朱丹妹,劉巖,張麗,2,王秀梅,安毅,李玉浸,林大松*
(1.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2.東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,哈爾濱 150030)
不同類型土壤淹水對(duì)pH、Eh、Fe及有效態(tài)Cd含量的影響
朱丹妹1,劉巖1,張麗1,2,王秀梅1,安毅1,李玉浸1,林大松1*
(1.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2.東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,哈爾濱 150030)
基于數(shù)據(jù)收集整理,分析了南方不同酸堿性土壤淹水后,土壤pH值、Eh值、Fe[Fe(Ⅱ)和無定型氧化鐵]含量、有效態(tài)Cd含量和不同有機(jī)質(zhì)土壤淹水后有效態(tài)Cd含量變化趨勢(shì),同時(shí)分析了pH、Eh、Fe變化趨勢(shì)對(duì)有效態(tài)Cd含量的影響。結(jié)果表明:不同酸堿性土壤長(zhǎng)時(shí)間淹水后,pH均趨于中性、Eh下降、Fe含量增加;有效態(tài)Cd含量在酸性和中性土壤中呈持續(xù)下降趨勢(shì),分別降低了42%和38%;在堿性土壤中降低了27%,其中淹水前15 d呈增加趨勢(shì),淹水15 d后逐漸減少。不同有機(jī)質(zhì)含量土壤淹水后,有效態(tài)Cd含量在中高(≥20 g·kg-1)有機(jī)質(zhì)土壤中降低78%,且為持續(xù)降低趨勢(shì);在中低(≤20 g·kg-1)有機(jī)質(zhì)土壤中降低了52%,在淹水15~30 d增加,且淹水15 d有效態(tài)Cd含量要低于淹水60 d有效態(tài)Cd含量。土壤有效態(tài)Cd含量隨著pH值增大而降低,且變化速率一致,即pH值增加速率大時(shí),有效態(tài)Cd含量降低速率也大,反之亦然;土壤有效態(tài)Cd含量在淹水前15 d隨Fe含量的增加而增加,淹水15 d后隨著Fe含量增加而降低;整個(gè)淹水期間,土壤有效態(tài)Cd含量隨著Eh值降低而降低。綜上,酸性土壤和中高有機(jī)質(zhì)土壤淹水后可有效降低土壤有效態(tài)Cd含量,堿性土壤淹水時(shí)間不低于30 d、中低有機(jī)質(zhì)土壤淹水不超過15 d才能達(dá)到有效降低土壤有效態(tài)Cd含量之目的。
pH;Eh;Fe;有效態(tài)Cd;淹水時(shí)間
Cd是一種痕量有毒重金屬,易被作物特別是水稻吸收,并通過食物鏈轉(zhuǎn)移至人體,對(duì)人體健康造成危害。我國(guó)耕地土壤重金屬污染不容忽視,特別是南方地區(qū)尤為嚴(yán)重,根據(jù)《全國(guó)土壤污染狀況調(diào)查公報(bào)》[1],我國(guó)耕地土壤Cd污染以輕微、輕度污染為主,但總體點(diǎn)位超標(biāo)率高于其他重金屬,達(dá)7%。目前,重金屬污染土壤的修復(fù)治理已越來越受到人們的重視,研究表明,對(duì)于重金屬輕度污染的土壤,通過灌溉及農(nóng)藝措施調(diào)控即可達(dá)到安全生產(chǎn)的目的。
土壤淹水作為一種調(diào)控措施,在淹水還原作用下,無論酸性土壤還是堿性土壤,其pH值均會(huì)趨于中性[2-3],且Eh值下降[4-5],F(xiàn)e(Ⅱ)及無定型氧化鐵含量增加[6-7]。土壤這些性質(zhì)的變化可間接影響土壤Cd的生物有效性,Cd形態(tài)會(huì)重新分配,由交換態(tài)轉(zhuǎn)化成碳酸鹽結(jié)合態(tài)、鐵錳氧化物結(jié)合態(tài)和有機(jī)物結(jié)合態(tài),從而降低土壤Cd活性[8-9]。Kitagishi等[10]和Gambrell 等[11]報(bào)道,淹水條件下Cd溶解度隨土壤Eh值降低而減小,低Eh值條件有利于CdS沉淀的生成。鄭紹建等[12]對(duì)稻田水旱輪作各時(shí)段土壤Cd形態(tài)(交換態(tài)、有機(jī)結(jié)合態(tài)、碳酸鹽結(jié)合態(tài)、氧化錳結(jié)合態(tài)、氧化鐵結(jié)合態(tài)、殘?jiān)鼞B(tài))進(jìn)行了連續(xù)測(cè)定,結(jié)果表明稻田淹水后土壤pH值增大,有機(jī)質(zhì)和鐵錳氧化物對(duì)Cd的吸持能力增強(qiáng)。這是土壤Cd生物有效性降低的主要原因。Kasheln等[9]進(jìn)行的土壤淹水培養(yǎng)試驗(yàn)表明,鐵錳氧化物還原溶解形成的新鐵錳氧化物對(duì)Cd的吸持是導(dǎo)致Cd活性下降的主要原因。Bolton等[13]通過對(duì)7種土壤化學(xué)特性和Cd吸附容量回歸分析,認(rèn)為土壤對(duì)Cd的吸附容量與土壤中鐵氧化物的含量密切相關(guān),而土壤中鐵氧化物的還原溶解受土壤pH和Eh的影響。Mustafa等[14-15]通過批量試驗(yàn)研究了Cd在a-FeOOH上的吸附-解吸過程,結(jié)果表明,Cd在a-FeOOH表面的吸附量隨著pH值的升高而增加;淹水后隨著水土體系Eh值降低,鐵氧化物還原溶解,新生成的無定形或微晶形結(jié)構(gòu)氧化鐵具有更多吸附點(diǎn)位和更大的比表面積,極大提高了對(duì)Cd的吸附能力,致使土壤中Cd的移動(dòng)性極大降低[16-17]。
本研究通過文獻(xiàn)檢索與數(shù)據(jù)分析,對(duì)淹水期間土壤pH值、Eh值和Fe、有效態(tài)Cd含量數(shù)據(jù)進(jìn)行收集整理,分析了淹水期間不同酸堿性土壤中pH值、Eh值和Fe、有效態(tài)Cd含量的變化情況,為更有效地通過淹水治理土壤Cd污染提供理論依據(jù)。
