醫(yī)藥和保健食品領(lǐng)域具有廣泛的應(yīng)用前景。利用多糖的抗原性可制備相應(yīng)的多糖疫苗,也可制備治療腫瘤、抗病毒、調(diào)節(jié)免疫、延緩衰老等新藥物。同時(shí),隨著生活水平的不斷提高,人們的健康保健意識(shí)逐漸增強(qiáng),活性多糖作為保健食品的主要成分也將進(jìn)一步得到合理的利用。
[1] 趙國(guó)華.四種根莖類食物活性多糖的研究[D].重慶:西南農(nóng)業(yè)大學(xué),2001
[2] 李麗春,吳曉東,田維熙.何首烏提取物對(duì)脂肪酸合酶的抑制作用[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2003,19(3):297-304
[3] DING Xia,ZHU Fangshi,GAO Siguo.Purification,antitumour and immunomodulatory activity of water-extractable and alkali-extractablepolysaccharidesfrom Solanum nigrum L[J].Food Chemistry,2012,131(2):677-684
[4]CHEN Yong,TANG Jinbao,WANG Xiaoke,et al.An immunostimulatory polysaccharide(SCP-IIa)from the fruit of Schisandra chinensis(Turcz)Baill[J].International Journal of Biological Macromolecules,2012,50(3):844-848
[5] XIA Linjing,LIU Xiaofei,GUO Huiyuan,et al.Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale(Tiepishihu)in vitro[J].Journal of Functional Foods,2012,4(1):294-301
[6] ZHANG Nuowei,LI Jiefeng,HU Yanxin,et al.Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice[J].Carbohydrate Polymers,2010,82(3):680-686
[7] YU Zhanhai,YIN Linhua,YANG Qian,et al.Effect of Lentinus edodes polysaccharide on oxidative stress,immunity activity and oral ulceration of rats stimulated by pheno[J].Carbohydrate Polymers,2009,75(1):115-118
[8] YI Yang,ZHANG Mingwei,LIAO Sentai,et al.Structural features and immunomodulatory activities of polysaccharides of longan pulp[J].Carbohydrate Polymers,2012,87(1):636-643
[9] Lee S J,Hong E K.Immunostimulating activity of the polysaccharidesisolatedfromCordycepsmilitaris[J].InternationalImmunopharmacology,2011,11(9):1226-1233
[10]Schepetkin I A,Faulkner C L,Nelson-Overton L K,et al.Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum[J].International Immunopharmacology,2005,5(13/14):1783-1799
[11]YANG Xiaoping,GUO Dayong,ZHANF Jinming,et al.Characterization and antitumor activity of pollen polysaccharide[J].International Immunopharmacology,2007,7(4):437-434
[12]XU Haishun,WU Yuanwen,XU Shifang,et al.Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha[J].Journal of Ethnopharmacology,2009,125(2):310-317
[13]ZENG Guang,JU Ying,SHEN huan,et al.Immunopotentiating activities of the purified polysaccharide from evening primrose in H22 tumor-bearing mice[J].International Journal of Biological Macromolecules,2013,52:280-285
[14]ZHANG Jiali,YU Yongchao,ZHANG Zhaofeng,et al.Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to60Co[J].International Immunophamacology,2011,11(12):2251-2257
[15]BELSKA N V,GURLEY A M,BANILET M G,et al.Water-soluble polysaccharide obtained from Acorus calamus L.classically activates macrophages and stimulates Th1 response[J].International immunopharmacology,2010,10(8):933-942
[16]YUE G G L,CHAN B C L,HON P M,et al.Immunostimulatory activities of polysaccharide extract isolated from Curcuma longa[J].International Journal of Biological Macromolecules,2010,47(3):342-347
[17]ZHU Hongwei,ZHANG Yunyi,ZHANG Jianwen,et al.Isolation and characterization of an anti-complementary protein-bound polysaccharide from the stem barks of Eucommia ulmoides[J].International Immunopharmacology,2008,8(9):1222-1230
[18]KARNJANAPRATUM S,TABARSA M,CHO M,et al.Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens[J].International Journal of Biological Macromolecules,2012,51(5):720-729
