馬小杰,張世熔*,王怡君,王貴胤,徐小遜,李婷
(1.四川農(nóng)業(yè)大學(xué)環(huán)境學(xué)院,成都 611130;2.四川農(nóng)業(yè)大學(xué)資源學(xué)院,成都 611130)
不同碳材料增強(qiáng)有機(jī)酸對(duì)土壤重金屬的去除及對(duì)土壤化學(xué)性質(zhì)的影響
馬小杰1,張世熔1*,王怡君1,王貴胤1,徐小遜1,李婷2
(1.四川農(nóng)業(yè)大學(xué)環(huán)境學(xué)院,成都 611130;2.四川農(nóng)業(yè)大學(xué)資源學(xué)院,成都 611130)
為了解碳材料和有機(jī)酸去除土壤重金屬的效果,通過振蕩淋洗法分別研究4種碳材料與檸檬酸、乙酸以及它們的復(fù)合淋洗劑對(duì)土壤重金屬的去除。結(jié)果表明,單一納米碳黑、水稻秸稈生物炭、木屑生物炭和果殼生物炭對(duì)重金屬的去除率均低于0.5%??傮w上,碳材料對(duì)檸檬酸去除重金屬效果的提升作用高于乙酸,其中納米碳黑對(duì)有機(jī)酸去除重金屬的提升率最高,可達(dá)10.1%~11.1%,水稻秸稈次之,果殼和木屑生物炭對(duì)兩種酸的提升率均低于5.8%。碳材料的加入,主要使酸溶態(tài)、可還原態(tài)和部分可氧化態(tài)的重金屬在復(fù)合淋洗后顯著降低(P<0.05),相對(duì)于單一有機(jī)酸淋洗,復(fù)合淋洗更有利于減緩有機(jī)酸對(duì)土壤速效養(yǎng)分的損失。研究結(jié)果表明,納米碳黑和水稻秸稈生物炭是能改進(jìn)有機(jī)酸淋洗效果的兩種材料。
土壤淋洗;納米碳黑;生物炭;有機(jī)酸;復(fù)合淋洗;重金屬
近年來,采礦、冶煉和化工等人類活動(dòng)的增長(zhǎng)導(dǎo)致土壤重金屬污染成為全球面臨的嚴(yán)重環(huán)境問題之一[1-2]。在污染土壤的重金屬中,Cd和Pb因具有高毒性、非生物降解和潛在致癌性,對(duì)生態(tài)環(huán)境構(gòu)成嚴(yán)重威脅[3];鋅是生物必需營(yíng)養(yǎng)元素,但土壤中的Zn含量過度時(shí)會(huì)抑制生物生長(zhǎng),并通過食物鏈危害人體健康[4]。因此,重金屬污染土壤的修復(fù)具有重要的現(xiàn)實(shí)意義。
目前,在眾多重金屬修復(fù)技術(shù)中,土壤淋洗因其高效和快速的特點(diǎn)而受到研究者的關(guān)注[5-7]。該技術(shù)應(yīng)用的關(guān)鍵是選擇效率較高且環(huán)境友好的淋洗劑,常用的淋洗劑包括無(wú)機(jī)酸[8]、螯合劑[9]和表面活性劑[10]等。然而,無(wú)機(jī)酸易于破壞土壤的理化性質(zhì),人工螯合劑和表面活性劑的生物降解性差而且難以回收[11]。近年來,研究發(fā)現(xiàn)低分子有機(jī)酸是環(huán)境友好的土壤重金屬淋洗劑,但其去除率有限[12]。因此,篩選某些材料或者試劑來增強(qiáng)有機(jī)酸對(duì)重金屬污染土壤的修復(fù)能力具有重要的實(shí)用價(jià)值。
生物炭和納米碳黑是具有較大比表面積、大量微孔結(jié)構(gòu)和活躍有機(jī)含氧官能團(tuán)的材料[13-14]。它們被廣泛用于吸附廢水中重金屬[15-17]和鈍化土壤重金屬[18-19],并可改良土壤結(jié)構(gòu)和提升土壤肥力[20]。但是,生物炭和納米碳黑與低分子有機(jī)酸改性后修復(fù)土壤重金屬的研究卻鮮見報(bào)道。因此有必要探究這些碳材料與低分子有機(jī)酸組合改性后對(duì)土壤重金屬Cd、Pb和Zn的去除效果。
本研究以納米碳黑、水稻秸稈生物炭、木屑生物炭和果殼生物炭為碳材料,選用檸檬酸和乙酸兩種低分子有機(jī)酸,探究其組合對(duì)礦區(qū)污染土壤的修復(fù)效果,以期為重金屬污染土壤的實(shí)際修復(fù)提供一定的參考依據(jù)。
1.1 供試土壤與淋洗材料
1.1.1 供試土壤
供試土樣采自四川省漢源縣唐家鉛鋅礦區(qū)表層土壤(0~20 cm)。樣品經(jīng)風(fēng)干后,碾碎過2 mm尼龍篩,混勻后密封裝袋保存,其理化性質(zhì)見表1。