1.1 數(shù)據(jù)收集
本文收集的數(shù)據(jù)主要為Cd污染相對(duì)嚴(yán)重的南方水稻土試驗(yàn)數(shù)據(jù)。鑒于已有研究表明,土壤pH、Eh、有機(jī)質(zhì)、陽離子交換量(CEC)、土壤質(zhì)地等對(duì)土壤Cd活性具有較大影響,本文主要收集了國(guó)內(nèi)主要期刊2003—2013年間發(fā)表的有關(guān)土壤淹水試驗(yàn)條件下的土壤pH值、Eh值和Fe含量、有效態(tài)Cd含量數(shù)據(jù)(表1)。數(shù)據(jù)來源:源文獻(xiàn)直接指出;通過源文獻(xiàn)中趨勢(shì)圖摘出;通過源文獻(xiàn)給出的數(shù)學(xué)式計(jì)算。
這些文獻(xiàn)主要為室內(nèi)恒溫(20~30℃范圍)條件下進(jìn)行全程土壤淹水培養(yǎng)實(shí)驗(yàn)。由于各實(shí)驗(yàn)?zāi)康牟煌?,測(cè)定指標(biāo)也不盡相同,在同一篇文獻(xiàn)中很難收集到土壤pH、Eh、Fe、有效態(tài)Cd的所有數(shù)據(jù),因此選擇原則定為:只要包括淹水條件下土壤pH、Eh、Fe、有效態(tài)Cd等指標(biāo)中一種指標(biāo)的測(cè)定數(shù)據(jù)即可。
表1 樣本數(shù)據(jù)Table 1 Sample data
1.2 數(shù)據(jù)處理
1.2.1 土壤酸堿性及有機(jī)質(zhì)分類
參考鄭紅艷等[18]對(duì)土壤類型分類依據(jù),將收集到的土壤數(shù)據(jù)按pH值大小分為酸性(pH 6.5以下)、中性(pH 6.5~7.5)和堿性(pH 7.5以上)。因收集土壤有機(jī)質(zhì)含量總體在9~49 g·kg-1之間,處于中、高含量范圍,且受Cd數(shù)據(jù)量的限制,以中等有機(jī)質(zhì)含量(10~30 g·kg-1)的中間值20 g·kg-1為分界線,把有機(jī)質(zhì)分為中低含量(有機(jī)質(zhì)含量≤20 g·kg-1)和中高含量(有機(jī)質(zhì)含量≥20 g·kg-1)兩組。
1.2.2 數(shù)據(jù)樣本數(shù)量一致性
因pH、Eh、Fe、有效態(tài)Cd數(shù)據(jù)樣本數(shù)量差異,故在對(duì)數(shù)據(jù)作圖分析時(shí)均采用平均數(shù)進(jìn)行分析討論。
1.2.3 土壤Cd、Fe數(shù)據(jù)處理
有效態(tài)Cd為水溶態(tài)和交換態(tài)兩種形態(tài),F(xiàn)e為土壤中的二價(jià)鐵離子和無定型氧化鐵兩種活性較高的形態(tài)。由于形態(tài)不同,對(duì)Cd、Fe數(shù)據(jù)進(jìn)行l(wèi)g10處理轉(zhuǎn)化,轉(zhuǎn)化后有效態(tài)Cd含量單位為lg(mg·kg-1),F(xiàn)e含量單位為lg(g·kg-1)。
采用SPSS 2.0和Excel進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析。
2.1 不同酸堿性土壤淹水后土壤pH、Eh、Fe含量、有效態(tài)Cd含量變化
淹水前土壤理化性質(zhì)見表2。不同酸堿性土壤淹水對(duì)土壤pH值的影響(表3)表明:淹水15 d內(nèi)土壤pH值變幅較大,酸性土壤pH值呈持續(xù)增加趨勢(shì),堿性土壤pH值呈持續(xù)減小趨勢(shì);中性土壤在整個(gè)淹水期間pH值在7附近波動(dòng)。淹水15 d后,pH值基本都趨于平穩(wěn),且趨于中性。淹水60 d后土壤pH值變幅依次為堿性土壤>酸性土壤>中性土壤。不同酸堿性土壤淹水后,變化趨勢(shì)為酸性土壤pH值增大,堿性土壤pH值減小,最終均趨于中性。
不同酸堿性土壤淹水對(duì)土壤Eh的影響表明(表3):土壤Eh值在整個(gè)淹水期間均持續(xù)降低,其中酸性土壤淹水60 d后Eh值降低了314,中性土壤降低了292,堿性土壤降低了342,降低幅度表現(xiàn)為堿性土壤>酸性土壤>中性土壤。
不同酸堿性土壤淹水對(duì)土壤Fe含量的影響表明(表3):土壤淹水后,土壤中Fe含量均呈增加趨勢(shì),其中酸性、中性和堿性土壤淹水60 d后分別增加了2.16、0.14、0.59 g·kg-1,酸性土壤中Fe含量增加幅度最大。酸性土壤Fe含量在淹水1~30 d呈增加趨勢(shì),淹水30 d后逐漸減??;中性土壤在整個(gè)淹水期間Fe含量變化幅度較??;堿性土壤Fe含量?jī)H在淹水1~5 d急速增長(zhǎng),隨后變化趨于平穩(wěn)。
不同酸堿性土壤淹水對(duì)土壤有效態(tài)Cd含量的影響表明(表3):土壤淹水后,土壤有效態(tài)Cd含量均有所降低,其中酸性、中性和堿性土壤有效態(tài)Cd含量淹水60 d后分別降低了42%、38%和27%,說明淹水前pH值越大的土壤,淹水后土壤有效態(tài)Cd含量降低幅度越小。酸性土壤有效態(tài)Cd含量在淹水1 d后快速降低,隨后隨淹水時(shí)間呈平緩降低趨勢(shì);中性土壤有效態(tài)Cd含量在淹水5 d內(nèi)有一個(gè)快速增加隨后快速降低的過程,淹水5 d后呈平緩下降趨勢(shì);堿性土壤有效態(tài)Cd含量在淹水15 d內(nèi)呈增加趨勢(shì),淹水15~30 d開始下降,淹水30~60 d變化相對(duì)平緩。由此可見,酸性土壤在淹水條件下土壤有效態(tài)Cd含量降低幅度最大,且呈持續(xù)降低趨勢(shì);由表3可以看出,堿性土壤淹水30 d有效態(tài)Cd含量才低于淹水前,因此對(duì)于堿性土壤淹水時(shí)間應(yīng)不低于30 d。
2.2 不同有機(jī)質(zhì)含量土壤淹水后有效態(tài)Cd含量變化
