楊姝,李元,畢玉芬,祖艷群,何永美,賈樂
(云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,昆明 650201)
紫花苜蓿對(duì)Cd脅迫的響應(yīng)及品種差異研究進(jìn)展
楊姝,李元*,畢玉芬,祖艷群,何永美,賈樂
(云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,昆明 650201)
為利用紫花苜蓿對(duì)Cd污染土壤進(jìn)行修復(fù)和綜合利用提供理論基礎(chǔ)。綜述了紫花苜蓿對(duì)Cd脅迫的響應(yīng),包括:紫花苜蓿的生長對(duì)Cd的響應(yīng)存在“低促高抑”現(xiàn)象;紫花苜蓿對(duì)Cd吸收的可能途徑包括根表皮質(zhì)膜的H+交換、Ca2+和Mg2+陽離子通道,根際環(huán)境和Cd元素在土壤中的有效態(tài)等因素會(huì)影響紫花苜蓿對(duì)Cd的吸收;在Cd由根部向地上部轉(zhuǎn)運(yùn)的過程中,隨著土壤Cd含量的增加,更多的Cd被累積在紫花苜蓿的根部;紫花苜蓿應(yīng)對(duì)土壤Cd脅迫的調(diào)控機(jī)理包括信號(hào)分子調(diào)控、抗氧化系統(tǒng)調(diào)控、生物巰基化合物對(duì)Cd的螯合、調(diào)節(jié)Cd的亞細(xì)胞分布和耐Cd基因的表達(dá)等多個(gè)方面??偨Y(jié)了紫花苜蓿對(duì)Cd脅迫響應(yīng)的品種差異,主要表現(xiàn)在:種子萌發(fā)和幼苗生長;根瘤生長、植株形態(tài)和生物量;生理指標(biāo);對(duì)Cd的吸收與累積等方面。今后的研究工作可重點(diǎn)關(guān)注品種差異評(píng)判標(biāo)準(zhǔn)的建立、差異顯著品種的系統(tǒng)篩選、在分子水平上的響應(yīng)機(jī)理及品種差異機(jī)理的分析等方面。
紫花苜蓿;Cd脅迫;響應(yīng);品種差異;機(jī)理
由于對(duì)農(nóng)業(yè)生產(chǎn)和食品安全的不利影響,重金屬污染已在世界范圍內(nèi)引起廣泛關(guān)注[1]。Cd是植物非必需元素,易從土壤向植物遷移[2],并可能通過食物鏈在人體內(nèi)蓄積[3],被美國毒物管理委員會(huì)(ATSDR)列為第六位危害人體健康的有毒物質(zhì)[4]。目前我國土壤Cd污染形勢(shì)嚴(yán)峻,其點(diǎn)位超標(biāo)率達(dá)7.0%,在Cd、Hg、As、Cu、Pb、Cr、Zn、Ni 8種無機(jī)污染物中位列第一[5],對(duì)此,可行的應(yīng)對(duì)措施包括利用超富集植物進(jìn)行植物修復(fù)和種植低累積植物等[6-7]。
紫花苜蓿(Medicago sativa L.)是一種優(yōu)良牧草,在世界各國廣泛種植,有“牧草之王”的美譽(yù)。紫花苜蓿對(duì)重金屬有一定的耐性[8]和累積能力[9-10],在植物提取方面有較好的特性[11-12]。在Cd、Zn、Cu、Pb幾種金屬中,紫花苜蓿對(duì)Cd的吸收系數(shù)最大[13],對(duì)Cd污染土壤具有一定的修復(fù)能力[14]。不同的紫花苜蓿品種對(duì)Cd脅迫的響應(yīng)存在顯著差異[15-16],可以作為Cd污染土壤治理和綜合利用的備選植物,相關(guān)研究具有重要的理論和實(shí)踐意義。
1.1 紫花苜蓿對(duì)Cd脅迫響應(yīng)的特征
紫花苜蓿的生長對(duì)Cd的響應(yīng)存在“低促高抑”現(xiàn)象[17-18],當(dāng)Cd濃度超過一定閾值后,其種子萌發(fā)[19-20]、根瘤生長[21-22]、生物量[23]、植株形態(tài)[24]等均會(huì)受到不同程度抑制,且有側(cè)根產(chǎn)生的情況出現(xiàn)[25]。