1.1.2 淋洗材料
檸檬酸(C6H8O7)和乙酸(C2H4O2),分析純,均產(chǎn)自成都科龍化工試劑廠。納米碳黑,粉狀,粒徑為7~9 nm,產(chǎn)自天津天一世紀(jì)化工產(chǎn)品科技發(fā)展有限公司;水稻秸稈生物炭、木屑生物炭、果殼生物炭,粉狀,粒徑均小于80 μm,均產(chǎn)自江蘇溧陽(yáng)市德勝活性炭廠。
1.2 試驗(yàn)方法
1.2.1 單一碳材料對(duì)土壤Cd、Pb和Zn的淋洗試驗(yàn)
分別稱取2.00 g土樣于50 mL離心管中,加入20 mL濃度為0.3、0.7、1.1、1.5 g·L-1的納米碳黑、水稻秸稈生物炭、木屑生物炭和果殼生物炭,并用0.1 mol·L-1的HNO3和NaOH調(diào)節(jié)溶液pH至4.0。以水溶液作空白對(duì)照。隨后將離心管放入振蕩器中,在200 r·min-1條件下恒溫(25℃)振蕩1 h后,在3500 r· min-1下離心3 min。離心后的上清液經(jīng)0.45 μm微孔濾膜過濾,再用火焰分光光度法(FAAS,M6型)測(cè)定溶液中Cd、Pb和Zn的含量。每個(gè)處理重復(fù)3次。
1.2.2 單一有機(jī)酸對(duì)土壤Cd、Pb和Zn的淋洗試驗(yàn)
分別稱取2.00 g土樣于50 mL離心管中,加入20 mL濃度為0.1、0.2、0.3 mol·L-1的檸檬酸或乙酸溶液,并用0.1 mol·L-1的HNO3和NaOH調(diào)節(jié)溶液pH 至4.0。以水溶液作空白對(duì)照。其余步驟同1.2.1。
1.2.3 土壤Cd、Pb和Zn的復(fù)合淋洗試驗(yàn)
分別稱取60、140、220、300 mg納米碳黑、水稻秸稈生物炭、木屑生物炭、果殼生物炭于50 mL離心管中,分別加入20 mL濃度為0.3 mol·L-1的檸檬酸、乙酸,在25℃、200 r·min-1條件下恒溫振蕩改性24 h,再分別稱取2.00 g土樣加入改性后的復(fù)合淋洗劑中,用0.1 mol·L-1的HNO3和NaOH調(diào)節(jié)pH至4.0。其余步驟同1.2.1。
1.3 土壤理化性質(zhì)及重金屬形態(tài)的測(cè)定
土壤pH值測(cè)定采用酸度pH計(jì)法;土壤陽(yáng)離子交換量測(cè)定采用乙酸銨交換法[21];土壤顆粒組成測(cè)定用比重計(jì)法。土壤營(yíng)養(yǎng)元素按照《土壤農(nóng)化分析》[22]進(jìn)行測(cè)定,其中土壤有機(jī)碳測(cè)定采用重鉻酸鉀外加熱法,全氮測(cè)定采用半微量開氏法,全磷測(cè)定采用氫氧化鈉熔融-鉬銻抗比色法,全鉀測(cè)定采用氫氧化鈉熔融-火焰光度法,速效磷測(cè)定采用碳酸氫鈉浸提-鉬銻抗比色法,速效鉀測(cè)定采用醋酸銨提取-火焰光度法,無(wú)機(jī)氮測(cè)定采用氯化鉀浸提-靛酚藍(lán)比色法(NH+4-N)和紫外分光光度法(NO-3-N)。
表1 供試土壤的基本理化性質(zhì)Table 1 Physical-chemical characteristics of the contaminated soil
重金屬元素全量分析采用HNO3/HCIO4/HF(體積比為1∶2∶2)三酸硝化法[2]。土壤中重金屬形態(tài)測(cè)定采用改進(jìn)BCR連續(xù)提取法[23-24]。
1.4 數(shù)據(jù)處理
數(shù)據(jù)采用SPSS 19.0進(jìn)行統(tǒng)計(jì)分析,采用Origin 9.0繪圖。數(shù)據(jù)平均值與標(biāo)準(zhǔn)差采用單因素方差分析,差異顯著性分析采用S-N-K法(P<0.05)。
2.1 單一碳材料對(duì)土壤Cd、Pb和Zn的去除率
4 種碳材料對(duì)土壤中Cd、Pb和Zn的去除率無(wú)明顯變化趨勢(shì),且均小于0.5%(表1)。因此,單一碳材料難以直接用于土壤中Cd、Pb和Zn的去除。
2.2 單一有機(jī)酸對(duì)土壤Cd、Pb和Zn的去除率