圖1為在淹水60 d期間,有效態(tài)Cd含量在中低[2,20,27,36,40]和中高[3,19-20,26,28,32,40]有機(jī)質(zhì)含量土壤中的變化。
在中低有機(jī)質(zhì)含量土壤中,有效態(tài)Cd含量(y= 0.000 1x2-0.009 5x-2.584 5,R2=0.576 2,N=9)在淹水15~30 d呈增大趨勢(shì),其他淹水時(shí)間有效態(tài)Cd含量降低,淹水60 d后降低了56%。在中高有機(jī)質(zhì)含量土壤中,有效態(tài)Cd含量(y=-0.010 2x-2.713 2,R2= 0.838 4,N=10)呈線性降低的趨勢(shì),淹水60 d后降低了78%。淹水第1 d,有效態(tài)Cd含量在兩種不同有機(jī)質(zhì)含量土壤中降低速率均為最大,降低速率都達(dá)到了34%;隨著淹水時(shí)間的延長(zhǎng),兩種不同有機(jī)質(zhì)含量土壤中有效態(tài)Cd含量變化趨勢(shì)不同,在中低有機(jī)質(zhì)含量土壤中,淹水1~30 d期間,土壤有效態(tài)Cd含量先降低后升高,而中高有機(jī)質(zhì)含量土壤中,在淹水1~30 d期間,土壤有效態(tài)Cd含量呈現(xiàn)不斷降低的趨勢(shì)。與淹水前相比,在淹水30~60 d期間,有效態(tài)Cd含量在中低和中高兩種不同有機(jī)質(zhì)含量土壤中分別降低了7%和14%。
綜上,中高有機(jī)質(zhì)含量土壤淹水后有效態(tài)Cd含量降幅最大,且為持續(xù)降低;中低有機(jī)質(zhì)含量土壤淹水后有效態(tài)Cd含量降幅相對(duì)較小,在淹水15~30 d為增加趨勢(shì),且淹水15 d土壤有效態(tài)Cd含量為1.78 mg·kg-1,低于淹水60 d土壤有效態(tài)Cd含量。這表明對(duì)于中低有機(jī)質(zhì)含量土壤,淹水15 d土壤有效態(tài)Cd含量降低效果為最佳。
2.3 不同淹水時(shí)間土壤pH、Eh、Fe與有效態(tài)Cd之間的關(guān)系
2.3.1 土壤pH與有效態(tài)Cd含量之間的關(guān)系
圖2為淹水60 d期間土壤pH值與有效態(tài)Cd含量的變化趨勢(shì),所選擇的文獻(xiàn)均同時(shí)包含pH值和有效態(tài)Cd含量?jī)蓚€(gè)指標(biāo)數(shù)據(jù)[2,3,19-20,26-28,32,36,40]。
在整個(gè)淹水期間,土壤有效態(tài)Cd含量呈線性降低趨勢(shì)(y=-0.047 8x-2.901 8,R2=0.91,N=19),而pH值呈線性上升趨勢(shì)(y=0.041 3x+6.304 8,R2=0.96,N= 19),說明土壤有效態(tài)Cd含量隨著pH值增大而降低。土壤pH值在淹水60 d后增加了0.19個(gè)單位,土壤有效態(tài)Cd含量在淹水60 d后降低了42%。在淹水前5 d,土壤pH值增幅最大,平均每天增加0.02個(gè)單位,土壤有效態(tài)Cd含量在此期間降低速率最大,平均每天降低2%。在淹水5~15 d和淹水15~30 d期間,土壤pH值增加速率基本一致,平均每天增加0.003個(gè)單位,土壤有效態(tài)Cd含量平均每天降低0.43%和1.40%;在淹水30~60 d,土壤pH值增加0.01個(gè)單位,而土壤有效態(tài)Cd含量平均每天的降低速率為0.38%。
表2 淹水前土壤基本理化性質(zhì)Table 2 Soil properties before experiment
表3 土壤pH、Eh、Fe、有效態(tài)Cd在不同淹水時(shí)間描述性數(shù)據(jù)Table 3 Descriptive data of soil pH,Eh,F(xiàn)e and available Cd in different flooding time
圖1 不同淹水時(shí)間有效態(tài)Cd含量在中低和中高有機(jī)質(zhì)土壤中的變化Figure 1 The variation of available-Cd content in middle-low and middle-high organic soil in different flooding time
總體來看,隨著淹水時(shí)間的延長(zhǎng),土壤pH值的增加速率和土壤有效態(tài)Cd含量的降低速率均變得緩慢。由此可見,淹水后土壤有效態(tài)Cd含量與pH值變化方向相反,且變化速率一致,即pH值增加速率大時(shí),有效態(tài)Cd含量降低速率也大,pH值增加速率降低時(shí),有效態(tài)Cd含量降低速率也隨之降低。
2.3.2 土壤Eh與有效態(tài)Cd含量之間的關(guān)系
圖3為淹水60 d期間土壤Eh值與有效態(tài)Cd含量的變化趨勢(shì),所選擇的文獻(xiàn)均同時(shí)包含Eh值和有效態(tài)Cd含量?jī)蓚€(gè)指標(biāo)數(shù)據(jù)[2,20,27,36,40]。
由圖3可以看出,在整個(gè)淹水期間土壤有效態(tài)Cd含量呈線性下降趨勢(shì)(y=-0.045x-2.617 2,R2= 0.855 3,N=12),土壤Eh值在整個(gè)淹水期間同樣呈線性下降趨勢(shì)(y=-61.84x+287.84,R2=0.934 8,N=12),說明土壤有效態(tài)Cd含量隨土壤Eh值降低而降低。淹水60 d后土壤Eh值降低了126%,土壤有效態(tài)Cd含量降低了38%。
圖2 不同淹水時(shí)間土壤pH值與有效態(tài)Cd含量之間的關(guān)系Figure 2 The relations between soil pH and available-Cd content in different flooding time