紫花苜蓿主要通過抗氧化系統(tǒng)的激活[26]、生物膜透性的改變[27]、光合作用調(diào)節(jié)[28]和滲透調(diào)節(jié)[29]等措施來應(yīng)對(duì)Cd的逆境脅迫,其體內(nèi)超氧化物歧化酶(SOD)、過氧化物酶(POD)和過氧化氫酶(CAT)的活性會(huì)隨著Cd脅迫濃度的升高呈現(xiàn)出程度不一的升高-降低變化[30],Cd脅迫也抑制了其體內(nèi)谷胱甘肽還原酶(GR)的活性并導(dǎo)致谷胱甘肽(GSH)被消耗[31];此外,葉綠素[32]、丙二醛(MDA)、脯氨酸和可溶性糖的含量以及相對(duì)電導(dǎo)率等指標(biāo)均會(huì)受到Cd脅迫的影響[27,29]。紫花苜蓿能吸收并累積土壤中的Cd,其Cd累積量與土壤中有效Cd的量呈顯著線性關(guān)系[33],并表現(xiàn)出植株Cd含量高于土壤Cd含量[34]、根部Cd含量高于莖稈和葉片Cd含量[35]的Cd累積特征,在一定程度上限制了Cd由根部向地上部的轉(zhuǎn)移。
1.2 紫花苜蓿對(duì)Cd的吸收和轉(zhuǎn)運(yùn)
1.2.1 紫花苜蓿對(duì)Cd的吸收
根系吸收是植物吸收土壤重金屬的主要途徑,土壤中的Cd以在根表皮質(zhì)膜與H+交換、占用非選擇性陽離子(Fe2+、Zn2+和Ca2+)通道和形成麥根酸螯合物等方式[36],進(jìn)入植物根部表皮層內(nèi)[37],再經(jīng)由共質(zhì)體和質(zhì)外體兩種途徑抵達(dá)維管束并向枝葉轉(zhuǎn)運(yùn)[38]。紫花苜蓿根系對(duì)Cd2+的吸收存在陽離子交換過程,H+可能會(huì)影響紫花苜蓿根系對(duì)Cd2+的吸收能力,Cd2+的吸收量與Ca2+、Mg2+、Na+的釋放顯著相關(guān),且這種交換主要存在于Cd2+和二價(jià)陽離子之間[39]圖1)。紫花苜蓿對(duì)Cd的吸收與根際環(huán)境、土壤中Cd的有效態(tài)及土壤對(duì)Cd的吸附等因素有關(guān):叢枝菌根真菌(AMF)的接種會(huì)影響紫花苜蓿對(duì)Cd的吸收量[40-41],可能是由于菌絲本身對(duì)Cd的固持作用[42]及菌絲分泌物對(duì)土壤中重金屬形態(tài)的改變[43]而導(dǎo)致的。土壤pH值對(duì)Cd的吸收也有較大影響,如施用氮肥能增加紫花苜蓿對(duì)Cd的平均吸收量和吸收效率[44],可能是由于氮肥釋放的NH4+導(dǎo)致土壤酸化增加了土壤中Cd的有效性而造成的[45],在土壤中添加檸檬酸的實(shí)驗(yàn)也得到了類似結(jié)果[46]。此外,高鹽度會(huì)促進(jìn)紫花苜蓿對(duì)Cd的吸收,其可能的機(jī)制在于金屬-氯絡(luò)合物的形成降低了土壤對(duì)金屬的吸附,增加了植物對(duì)金屬的利用率[47]。
1.2.2 紫花苜蓿對(duì)Cd的轉(zhuǎn)運(yùn)
圖1 紫花苜蓿對(duì)土壤Cd脅迫的響應(yīng)Figure 1 Respons of alfalfa to Cd stress in soil
Cd被植物根系吸收后,經(jīng)質(zhì)外體途徑和共質(zhì)體途徑的短距離運(yùn)輸進(jìn)入根部維管束[48],再經(jīng)木質(zhì)部及韌皮部裝載的長距離運(yùn)輸被轉(zhuǎn)運(yùn)到植株地上各部分[49]。Cd由根部向地上部的運(yùn)輸可能是以蒸騰作用為動(dòng)力的,在此過程中,Cd可能以離子態(tài)和有機(jī)結(jié)合態(tài)的形式存在[50]。目前,多個(gè)與Cd轉(zhuǎn)運(yùn)有關(guān)的基因或QTL被鑒定,其中既有調(diào)控胞間Cd跨膜運(yùn)輸?shù)募?xì)胞膜蛋白,也有維持胞內(nèi)Cd穩(wěn)態(tài)的液泡膜蛋白[51]。在紫花苜蓿對(duì)Cd的轉(zhuǎn)運(yùn)過程中,更多的Cd被留在木質(zhì)部薄壁細(xì)胞壁的陽離子交換點(diǎn)并被固定在根部細(xì)胞的液泡中,使得其對(duì)Cd的轉(zhuǎn)運(yùn)因子(TFs)小于1[52],隨著Cd處理濃度的增加,紫花苜蓿對(duì)Cd的TF值有下降的趨勢(shì),可能與ABA-誘導(dǎo)的氣孔關(guān)閉和細(xì)胞對(duì)Cd的隔離有關(guān)[53];此外,紫花苜蓿對(duì)Cd的轉(zhuǎn)運(yùn)指數(shù)(Transport index=Shoot content/Total plant content× 100,TI)與Cd處理濃度也呈負(fù)相關(guān)關(guān)系,說明隨著處理濃度的增加,更多的Cd被留在了植株的根部[54](圖1)。