3 種土壤重金屬Cd、Pb和Zn的去除率均隨有機(jī)酸濃度的增加而升高(圖1)。在同一濃度下,檸檬酸對(duì)土壤中Cd、Pb和Zn的去除率顯著高于乙酸(P<0.05),在濃度為0.3 mol·L-1時(shí),檸檬酸對(duì)土壤Cd、Pb和Zn的去除率分別比乙酸高15.6%、35.2%和25.7%。這是因?yàn)闄幟仕崾侨幔宜崾且辉?,前者比后者能提供更多的陰離子,其與重金屬陽(yáng)離子發(fā)生螯合反應(yīng),所以檸檬酸去除率高于乙酸[25]。
表2 單一碳材料對(duì)土壤Cd、Pb和Zn的去除率Table 2 Effects of carbon materials alone on the removal of soil Cd,Pb and Zn
圖1 單一檸檬酸(CA)和乙酸(HAc)對(duì)土壤Cd、Pb和Zn的去除率Figure 1 Effects of single citric acid(CA)and acetic acid(HAc)on the removal of soil Cd,Pb and Zn
2.3 復(fù)合淋洗劑對(duì)土壤Cd、Pb和Zn的去除率
與碳材料或有機(jī)酸單獨(dú)使用相比,兩種有機(jī)酸分別與4種碳材料構(gòu)成的復(fù)合淋洗劑對(duì)3種土壤重金屬的去除率隨碳材料濃度的增加呈現(xiàn)不同的變化趨勢(shì)(圖2)。
檸檬酸除與水稻秸稈生物炭改性后對(duì)重金屬的去除率隨著生物炭濃度增加而緩慢增加外,與其余3種碳材料復(fù)合改性后隨著碳材料濃度的增加均呈現(xiàn)先增加后下降的趨勢(shì),并在濃度為0.7 g·L-1時(shí)達(dá)到最大去除率??傮w上,4種碳材料與檸檬酸構(gòu)成的復(fù)合淋洗劑對(duì)重金屬的去除率增加值以納米碳黑為最高(10.1%~11.1%),水稻秸稈生物炭次之(7.8%~10.3%)。這些現(xiàn)象可能是由于碳材料表面大量的含氧官能團(tuán)與金屬離子反應(yīng)生成鹽或者復(fù)合物吸附于其上,并在酸性環(huán)境下解吸進(jìn)入淋洗液中,從而提高了去除率[26]。某些研究者認(rèn)為檸檬酸能與土壤膠體中的鐵氧化合物反應(yīng),形成LaFeO3復(fù)合物,進(jìn)而破壞土壤膠膜,釋放其包裹的金屬離子[27],碳材料巨大的比表面積可能會(huì)增加這一反應(yīng)的接觸面積[14,17],促進(jìn)去除率提高。當(dāng)碳材料濃度大于臨界值時(shí),淋洗率降低的原因可能是由于碳材料上的PO3-4和CO2-3與溶液中的重金屬離子形成沉淀[28]。
圖3 不同淋洗處理后土壤的Cd、Pb和Zn的組分分布Figure 3 Distribution of fraction of Cd,Pb and Zn in soil before and after varieties washing treatments
乙酸與不同碳材料復(fù)合改性后對(duì)3種重金屬的去除與檸檬酸相似,但其去除率和提升率均明顯低于檸檬酸??傮w上,4種碳材料與乙酸構(gòu)成的復(fù)合淋洗劑對(duì)Cd、Pb和Zn的去除效果提升率下降至1.6%~6.6%。這可能是由于同一濃度下,檸檬酸比乙酸具有更多羧基官能團(tuán),能在改性后生成更多的配位體與重金屬發(fā)生螯合作用[25]。
2.4 淋洗前后土壤中重金屬組分分析
土壤中重金屬的組分分布如圖3所示。經(jīng)有機(jī)酸和碳材料復(fù)合淋洗之后,土壤中各形態(tài)的Cd、Pb和Zn均有不同程度的變化。
淋洗前土壤中Cd以殘?jiān)鼞B(tài)和酸溶態(tài)為主,含量分別為8.5、8.2 mg·kg-1,其次是可氧化態(tài)和可還原態(tài),含量分別為2.2、1.7 mg·kg-1。檸檬酸和乙酸與4種碳材料復(fù)合淋洗之后,酸溶態(tài)含量分別下降80%~90%和50%~65%,表明在淋洗初始階段,大量的酸溶態(tài)金屬被迅速酸解進(jìn)入淋洗液中,從而被去除[2]。值得關(guān)注的是,有機(jī)酸與碳材料復(fù)合淋洗后可還原態(tài)的Cd顯著降低。此外,除含乙酸的復(fù)合淋洗外,檸檬酸與4種碳材料復(fù)合淋洗后的可氧化態(tài)也顯著降低。這表明復(fù)合淋洗劑能將可還原態(tài)和部分可氧化態(tài)的Cd轉(zhuǎn)化為酸溶態(tài),通過淋洗過程去除[29-30]。