淹水第1 d,Eh值降低速率最大,降低了45%,土壤有效態(tài)Cd含量降低速率亦最大,降低了5%。淹水5~60 d期間,土壤Eh與土壤有效態(tài)Cd含量均呈現(xiàn)持續(xù)降低的趨勢(shì),隨著淹水時(shí)間的延長(zhǎng)降低速率趨于緩慢。
2.3.3 土壤Fe含量與有效態(tài)Cd含量之間的關(guān)系
圖4為淹水60 d期間土壤Fe含量與有效態(tài)Cd含量的變化趨勢(shì),所選擇的文獻(xiàn)均同時(shí)包含F(xiàn)e和有效態(tài)Cd含量?jī)蓚€(gè)指標(biāo)數(shù)據(jù)[3,19-20,40]。
在整個(gè)淹水期間,土壤Fe含量呈線性增大趨勢(shì)(y=0.221 7x-2.595 9,R2=0.933 8,N=11),而土壤有效態(tài)Cd含量(y=-0.018 9x2+0.060 2x-2.722,R2=0.855 8,N=11)呈現(xiàn)先增加后降低的趨勢(shì)。在淹水第1 d,F(xiàn)e含量增加49%,有效態(tài)Cd含量降低了24%,有效態(tài)Cd含量降低速率為整個(gè)淹水期間最大。在淹水1~5 d和淹水5~15 d,F(xiàn)e含量與淹水第1 d相比,分別增加了3倍和4倍;而土壤有效態(tài)Cd含量在淹水1~15 d呈增大趨勢(shì),與淹水第1 d相比增加了15%。在淹水15~30 d,F(xiàn)e含量平均每天增加速率為3%,土壤有效態(tài)Cd含量平均每天降低3%;在淹水30~60 d,F(xiàn)e含量平均每天增加0.4%,土壤有效態(tài)Cd含量平均每天降低0.7%。
圖3 不同淹水時(shí)間土壤Eh值與有效態(tài)Cd含量之間的關(guān)系Figure 3 The relations between soil Eh values and available-Cd content in different flooding time
圖4 不同淹水時(shí)間土壤Fe含量與有效態(tài)Cd之間的關(guān)系Figure 4 The relations between soil Fe and available-Cd content in different flooding time
總體來看,土壤Fe含量在整個(gè)淹水期間持續(xù)增加,但增加速率隨著淹水時(shí)間的延長(zhǎng)變得緩慢。土壤有效態(tài)Cd含量在淹水1~15 d呈增大趨勢(shì),隨后開始降低,降低速率同樣隨著淹水時(shí)間的延長(zhǎng)變得緩慢。這表明,在淹水15 d后,土壤有效態(tài)Cd含量隨Fe含量的增加而降低,且變化速率一致,即Fe含量增加速率大時(shí),有效態(tài)Cd含量的降低速率也大,F(xiàn)e含量增加速率降低時(shí),Cd含量的降低速率也小。
淹水后,土壤環(huán)境會(huì)發(fā)生顯著的變化,首先在淹水狀態(tài)下,由于氧的供給被切斷,土壤中原有的氧因?yàn)槲⑸锖粑幌拇M,致使土壤從氧化狀態(tài)轉(zhuǎn)變?yōu)檫€原狀態(tài),因此在淹水無氧環(huán)境中土壤的Eh值都會(huì)下降[4-5]。與此同時(shí),隨著Eh值降低土壤中鐵氧化物還原生成新的鐵氧化物[6-7],而且淹水后土壤pH值均會(huì)趨于中性,與本文研究結(jié)果一致。
淹水后,一方面鐵錳氧化物溶解生成新的鐵錳氧化物會(huì)增加土壤對(duì)Cd的吸附能力,降低土壤有效態(tài)Cd含量[9,13];另一方面,鐵錳氧化物溶解會(huì)使原先所吸附的Cd釋放到土壤溶液中,導(dǎo)致土壤中有效態(tài)Cd含量增加[41-43]。一般在堿性土壤(pH>7.5)中粘土礦物結(jié)合態(tài)及氧化物結(jié)合態(tài)Cd含量較高[19],淹水使其溶解,Cd釋放到土壤溶液中,則可能是堿性土壤在淹水前15 d有效態(tài)Cd含量增大的原因。
研究認(rèn)為,Cd的吸附和解吸過程是控制天然水與土壤間以及土壤中液相和固相Cd分配的主要因子[44-45],有機(jī)質(zhì)作為土壤吸附能的重要組成部分[46],對(duì)土壤Cd生物有效性的影響不可忽視。研究表明有機(jī)質(zhì)高的土壤對(duì)Cd的吸附能也較強(qiáng)[47],但不同的有機(jī)物料對(duì)土壤Cd生物有效性影響結(jié)果不同,添加牛糞[48]、紫云英和豬糞[49]可顯著降低交換態(tài)Cd的含量,而施用易分解有機(jī)肥[50]和秸稈[51]則提高土壤中Cd的活性和遷移能力。不同的有機(jī)物料,在淹水條件下,分解形成的有機(jī)質(zhì)類型不一樣,其中DOM(可溶性有機(jī)質(zhì))的絡(luò)合作用促進(jìn)土壤膠體所吸附重金屬的溶解,使其釋放到土壤溶液中[52-53],而土壤腐殖質(zhì)的增加卻可以降低土壤中重金屬的遷移性和有效性。這是因?yàn)楦迟|(zhì)中的胡敏酸和富里酸溶解產(chǎn)出大量能與金屬離子發(fā)生反應(yīng)的功能團(tuán)(-COOH、-OH、-C=O、-NH2、-SH)[54]。這些功能團(tuán)能與金屬離子和金屬水合氧化物發(fā)生廣泛的反應(yīng),而且易與粘土、氧化物形成顆粒有機(jī)物或有機(jī)膜而表現(xiàn)出較大表面積和高度的表面活性,增強(qiáng)了粘土對(duì)重金屬的吸附,從而降低了Cd的生物有效性[55]。
土壤Eh、pH、鐵氧化物、有機(jī)質(zhì)對(duì)土壤Cd的吸附-解吸作用是相互的。一方面,淹水后土壤pH值和Eh值的改變,導(dǎo)致鐵錳氧化物和有機(jī)質(zhì)的溶解[56],增加土壤對(duì)Cd的吸附能;另一方面,鐵錳礦物和有機(jī)質(zhì)溶解也會(huì)改變土壤pH值和Eh值影響重金屬的沉淀-溶解平衡[57]。因此,淹水措施作為土壤Cd污染控制的一種調(diào)控手段,還應(yīng)根據(jù)土壤Eh、pH、鐵氧化物、有機(jī)質(zhì)等因素的綜合影響進(jìn)一步研究其可行性。