[19]許桂芹.福壽螺多糖的分離純化及其生物活性研究[D].福州:福建農(nóng)林大學(xué),2008
[20]ZHANG Yang yang,LI Sheng,WANG Xiao hua,et al.Advances in lentinan:Isolation,structure,chain conformation and bioactivities[J].Food Hydrocolloid,2011,25(2):196-206
[21]SHI Min,YANG Yingnan,XU Xuansheng,et al.Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue[J].Food Chemistry,2014,155(15):50-56
[22]HAN Quan,LING Zejie,HE Puming,et al.Immunomodulatory and antitumor activity of polysaccharide isolated from tea plant flower[J].Progress in Biochemistry and Biophysics,2010,37(6):646-653
[23]CHEN Zhigang,ZHANG Danni,ZHU Qu,et al.Purification,preliminary characterization and in vitro immunomodulatory activity of tiger lily polysaccharide[J].Carbohydrate Polymers,2014,106:217-222
[24]YU Xiaona,YANG Xiushi,CUI Bo,et al.Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from NorthAmericanginseng[J].InternationalJournalofBiologicalMacromolecules,2014,65:357-361
[25]CHENYong,TANG Jinbao,WANG Xiaoke,et al.An immunostimulatory polysaccharide(SCP-IIa)from the fruit of Schisandra chinensis(Turcz)Baill[J].InternationalJournalofBiologicalMacromolecules,2012,50(3):844-848
[26]CHENG Anwei,WAN Fachun,WANG Jiaqi,et al.Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis fish[J].International Immunopharmacology,2008,8(1):43-50
[27]WANG J,ZUO G,LI J,et al.Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide[J].International Journal of Biological Macromolecules,2010,46(4):389-395
[28]HAN Quan,LING Zejie,HE Puming,et al.Immonomodulatory and antitumor activity of polysaccharide isolated from tea plant flower[J].Progress in Biochemistry and Biophysics,2010,37(6):646-653
[29]FAN Yanli,WANG Wenhang,SONG Wei,et al.Partial characterization and anti-tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis[J].Carbohydrate Polymers,2012,88(4):1313-1318
[30]CHEN Xiaoming,NIE Wenjian,YU Guoqing,et al.Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme[J].FoodandChemicalToxicology,2012,50(3/4):695-700
[31]LI Cong,CAI Jianping,GENG jingshu,et al.Purification,characterization and anticancer activity of a polysaccharide from Panax giseng[J].International Journal of Biological Macromolecules,2012,51(5):968-973
[32]JIN Liqin,ZHENG Zhaojing,PENG Ying,et al.Opposite effects on tumor growth depengding on dose of Achyranthes bidentata polysaccharides in C57BL/6 mice[J].International Immunomopharmacology,2007,7(5):568-577
[33]GAO W,LI X Q,WANG X,et al.A novel polysaccharide,isolated from Angelica sinensis(Oliv)Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway[J].Phytomedicine,2010,17(8/9):598-605
[34]FAN Yuying,CHENG Hairong,LI Shanshan,et al.Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J].Carbohydrate Polymers,2010,81(2):340-347
[35]王婷,劉京熙,張健,等.海參精多糖提取工藝優(yōu)化及其體外抗腫瘤活性[J].食品工業(yè)科技,2016,37(17):68-74
[36]YE Hong,WANG Keqi,Zhou Chunhong,et al.Purification,antitumor and antioxidant activities in vitro polysaccharides from the brown seaweed Sargassum pallidum[J].Food Chemistry,2008,111(2):428-432
[37]PARK H S,KIM G Y,NAM T J,et al.Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells[J].Journal of Food Science,2011,76(3):77-83
[38]ZHAO Li,XIAO Yuping,XIAO Nan.Effect of lentinan combined with docetaxel and cisplatin on the proliferation and apoptosis of BGC823 cells[J].Tumor Biology,2013,34(3):1531-1536