土壤中Pb以可氧化態(tài)和酸溶態(tài)為主,含量分別為769.4、520.9 mg·kg-1,其次是可還原態(tài),含量為375.7 mg·kg-1。與Cd組分變化相似,Pb的酸溶態(tài)、可還原態(tài)和可氧化態(tài)均顯著降低(P<0.05),差異在于,檸檬酸與碳材料復(fù)合淋洗后,可還原態(tài)和可氧化態(tài)降低幅度均明顯高于乙酸。
與Cd和Pb不同,Zn的殘?jiān)鼞B(tài)含量最多(1 143.2 mg·kg-1),其余3種形態(tài)所占比例接近,含量均在600~660 mg·kg-1之間,其組分變化也與Cd相似,但有明顯差異的是,殘?jiān)鼞B(tài)的Zn有顯著降低(P<0.05),下降幅度在25%~30%之間。這表明檸檬酸與碳材料復(fù)合淋洗對(duì)殘?jiān)鼞B(tài)的Zn有較好的去除效果。
綜上所述,4種碳材料對(duì)檸檬酸去除重金屬效果的提升作用可能是基于它們促進(jìn)了重金屬的可還原態(tài)和部分可氧化態(tài)向酸溶態(tài)轉(zhuǎn)化。
2.5 淋洗前后土壤的化學(xué)性質(zhì)分析
土壤淋洗可能通過溶解土壤中原有的氧化物、碳酸鹽和有機(jī)質(zhì)造成土壤化學(xué)性質(zhì)的改變[31-32]。從表3可知,檸檬酸及其與碳材料淋洗后土壤中的有機(jī)碳含量顯著升高(P<0.05),乙酸及其與碳材料淋洗后的土壤有機(jī)碳含量也增加了8.7%~12.4%。這是由于殘留在土壤中的有機(jī)酸和碳材料會(huì)一定程度地造成有機(jī)碳的增加[33]。土壤中氮、磷、鉀是植物生長(zhǎng)所必需的營(yíng)養(yǎng)元素,經(jīng)淋洗后,全氮和全磷的含量均無(wú)顯著變化(表3),全鉀含量降低7%~15%。這表明淋洗劑在淋洗過程中會(huì)帶走部分營(yíng)養(yǎng)元素[10]。除乙酸及其與碳材料復(fù)合淋洗后的速效磷含量有所增加外,其余淋洗處理后的土壤速效養(yǎng)分均顯著下降(P<0.05)。乙酸組處理后土壤速效磷增加的原因,可能是有機(jī)酸活化了土壤中原有的磷[34];檸檬酸組處理后造成速效磷含量顯著下降的原因,可能是在淋洗過程中大量的有機(jī)陰離子從土壤膠體吸附點(diǎn)位上取代磷進(jìn)入淋洗液中,從而使土壤速效磷下降[35]。與單一檸檬酸相比,碳材料的加入使土壤中無(wú)機(jī)氮和速效鉀的含量分別提升3.1%~5.3%和2.7%~10.4%;而與單一乙酸相比,碳材料的加入使土壤無(wú)機(jī)氮和速效鉀含量也均提升1.3%~6.3%。
(1)4種碳材料對(duì)有機(jī)酸去除重金屬的效果均有不同程度的提升作用。總體上,檸檬酸對(duì)重金屬去除率的提升值高于乙酸;對(duì)檸檬酸去除率的提升值以納米碳黑為最高,水稻秸稈生物炭次之,木屑和果殼生物炭最低。
表3 不同處理前后土壤的化學(xué)性質(zhì)Table 3 Chemical characteristics of soil samples before and after varieties leaching treatments
(2)經(jīng)有機(jī)酸和碳材料復(fù)合淋洗后,土壤中酸溶態(tài)、可還原態(tài)和部分可氧化態(tài)的重金屬能被有效去除,這表明復(fù)合淋洗劑中的碳材料能促進(jìn)重金屬的各形態(tài)向酸溶態(tài)轉(zhuǎn)化。
(3)土壤經(jīng)淋洗后,有機(jī)碳含量升高8.7%~26.5%,全氮、全磷含量無(wú)顯著變化,全鉀含量顯著下降(P<0.05)。與單一有機(jī)酸相比,碳材料的加入可以減緩淋洗過程對(duì)速效養(yǎng)分的損失。
[1]Mukwaturi M,Lin C.Mobilization of heavy metals from urban contaminated soils under water inundation conditions[J].Journal of Hazardous Materials,2015,285:445-452.