(1)不同酸堿性土壤長(zhǎng)期淹水后,土壤pH值最終均趨于中性,且Eh值降低、Fe含量增加。有效態(tài)Cd含量在酸性土壤中降幅最大且呈持續(xù)下降趨勢(shì);在中性土壤中雖然在整個(gè)淹水期間持續(xù)降低,但降幅不大;堿性土壤在淹水15 d有效態(tài)Cd含量呈增加趨勢(shì),15 d后逐漸減少,淹水30 d后有效態(tài)Cd含量才比淹水前有所降低。
(2)中高有機(jī)質(zhì)土壤淹水后,有效態(tài)Cd含量降幅最大且呈持續(xù)下降趨勢(shì);中低有機(jī)質(zhì)土壤淹水后,有效態(tài)Cd含量降幅相對(duì)較低,在淹水15 d有效態(tài)Cd含量降幅最大。
(3)土壤有效態(tài)Cd含量隨著pH值增大而降低,且變化速率一致,即pH值增加速率大時(shí),有效態(tài)Cd含量降低速率也大,反之亦然;土壤有效態(tài)Cd含量在淹水前15 d隨Fe含量的增加而增加,淹水15 d以后隨著Fe含量增加而降低;在整個(gè)淹水期間,土壤有效態(tài)Cd含量隨著Eh值降低而降低。
[1]環(huán)境保護(hù)部,國(guó)土資源部.全國(guó)土壤污染狀況調(diào)查公報(bào)[J].中國(guó)環(huán)保產(chǎn)業(yè),2014(5):10-11.
Environmental Protection Department,Ministry of Land and Resources. National investigation report on soil pollution[J].China′s Environmental Protection Industry,2014(5):10-11.
[2]Sun L,Chen S,Chao L,et al.Effects of flooding on changes in Eh,pH and speciation of cadmium and lead in contaminated soil[J].Bulletin of Environmental Contamination and Toxicology,2007,79(5):514-518.
[3]陳莉娜,葛瀅,張春華,等.淹水還原作用對(duì)紅壤Cd生物有效性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(11):2333-2337.
CHEN Li-na,GE Ying,ZHANG Chun-hua,et al.Effect of submergence on the bioavailability of Cd in a red soil[J].Journal of Agro-Environment Science,2009,28(11):2333-2337.
[4]Reynolds J G,Naylor D V,Fendorf S E.Arsenic sorption in phosphateamended soils during flooding and subsequent aeration[J].Soil Science Society of AmericaJournal,1998,63(5):1149-1156.
[5]Hseu Z Y,Chen Z S.Saturation,reduction,and redox morphology of seasonally flooded Alfisols in Taiwan[J].Soil Science Society of America Journal,1996,60(3):941-949.
[6]Brennan E W,Lindsay W L.The role of pyrite in controlling metal ion activities in highly reduced soils[J].Geochimica et Cosmochimica Acta, 1996,60(19):3609-3618.
[7]Maes A,Vanthuyne M,Caunbery P,et al.Metal partitioning in a sulfidic canal sediment metal solubility as a function of pH combined with EDTA extraction in anoxic conditions[J].The Science of the Total Environment,2003,312(1):181-193.
[8]Kashem M A,Singh B R.Transformations in solid phase species of metals as affected by flooding and organic matter[J].Commmunications in Soil Science and Plant Analysis,2004,35(9/10):1435-1456:
[9]Kashem M A,Singh B R.Metal availability in contaminated soils:Ⅰ. Effects of flooding and organic matter on changes in Eh,pH and solubility of Cd,Ni and Zn[J].Nutrient Cycling in Agroecosystems,2001,61 (3):247-255.
[10]Kitagishi K,Yamane I.Heavy metal pollution in soils of Japan[M]// Heavy metal pollution in soils of Japan.Japan Scientific Societies Press,1981:426.