[39]WEI Jianan,ZENG Xing,HAN Ling,et al.The regulatory effects of Polyporus polysaccharide on the nuclear factor kappa B signal pathway of bladder cancer cells stimulated by Bacillus Calmette-Guerin[J].Chinese Journal of Integrative Medicine,2011,17(7):531-536
[40]WU Bei,CUI Juncheng,ZHANG Chaogui,et al.A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells[J].International Journal of Biological Macromolecules,2012,50(4):1116-1120
[41]ZHAO Liyan,DONG Yanhong,CHEN Guitang,et al.Extraction,purification,characterization and antitumor activity of polysaccharides from Ganoderma lucidum[J].Carbohydrate Polymers,2010,80(3):783-789
[42]LIANG Beibei,LIU Huagang,CAO Jiutao.Antitumor effect of polysaccharides from cactus pear fruit in S180-bearing mice[J].Chinese Journal of Cancer,2008,27(6):580-584
[43]ZHAO Qingsheng,XIE Bingxian,YAN Jun,et al.In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis[J].Carbohydrate Polymers,2012,87(1):392-396
[44]WEI Dongfeng,WEI Yanxia,CHNG weidong,et al.Sulfated modification characterization and antitumor activities of Hedysari Radix polysaccharide[J].International Journal Biological Macromolecules,2012,51(5):471-476
[45]WEI Xinlin,MAO Fangfang,CAI Xuan,et al.Composition and bioactivity of polysaccharides from tea seeds obtained by water extraction[J].International Journal Biological Macromolecules,2011,49(4):587-590
[46]XU Chong,LIU Yang,YUAN Guangxin,et al.The contribution of side chains to antitumor activity of a polysaccharide from Codonopsispilosula[J].InternationalJournalBiologicalMacromolecules,2012,50(4):891-894
[47]XIN Tao,ZHANG Fubin,JIANG Qiuying,et al.The inhibitory effect of a polysaccharide from Codonopsis pilosula on tumor growth and metastasisinvitro[J].InternationalJournalBiologicalMacromolecules,2012,51(5):788-793
[48]陳建國(guó),歩文磊,來(lái)偉旗,等.桑葉多糖降血糖作用及其機(jī)制研究[J].藥理與臨床,2011,42(3):515-520
[49]肖遐,吳雄,何純蓮.百合多糖對(duì)I型糖尿病大鼠的降血糖作用[J].食品科學(xué),2014,35(1):209-213
[50]SETO W,LAW T Y,TAM H L,et al.Novel hypoglycemic effects ofGanoderma lucidum water-extract in obese/diabetic mice[J].Phytomedicine,2009,16(5):426-436
[51]QING Lou,CAI Yizhong,JUN Yan,et al.Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum[J].Life Sciences,2004,76(2):137-149
[52]GONG Fayong,LI Fenglin,ZHANG Lili,et al.Hypoglycemic effects of crude polysaccharide from Purslane[J].International Journal of Molecular Sciences,2009,10(3):880-888
[53]LU Yu,WANG Deyun,Hu yuanliang,et al.Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV[J].Carbohydrate polymers,2008,71(2):180-186
[54]BANDYOPADHYAYA S S,NAVID M H,GHOSH T,et al.Structural features and in vitro antiviral activities of sulfated polysaccharide from Sphacelaria India[J].Phytochemistry,2011,72(2/3):276-283
[55]DONG Caixia,HAYASHIi K,MIZUKOSHI Y,et al.Structures of acidic polysaccharides from Basella rubra L.and their antiviral effects[J].Carbohydrate Polymers,2011,84(3):1084-1092
[56]KANG S M,KIM K N,LEE S H,et al.Anti-inflammatory activity of polysaccharide purified from AMG-assisant extract of Ecklonia cava in LPS-stimulated RAW264.7 macrophages[J].Carbohydrate Polymers,2011,85(1):80-85
[57]ZHANG Hong,YE Lin,WANG kuiwu.Stuctual characterization and anti-inflammatory activity of two water-soluble polysaccharides from Bellamya puroficata[J].Carbohydrate Polymers,2010,81(4):953-960