[2]Wang G Y,Zhang S R,Xu X X,et al.Heavy metal removal by GLDA washing:Optimization,redistribution,recycling,and changes in soil fertility[J].Science of the Total Environment,2016,569/570:557-568.
[3]Bolan N,Kunhikrishnan A,Thangarajan R,et al.Remediation of heavy metal(loid)s contaminated soils:To mobilize or to immobilize[J].Journal of Hazardous Materials,2014,266:141-166.
[4]Chasapis C T,Loutsidou A C,Spiliopoulou C A,et al.Zinc and human health:An update[J].Archives of Toxicology,2012,86(4):521-534.
[5]Kulikowska D,Gusiatin Z M,Bu?kowska K,et al.Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil[J].Chemosphere,2015,136:42-49.
[6]Mukhopadhyay S,Mukherjee S,Adnan N F,et al.Ammonium-based deep eutectic solvents as novel soil washing agent for lead removal[J]. Chemical EngineeringJournal,2016,294:316-322.
[7]Boente C,Sierra C,Rodríguez-Valdés E,et al.Soil washing optimization by means of attributive analysis:Case study for the removal of potentially toxic elements from soil contaminated with pyrite ash[J].Journal of Cleaner Production,2017,142:2693-2699.
[8]Alghanmi S I,Sulami A F A,El-Zayat T A,et al.Acid leaching of heavy metals from contaminated soil collected from Jeddah,Saudi Arabia:Kinetic and thermodynamics studies[J].International Soil and Water Conservation Research,2015,3(3):196-208.
[9]Zhang T,Wei H,Yang X H,et al.Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil[J].Chemosphere,2014, 109:1-6.
[10]Chen Y,Zhang S R,Xu X X,et al.Effects of surfactants on lowmolecular-weight organic acids to wash soil zinc[J].Environmental Science and Pollution Research,2016,23(5):4629-4638.
[11]Yao Z T,Li J H,Xie H H,et al.Review on remediation technologies of soil contaminated by heavy metals[J].ProcediaEnvironmental Sciences, 2012,16:722-729.