[11]Gambrell R P,Wiesepape J B,Patrick W H,et al.The effects of pH, redox,and salinity on metal release from a contaminated sediment[J]. Water,Air&Soil Pollution,1991,57/58(1):359-367.
[12]鄭紹建,胡靄堂.淹水對(duì)污染土壤Cd形態(tài)轉(zhuǎn)化的影響[J].環(huán)境科學(xué)學(xué)報(bào),1995,15(2):142-147.
ZHENG Shao-jian,HU Ai-tang.Effects of flooding on the transformation of Cd fractions in contaminated soils[J].Acta Scientiae Circumstantiae,1995,15(2):142-147.
[13]Bolton K A,Evans L J.Cadmium adsorption capacity of selected Ontario soils[J].Canadian Journal of Soil Science,1996,76(2):183-189.
[14]Mustafa G,Kookana R S,Singh B.Desorption of cadmium from goethite:Effects of pH,temperature and aging[J].Chemosphere,2006, 64(5):856-865.
[15]Mustafa G,Singh B,Kookana R S.Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations:Effects of pH and index cations[J].Chemosphere,2004,57(10):1325-1333.
[16]Tack F M G,Ranst E V,Lievens C,et al.Soil solution Cd,Cu and Zn concentrations as affected by short-time drying or wetting:The role of hydrous oxides of Fe and Mn[J].Geoderma,2006,137(1):83-89.
[17]Sukreeyapongse O,Holm P E,Strobel B W,et al.pH-dependent release of cadmium,copper,and lead from natural and sludge-amended soils[J].JEnviron Qual,2002,31(6):1901-1909.
[18]鄭宏艷,姚秀榮,侯彥林,等.中國(guó)土壤模式-作物系統(tǒng)重金屬生物富集模型建立[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(2):257-265.
ZHENG Hong-yan,YAO Xiu-rong,HOU Yan-lin,et al.Establishment of heavy metal bioaccumulation model of soil pattern-crop system in China[J].Journal of Agro-Environment Science,2015,34(2):257-265.
[19]黃丹丹,葛瀅,周權(quán)鎖.淹水條件下土壤還原作用對(duì)Cd活性消長(zhǎng)行為的影響[J].環(huán)境科學(xué)學(xué)報(bào),2009,29(2):373-380. HUANG Dan-dan,GE Ying,ZHOU Quan-suo.Effect of redox processes on soil Cd activity under submerged conditions[J].Acta Scientiae Circumstantiae,2009,29(2):373-380
[20]張金洋,王定勇,石孝洪.三峽水庫(kù)消落區(qū)淹水后土壤性質(zhì)變化的模擬研究[J].水土保持學(xué)報(bào),2004,18(6):120-123.
ZHANG Jin-yang,WANG Ding-yong,SHI Xiao-hong.Change of soil character after flooding in drawdown area of Three Gorges Reservoir[J]. Journal of Soil Water Conservation,2004,18(6):120-123.
[21]蘇玲.水稻土淹水過程中不同土層鐵形態(tài)的變化及對(duì)磷吸附解吸特性的影響[J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2001,27(2):124-128.
SU Ling.Effects of flooding on iron transformation and phosphorus adsorption desorption properties in different layers of the paddy soils[J]. Journal of ZhejiangAgricultural University,2001,27(2):124-128.
[22]高超,張?zhí)伊?吳蔚東.氧化還原條件對(duì)土壤磷素固定與釋放的影響[J].土壤學(xué)報(bào),2002,39(4):542-549.
GAO Chao,ZHANG Tao-lin,WU Wei-dong.Effects of redox conditions on the immobilization and release of soil phosphorus[J].Acta Pedolongice Sinica,2002,39(4):542-549.
[23]徐麗娜,李忠佩,車玉萍.淹水厭氧條件下腐植酸對(duì)紅壤中鐵異化還原過程的影響[J].環(huán)境科學(xué),2009,30(1):221-226.
XU Li-na,LI Zhong-pei,CHE Yu-ping.Influences of humic acids on the dissimilatory iron reduction of red soil in anaerobic condition[J]. Environmental Science,2009,30(1):221-226.
[24]邵興華.水稻土淹水過程鐵氧化物轉(zhuǎn)化對(duì)磷飽和度和磷、氮釋放的影響[D].杭州:浙江大學(xué),2005.
SHAO Xing-hua.Effects of iron oxides on phosphorus saturation and nitrogen and phosphorus release in paddy soils during flooding[D].Hangzhou:Zhejiang University 2005.
[25]曹寧.水稻土中鐵還原與無機(jī)磷有效性的關(guān)系研究[D].楊凌:西北農(nóng)林科技大學(xué),2003.
CAO Ning.Study on the relationship between iron reduction and availability of inorganic phosphorus in paddy soil[D].Yangling:Northwest Agriculture and Forestry University,2003.
[26]胡坤.淹水條件下不同中、微量元素和有益元素對(duì)土壤Cd有效性和水稻吸收Cd的影響[D].成都:四川農(nóng)業(yè)大學(xué),2010.
HU Kun.Effects of different medium and trace elements and beneficial elements on the availability of cadmium and cadmium uptake by rice [D].Chengdu:Sichuan Agricultural Uniersity,2010.
[27]單玉華,李昌貴,陳晨,等.施用秸稈對(duì)淹水土壤Cd、銅溶出的影響[J].生態(tài)學(xué)雜志,2008,27(8):1362-1366.
SHAN Yu-hua,LI Chang-gui,CHEN Chen,et al.Effects of straw incorporation on the solubility of cadmium and copper in flooded soil[J]. Chinese Journal of Ecology,2008,27(8):1362-1366.
[28]楊錨,王火焰,周健民,等.不同水分條件下幾種氮肥對(duì)水稻土中外源Cd轉(zhuǎn)化的動(dòng)態(tài)影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2006,25(5):1202-1207.
YANG Mao,WANG Huo-yan,ZHOU Jian-min,et al.Effects of appling nitrogen fertilizers on transformation of external cadmium in the paddy soil with different soil moisture[J].Journal of Agro-Environment Science,2006,25(5):1202-1207.