[58]WANG Li,WANG Guoyi,ZHANG Jianjun,et al.Extraction optimization and antioxidant activity of intracellular selenium polysaccharide by Cordyceps sinensis Su-02[J].Carbohydrate Polymers,2011,86(4):1745-1750
[59]CHEN YouGuo,SHEN Zongji,CHEN Xiaoping.Modulatory effects of Ganoderma lucidum polysaccharides on antioxidant enzymes activities in ovarian cancer rats[J].CarbohydratePolymers,2009,78(2):258-262
[60]XU Hui,WU Pinru,SHEN Zhenyu,et al.Chemical analysis of Hericium erinaceum polysaccharides and effect of the polysaccharides on derma antioxidant enzymes,MMP-1 and TIMP-1 activities[J].International Journal of Biological Macromolecules,2010,47(1):33-36
[61]黃賽金,尹愛(ài)武,龔燈,等.淡竹葉多糖的抗衰老作用研究[J].現(xiàn)代食品科技,2015,31(11):51-55
[62]LEE J,KIM J,MOON C,et al.Radioprotective effects of fucoidan in mice treated with total body irradiation[J].Phytotherapy Research,2008,22(12):1677-1681
[63]ATHUKORALA Y,JUNG W,PARK P J,et al.Ecaluation of biomolecular interactions of sulfated polysaccharide isolated from grateloupia filicina on blood coagulation fators[J].Journal of microbiology and biotechnology,2008,18(3):503-511
[64]CHAKRABARTI S,BEAULIEU LM,REYELT LA,et al.M118,a novel low-molecular weight heparin with decreased polydispersity leads to enhanced anticoagulant activity and thrombotic occlusion in ApoE knokout mice[J].Journal Thrombosis and Throbolysis,2009,28(4):394-400
[65]Vlcková V,Duhová V,Svidová S,et al.Antigenotoxic potential of glucomannan on four model test systems[J].Cell Biology Toxicology,2004,20(6):325-332
[66]WASSER S P.Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J].Appl Microbiol Biotechnol,2002,60(3):258-274
[67]杜巍,李元瑞,袁靜.食藥用菌多糖生物活性與結(jié)構(gòu)的關(guān)系[J].中國(guó)食用菌,2002,21(2):28-30
[68]吳亞林.幾種天然生物活性多糖的化學(xué)研究[D].杭州:浙江大學(xué),2007
[69]李小溶,張拴.海帶中巖藻多糖的抗衰老活性及構(gòu)效關(guān)系研究[J].食品工業(yè)科技,2015,36(15):117-121
[70]孫群,闞建全,趙國(guó)華,等.活性多糖構(gòu)效關(guān)系研究進(jìn)展[J].廣州食品工業(yè)科技,2004,20(1):104-106
[71]SURENJAV U,ZHANG Lina,XU Xiaojuan,et al.Effects of molecular structure on antitumor activities of(1→3)-β-D-glucans from different Lentinus edodes[J].Carbohydrate Polymers,2006,63(1):97-104
Research Advance on Biological Activity and Structure-Activity Relationships of Bioactive Polysaccharide
LIU Shu-zhen,ZHOU Wen-guo,YE Wei-jian,CHEN Jiang-ping,WU Chao-hua,CHEN Dong-qing,HUANG Jian-lian*
(Fujian Anjoy Food Co.,LTD.,Xiamen 361022,F(xiàn)ujian,China)
Sources of material of bioactive polysaccharides are widespread.Bioactive polysaccharides have all kinds of biological activities such as immunoregulation,antineoplastic,antiviral,antioxidant,antidiabetics,and its structure is closely connected with biological activities.Now it is one of studying heat in the field of food science and pharmacology,and it is a very important health factor in foods.In order to provide theoretical basis on further development and utilization of bioactive polysaccharide,the main source of bioactive polysaccharide,bioactivity,main mechanism of action,structure-activity relationships and developmental trend were discussed in this paper.
bioactive polysaccharide;biological activity;functional mechanism;structure-activity relationships
2016-11-22
10.3969/j.issn.1005-6521.2017.18.043
劉淑貞(1990—),女(漢),助理工程師,碩士研究生,研究方向:食品化學(xué)與營(yíng)養(yǎng)學(xué)。
*通信作者