[12]Wang G Y,Zhang S R,Xu X X,et al.Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil[J].Chemosphere,2014,117:617-624.
[13]Figarol A,Pourchez J,Boudard D,et al.In vitro toxicity of carbon nanotubes,nano-graphite and carbon black,similar impacts of acid functionalization[J].Toxicology in Vitro,2015,30(1):476-485.
[14]Prete M C,Oliveira F M D,Tarley C R T.Assessment on the performance of nano-carbon black as an alternative material for extraction of carbendazim,tebuthiuron,hexazinone,diuron and ametryn[J].Journal of Environmental Chemical Engineering,2017,5(1):93-102.
[15]Tounsadi H,Khalidi A,Farnane M,et al.Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L.and heavy metals removal ability[J]. Process Safety and Environmental Protection,2016,102:710-723.
[16]Ruparelia J P,Duttagupta S P,Chatterjee A K,et al.Potential of carbon nanomaterials for removal of heavy metals from water[J].Desalination, 2008,232(1/2/3):145-156.
[17]Ko?odyńska D,Krukowska J,Thomas P.Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon[J].Chemical EngineeringJournal,2017,307:353-363.
[18]Igalavithana A D,Park J,Ryu C,et al.Slow pyrolyzed biochars from crop residues for soil metal(loid)immobilization and microbial community abundance in contaminated agricultural soils[J].Chemosphere, 2017,177:157-166.
[19]Lu K P,Yang X,Gielen G,et al.Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals(Cd,Cu,Pb and Zn)in contaminated soil[J].Journal of Environmental Management,2017,186:285-292.
[20]Tang J C,Zhu W Y,Kookana R,et al.Characteristics of biochar and its application in remediation of contaminated soil[J].Journal of Bioscience and Bioengineering,2013,116(6):653-659.
[21]Gogo S,Shreeve T G,Pearce D M E.Geochemistry of three contrasting British peatlands:Complex patterns of cation availability and implications for microbial metabolism[J].Geoderma,2010,158(3/4):207-215.
[22]鮑士旦,江榮風(fēng),楊超光,等.土壤農(nóng)化分析[M].三版.北京:中國(guó)農(nóng)業(yè)出版社,2008:30-158.
BAO Shi-dan,JIANG Rong-feng,YANG Chao-guang,et al.Soil agricultural and chemical analysis method[M].3th Edition.Beijing:China Agricultural Press,2008:30-158.
[23]Pueyo M,Mateu J,Rigol A,et al.Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils[J].Environmental Pollution,2008,152(2):330-341.
[24]Nemati K,Bakar N K A,Abas M R,et al.Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh,Selangor,Malaysia[J].Journal Hazardous Materials,2011,192(1):402-410.
[25]An C J,Huang G H,Wei J,et al.Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment[J].Water Research,2011,45(17):5501-5510.
[26]Wang H J,Zhou A L,Peng F,et al.Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(Ⅱ)in aqueous solution[J]. Materials Science and Engineering:A,2007,466(1/2):201-206.
[27]Khalil K M S,Elhamdy W A,Said A E A,et al.Porous LaFeO3/Silica nanocomposites via Sol-Gel mixing involving citric acid[J].Colloids and Surfaces A:Physicochemical and EngineeringAspects,2016,506:840-848.
[28]李瑞月,陳德,李戀卿,等.不同作物秸稈生物炭對(duì)溶液中Pb2+、Cd2+的吸附[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(5):1001-1008.
LI Rui-yue,CHEN De,LI Lian-qing,et al.Adsorption of Pb2+and Cd2+in aqueous solution by biochars derived from different crop residues[J]. Journal of Agro-Environment Science,2015,34(5):1001-1008.
[29]Begum Z A,Rahman I M M,Tate Y,et al.Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants[J].Chemosphere,2012,87(10):1161-1170.
[30]Li Y J,Hu P J,Zhao J,et al.Remediation of cadmium-and lead-contaminated agricultural soil by composite washing with chlorides and citric acid[J].Environmental Science Pollution Research,2015,22(7):5563-5571.
[31]Tsang D C W,Zhang W H,Lo I M C.Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils[J].Chemosphere,2007,68(2):234-243.
[32]Jelusic M,Grcman H,Vodnik D,et al.Functioning of metal contaminated garden soil after remediation[J].Environmental Pollution,2013, 174:63-70.