[29]朱昌鋒.淹水對(duì)土壤磷有效性影響的研究[D].成都:西南大學(xué), 2008.
ZHU Chang-feng.Effects of flooding on soil phosphorus availability [D].Chengdu:Southwestern University,2008.
[30]唐羅忠,生原喜久雄,戶田浩人,等.濕地林土壤的Fe2+,Eh及pH值的變化[J].生態(tài)學(xué)報(bào),2005,25(1):103-107. TANG Luo-zhong,Kikuo H,Hiroto T,et al.Dynamics of ferrous iron, redox potential and pH of forested wetland soils[J].ActaEcologicaSinica,2005,25(1):103-107.
[31]許超,林曉濱,吳啟堂,等.淹水條件下生物炭對(duì)污染土壤重金屬有效性及養(yǎng)分含量的影響[J].水土保持學(xué)報(bào),2012,26(6):194-198.
XU Chao,LIN Xiao-bin,WU Qi-tang et al.Impacts of biochar on availability of heavy metals and nutrient content of contaminated soil under waterlogged conditions[J].Journal of Soil and Water conservation,2012,26(6):194-198.
[32]甲卡拉鐵,喻華,馮文強(qiáng),等.淹水條件下不同氮磷鉀肥對(duì)土壤pH和Cd有效性的影響研究[J].環(huán)境科學(xué),2009,30(11):3414-3421.
JIA Ka-la-tie,YU Hua,FENG Wen-qiang,et al.Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions.[J].Environmental Science,2009,30(11):3414-3421.
[33]薄錄吉,王建國(guó),王巖,等.淹水時(shí)間對(duì)水稻土磷素形態(tài)轉(zhuǎn)化及其有效性的影響[J].土壤,2011,43(6):930-934.
BO Lu-ji,WANG Jian-guo,WANG Yan,et al.Effect of flooding time on phosphorus transformation and availability in paddy soil[J].Soils, 2011,43(6):930-934.
[34]王桂風(fēng),劉凌,田娟.淹水過程不同土層磷的釋放研究[J].環(huán)境科學(xué)與技術(shù),2008,31(12):21-23.
WANG Gui-feng,LIU Lin,TIAN Juan.Phosphorus release in different layers of flooded soils[J].Environmental Science&Technology,2008, 31(12):21-23.
[35]劉貝貝.重金屬對(duì)水稻土中異化鐵還原的影響[D].楊凌:西北農(nóng)林科技大學(xué),2006.
LIU Bei-bei.Effects of heavy metals on iron reduction in paddy soils [D].Yangling:Northwest Agriculture and Forestry University,2006.
[36]Zhu Q H,Huang D Y,Liu S L,et al.Flooding-enhanced immobilization effect of sepiolite on cadmium in paddy soil[J].Journal of Soils and Sediments,2012,12(2):169-177.
[37]施林林,陸長(zhǎng)嬰,王海候,等.水分管理對(duì)太湖地區(qū)水稻土無機(jī)磷轉(zhuǎn)化的影響[J].江西農(nóng)業(yè)學(xué)報(bào),2012,24(8):1-5.
SHI Lin-lin,LU Chang-ying,WANG Hai-hou,et al.Effect of water management on transformation of inorganic phosphorus in paddy soil in Taihu Lake district[J].ActaAgriculturae Jiangxi,2012,24(8):1-5.
[38]王圖錦,吉芳英,何強(qiáng),等.三峽庫(kù)區(qū)土壤鐵異化還原及其對(duì)鐵形態(tài)影響[J].重慶大學(xué)學(xué)報(bào),2011,34(1):100-104.
WANG Tu-jin,JI Fang-ying,HE Qiang,et al.Dissimilatory iron reduction processes of soil from Three Gorges Reservoir area and its effect on chemical form of Fe[J].Journal of Chongqing University,2011, 34(1):100-104.
[39]楊長(zhǎng)明,楊林章,顏廷梅.不同養(yǎng)分和水分管理模式對(duì)土壤生態(tài)環(huán)境影響[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2002,18(3):11-15.
YANG Chang-ming,YANG Lin-zhang,YAN Ting-mei.Effects of nutrient and water regimes on paddy soil eco-environment[J].Rural Ecoenvironment,2002,18(3):11-15.
[40]吉芳英,王圖錦,葉姜瑜,等.三峽庫(kù)區(qū)土壤淹水對(duì)Cd形態(tài)穩(wěn)定性的影響[J].土木建筑與環(huán)境工程,2012,34(2):115-120.
JI Fang-ying,WANG Tu-jin,YE Jiang-yu,et al.Effect of submerged condition on chemical form of Cd in soil of three gorges reservoir area [J].Journal of Civil Architectural&Environmental Engineering,2012, 34(2):115-120.
[41]Chuan M C,Shu G Y,Liu J C.Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH[J].Water,Air&Soil Pollution,1996,90(3):543-556.
[42]Davranche M,Bollinger J C.Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:Effect of reductive conditions[J].Journal of Colloid&Interface Science,2000,227(2):531-539.
[43]Davranche M,Bollinger J C.Release of metals from iron oxyhydroxides under reductive conditions:Effect of metal/solid interactions[J].Journal of Colloid&Interface Science,2000,232(1):165-173.
[44]Gardiner J.The chemistry of cadmium in natural water:Ⅱ.The adsorption of cadmium on river muds and naturally occurring solids[J]. Water Research,1974,8(3):157-164.
[45]Santillan-Medrano J,Jurinak J J.The chemistry of lead and cadmium in soil:Solid phase formation[J].Soil Science Society of America Journal,1975,39(5):851-856.
[46]杜彩艷,祖艷群,李元.pH和有機(jī)質(zhì)對(duì)土壤中鎘和鋅生物有效性影響研究[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2005,20(4):539-543.