值得注意的是,近期以突尼斯南部礦區(qū)土壤為盆栽土的實(shí)驗(yàn)發(fā)現(xiàn),在所有處理?xiàng)l件下紫花苜蓿對(duì)Cd 的TF值均超過了2[55]。這與前人的報(bào)道有較大差異,其機(jī)制尚不明確,可能與種植的土壤條件和苜蓿的品種有關(guān)。
1.3 紫花苜蓿應(yīng)對(duì)Cd脅迫的調(diào)控機(jī)理
1.3.1 信號(hào)分子調(diào)控
作為一種信號(hào)分子,Cd誘導(dǎo)的H2S生成是紫花苜蓿Cd耐性的可能機(jī)制,從外源NaHS添加實(shí)驗(yàn)發(fā)現(xiàn),環(huán)腺苷酸(cAMP)信號(hào)也可能參與了NaHS誘導(dǎo)的紫花苜蓿Cd響應(yīng)過程[56]。H2S(NaHS)和NO(Sodium Nitroprusside,SNP)的復(fù)合預(yù)處理可降低Cd對(duì)紫花苜蓿的毒性,并在使用了特定的NO清除劑cPTIOP后被逆轉(zhuǎn)[57],表明NO與NaHS誘導(dǎo)的Cd解毒過程有關(guān),同時(shí)也說明了NO和H2S之間存在一個(gè)交叉對(duì)話,以增強(qiáng)紫花苜蓿對(duì)非生物脅迫的耐性(圖1)。此外,CO也是一種可能的信號(hào)分子,其可調(diào)節(jié)紫花苜蓿體內(nèi)谷胱甘肽(GSH)的新陳代謝,通過此代謝來緩解Cd導(dǎo)致的氧化損傷[58]。
1.3.2 抗氧化系統(tǒng)調(diào)控
在Cd脅迫下,10%富氫水(Hydrogen-Rich Water,HRW)的添加能顯著降低Cd引發(fā)的硫代巴比妥酸反應(yīng)物含量,同時(shí)抑制Cd毒性癥狀的出現(xiàn)。這些響應(yīng)與總的或典型的抗氧化同工酶活性及其對(duì)應(yīng)轉(zhuǎn)錄的顯著增加有關(guān),這證明了抗氧化系統(tǒng)的激活是紫花苜蓿Cd耐性的關(guān)鍵環(huán)節(jié)[59]。此外,CO合成酶血紅素加氧酶(HO)活性及其HO-1的轉(zhuǎn)錄水平在紫花苜蓿抵御氧化損傷的過程中起著關(guān)鍵作用。Cd脅迫下,發(fā)現(xiàn)紫花苜蓿籽苗根部Cd誘導(dǎo)的HO-1基因表達(dá)在轉(zhuǎn)錄水平的上調(diào)與GSH的消耗相關(guān),并最終導(dǎo)致了瞬間抗氧化能力的增強(qiáng)[60];外源添加抗壞血酸(AsA)能強(qiáng)化Cd引發(fā)的紫花苜蓿HO-1的轉(zhuǎn)錄上調(diào)和HO的活性,此反應(yīng)對(duì)鋅原卟啉IX(ZnPP IX)敏感且CO處理后可逆[61],說明AsA引發(fā)的細(xì)胞保護(hù)作用可能是經(jīng)由抗氧化系統(tǒng)和低Cd累積誘導(dǎo)的HO-1相關(guān)模式實(shí)現(xiàn)的;用能誘導(dǎo)MsHO1基因表達(dá)的HO-1誘導(dǎo)劑氯高鐵血紅素(Haemin)或水楊酸(SA)預(yù)處理,可顯著降低Cd對(duì)紫花苜蓿的生長抑制和植株Cd累積[62],由此推測(cè)HO-1還可能參與了水楊酸誘導(dǎo)的減輕Cd脅迫在紫花苜蓿籽苗根部造成的氧化損傷的過程。此外,CDH(β-cyclodextrin-hemin)和血紅素加氧酶(Hemin)預(yù)處理獲得的HO-1上調(diào)可以抵御由Cd脅迫導(dǎo)致的紫花苜蓿籽苗根部的氧化損傷[63],表明由CDH調(diào)控的HO-1誘導(dǎo)也是抗氧化反應(yīng)的關(guān)鍵環(huán)節(jié)之一(圖1)。
1.3.3 與生物巰基化合物(Biothiols)的結(jié)合