[33]Liu C C,Lin Y C.Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge[J].Environmental Pollution,2013,178:97-101.
[34]章愛群,賀立源,趙會(huì)娥,等.有機(jī)酸對(duì)土壤無(wú)機(jī)態(tài)磷轉(zhuǎn)化和速效磷的影響[J].生態(tài)學(xué)報(bào),2009,29(8):4061-4069.
ZHANG Ai-qun,HE Li-yuan,ZHAO Hui-e,et al.Effect of organic acids on inorganic phosphorus transformation in soils and its readily available phosphate[J].Acta Ecologica Sinica,2009,29(8):4061-4069.
[35]胡紅青,賀紀(jì)正,李學(xué)垣,等.有機(jī)酸對(duì)酸性土壤吸附磷的影響[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),1997,16(1):37-42.
HU Hong-qing,HE Ji-zheng,LI Xue-yuan,et al.Effect of organic acids on phosphate adsorption by acid soil[J].Journal of Huazhong A-gricultural University,1997,16(1):37-42.
Effects of different carbon materials for enhancement of organic acid-mediated removal of heavy metals and nutrient retention in soil
MA Xiao-jie1,ZHANG Shi-rong1*,WANG Yi-jun1,WANG Gui-yin1,XU Xiao-xun1,LI Ting2
(1.College of Environmental Sciences,Sichuan Agricultural University,Chengdu 611130,China;2.College of Resources,Sichuan Agricultural University,Chengdu 611130,China)
Four carbon materials,including single nano-carbon black(NCB),rice straw biochar(RSB),wood biochar(WB),and nut-shell biochar(NSB),and two low molecular weight organic acids(citric acid and acetic acid)were tested alone and in combination to determine their efficacy for removal of soil Cd,Pb,and Zn.Single carbon materials showed removal efficiency of less than 0.5%.Generally,citric acid enhanced the removal of heavy metals by carbon materials more than acetic acid.Compared with citric acid alone,NCB significantly improved the efficiency of Cd,Pb,and Zn removal(10.1%~11.1%),whereas RSB enhanced removal efficiency less than NCB(7.8%~10.3%),and WB and NSB weakly increased the efficiency(1.8%~5.8%).The exchangeable,reducible,and partly oxidizable fractions of Cd,Pb,and Zn decreased markedly after washing with the mixed solutions(P<0.05).Soil organic carbon content increased by 8.7%~26.5%for all treatments,whereas total potassium decreased significantly relative to unwashed soils(P<0.05).The total nitrogen and phosphorus contents in different washed soils did not change significantly in comparison with original soils.Compared with single organic acids,the loss rates of available nitrogen,phosphorus,and potassium were reduced by 1.4%~6.1%,4.4%~11.5%,and 1.3%~10.4%,respectively,in the presence of carbon materials.Therefore,addition of carbon materials,especially nano-carbon black and rice straw biochar,to organic acids could effectively enhance the efficiency of removal of soil heavy metals,as well as alleviate the loss of available soil nutrients.
soil leaching;nano-carbon black;biochar;organic acid;composite leaching;heavy metals
X53
A
1672-2043(2017)08-1518-08
10.11654/jaes.2017-0347
2017-03-12
馬小杰(1993—),女,四川宜賓人,碩士研究生,從事土壤重金屬修復(fù)研究。E-mail:xiaojiema_z77@163.com
*通信作者:張世熔E-mail:rsz01@163.com
四川省科技支撐計(jì)劃項(xiàng)目(2014NZ0044);四川農(nóng)業(yè)大學(xué)科研興趣培養(yǎng)計(jì)劃項(xiàng)目(20150154)
Project supported:The Science and Technology Support Program of Sichuan Province,China(2014NZ0044);The Scientific Training Program of Sichuan Agricultural University(20150154)
馬小杰,張世熔,王怡君,等.不同碳材料增強(qiáng)有機(jī)酸對(duì)土壤重金屬的去除及對(duì)土壤化學(xué)性質(zhì)的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(8):1518-1525.
MA Xiao-jie,ZHANG Shi-rong,WANG Yi-jun,et al.Effects of different carbon materials for enhancement of organic acid-mediated removal of heavy metals and nutrient retention in soil[J].Journal of Agro-Environment Science,2017,36(8):1518-1525.
農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào)2017年8期