DU Cai-yan,ZU Yan-qun,LI Yuan.Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J].Journal of Yunnan Agricultural University,2005,20(4):539-543.
[47]焦文濤,蔣新,余貴芬,等.土壤有機(jī)質(zhì)對(duì)Cd在土壤中吸附-解吸行為的影響[J].環(huán)境化學(xué),2005,24(5):545-549.
JIAO Wen-tao,JIANG Xin,YU Gui-fen,et al.Effects of organic matter on cadmium adsorption-desorption in three soils[J].Environmental Chemistry,2005,24(5):545-549.
[48]Zeng F R,Ali S,Zhang H T,et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution,2011,159(1):84-91.
[49]Song J,Guo Z H,Xiao X Y,et al.Environmental availability and profile characteristics of arsenic,cadmium,lead and zinc in metal-contaminated vegetable soils[J].Transactions of Nonferrous Metals Society of China,2009,19(3):765-772.
[50]Pérez-De-Mora A,Madejón E,Burgos P,et al.Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation:Ⅰ.Soils[J].Science of the Total Environment, 2006,363(1/2/3):28-37.
[51]Liu C C,Chen G B.Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge[J].Journal of Hazardous Materials,2013,244/245:645-653.
[52]Fotovat A,Naidu R.Changes in composition of soil aqueous phase influence chemistry of indigenous heavy metals in alkaline sodic and acidic soils[J].Geoderma,1998,84(1/2/3):213-234.
[53]Hesterberg D,Bril J,Castilho P D.Thermodynamic modeling of zinc, cadmium,and copper solubilities in a manured,acidic loamy-sand topsoil[J].Journal of Environmental Quality,1993,22(4):681-688.
[54]Sposito G,Weber J H.Sorption of trace metals by humic materials in soils and natural waters[J].Critical Reviews in Environmental Science and Technology,1986,16(2):193-229.
[55]余貴芬,蔣新.有機(jī)物質(zhì)對(duì)土壤Cd有效性的影響研究綜述[J].生態(tài)學(xué)報(bào),2002,22(5):770-776.
YU Gui-fen,JIANG Xin.A review for effect of organic substances on the availability of cadmium in soils[J].Acta Ecologica Sinica,2002,22 (5):770-776.
[56]王浩,章明奎.有機(jī)質(zhì)積累和酸化對(duì)污染土壤重金屬釋放潛力的影響[J].土壤通報(bào),2009,40(3):538-541.
WANG Hao,ZHANG Min-kui.Effects of organic matter accumulation and acidification on release potential of heavy metals from polluted soils[J].Chinese Journal of Soil Science,2009,40(3):538-541.
[57]Liu C C,Lin Y C.Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge[J].Environmental Pollution,2013,178:97-101.
Effects of pH,Eh,Fe,and flooded time on available-Cd content after flooding of different kinds of soil
ZHU Dan-mei1,LIU Yan1,ZHANG Li1,2,WANG Xiu-mei1,AN Yi1,LI Yu-jin1,LIN Da-song1*
(1.Agro-Environmental Protection Institute,Ministry of Agriculture,Tianjin 300191,China;2.College of Resource and Environment,Northeast Agricultural University,Harbin 150030,China)
Based on collected and arranged data,the following variables were assessed after flooding:the trend in the change of soil pH values,Eh values,Fe(Fe(Ⅱ)and amorphous iron oxide)content,and available Cd content under different pH values in southern soil;the trend in the change of available Cd content in soil with different organic matter contents;and the effect of the trend in the change of pH,Eh, and Fe on the content of available Cd in soils.Several conclusions were drawn based on these analyses.All pH values tended to be neutral, the Eh decreased,and the Fe content increased in three kinds of soil with different pH values after 60 days of flooding.The content of available Cd in acid and neutral soils showed a continuous decreasing trend,decreasing 42%and 38%,respectively.In alkaline soil,it decreased 27%,and it increased on the first 15 days of flooding and then decreased gradually.In soil with different organic matter content after flooding,the content of available Cd in the soil with medium-high organic matter(≥20 g·kg-1)showed a continuous decreasing trend and decreased 78%.In the soil with medium-low organic matter(≤20 g·kg-1),it decreased 52%and increased on the flooded 15~30 days;the content of available Cd in the soil with the 15-day flooded treatment was lower than that for the 60-day treatment.After flooding,the content of available Cd in soil decreased with the increase in pH value,and the change rate was consistent;when the increase rate of the pH value increased,the decrease rate of the content of available Cd also increased,and vice versa.The content of available Cd in soil increased withthe increase in the Fe content on the first 15 days of flooding,and then decreased with increase in Fe content.The content of available Cd decreased with the decrease in the Eh value during the flooding.In conclusion,the content of available Cd in soil could be effectively reduced in acid soil and medium-high organic soil after flooding.In alkaline soil,the available Cd content could only be reduced by flooding of not less than 30 days.In the medium-low organic soil,flooding should be conducted for less than 15 days in order to reduce the content of available Cd in soil.
pH;Eh;Fe;available Cd;flooding
X53
A
1672-2043(2017)08-1508-10
10.11654/jaes.2016-1491
2016-11-23
朱丹妹(1992—),女,安徽宿州人,碩士研究生,研究方向?yàn)檗r(nóng)業(yè)資源與利用。E-mail:zdmyam@163.com
*通信作者:林大松E-mail:lindasong608@126.com
國(guó)家自然科學(xué)基金項(xiàng)目(31200397)
Project supported:The National Natural Science Foundation of China(31200397)
朱丹妹,劉巖,張麗,等.不同類型土壤淹水對(duì)pH、Eh、Fe及有效態(tài)Cd含量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(8):1508-1517.
ZHU Dan-mei,LIU Yan,ZHANG Li,et al.Effects of pH,Eh,Fe,and flooded time on available-Cd content after flooding of different kinds of soil[J].Journal of Agro-Environment Science,2017,36(8):1508-1517.
農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào)2017年8期