體內(nèi)Biothiols與Cd的結(jié)合是紫花苜蓿緩解Cd毒的重要方式之一(圖1)。在Cd脅迫下,紫花苜蓿體內(nèi)的Biothiols含量急劇增加,并伴隨著γ-谷氨酰半胱氨酸合成酶(γ-GCS)基因的急劇上調(diào)??梢酝茰y(cè)Cd是有效的S代謝感應(yīng)器,增加硫酸鹽的吸收率并促進(jìn)其同化途徑,植物在地上部合成GSH/hGSH,然后將這些生物巰基化合物運(yùn)送到根部,在根部轉(zhuǎn)化為植物螯合肽(PCs/hPCs),與根部的Cd形成絡(luò)合物,以減低Cd對(duì)植物的毒性[64]。
1.3.4 亞細(xì)胞分布的調(diào)節(jié)
接種AMF后紫花苜蓿的Cd耐性增強(qiáng)。分析發(fā)現(xiàn),這種能力是通過降低植株對(duì)Cd的TF值和植株中結(jié)合態(tài)Cd的比例[65],并使得細(xì)胞壁中的Cd增加而細(xì)胞器和細(xì)胞膜中的Cd降低[66]而獲得的,可見調(diào)節(jié)體內(nèi)Cd的亞細(xì)胞分布也是紫花苜蓿應(yīng)對(duì)土壤Cd脅迫的調(diào)控方式之一(圖1)。
1.3.5 耐Cd基因的表達(dá)
在250 μmol·L-1的Cd脅迫6 h后,使用差別顯示逆轉(zhuǎn)錄聚合酶鏈反應(yīng)的退火控制引物(Annealing Control Primers,ACP)技術(shù)發(fā)現(xiàn),紫花苜蓿中的一個(gè)差異表達(dá)基因(Differentially Expressed Genes,DEGs)出現(xiàn)上調(diào),同時(shí)5個(gè)新基因被鑒定,此上調(diào)的DEGs可能在紫花苜蓿的Cd耐性方面發(fā)揮一定的作用[67]。從兩個(gè)耐性品種“野苜?!保∕edicago sativa L.cv.Ye)和“隴中苜?!保∕edicago sativa L.cv.Longzhong)葉片中獲得的源于差異表達(dá)金屬硫蛋白基因的候選片段被克隆,其基因序列和推導(dǎo)出的蛋白質(zhì)序列顯示MsMT2a和MsMT2b與在豆科植物中獲得的高度相似,DDRT-PCR分析表明,MsMT2a在“野苜?!焙汀半]中苜蓿”中均有表達(dá),但MsMT2b僅在Cd處理?xiàng)l件下表達(dá),推測(cè)出MsMT2a在紫花苜蓿葉片中是普遍表達(dá)的,而MsMT2b是由Cd誘導(dǎo)表達(dá)的[16]。
2.1 種子萌發(fā)和幼苗生長對(duì)Cd脅迫響應(yīng)的品種差異
不同品種的紫花苜蓿,其種子萌發(fā)與幼苗生長對(duì)Cd脅迫的響應(yīng)存在顯著差異,具體可表現(xiàn)為對(duì)Cd耐受濃度的較大差別,如表1所示:品種“新牧1號(hào)”[19](Medicago sativa L.cv.Xinmu No.1)和“中牧1號(hào)”[68](Medicago sativa L.cv.Zhongmu No.1),其種子萌發(fā)及幼苗生長在Cd處理濃度分別為6 mg·L-1和15 mg· kg-1時(shí)即受到嚴(yán)重抑制,相對(duì)較為敏感;而品種“甘農(nóng)3號(hào)”[20](Medicago sativaL.cv.Gannong 3)、“阿爾岡金”[18](Medicago sativa L.cv.Algonuin)和“盛世”[69](Medicago sativa L.cv.Shengshi)的Cd耐受濃度則可分別達(dá)到56、40 mg·L-1和30 mg·kg-1,同時(shí)發(fā)現(xiàn)“阿爾岡金”的發(fā)芽率、發(fā)芽勢(shì)、發(fā)芽指數(shù)和活力指數(shù)等指標(biāo)在Cd-Cl2≤20 mg·L-1時(shí)得到了顯著提高,顯示出一定的“低促高抑”現(xiàn)象[18]。
2.2 形態(tài)和生物量對(duì)Cd脅迫響應(yīng)的品種差異
根長是紫花苜蓿對(duì)Cd響應(yīng)的重要形態(tài)指標(biāo)之一。在Cd處理濃度為25 mg·L-1的水培實(shí)驗(yàn)中,36個(gè)受試品種根長減少范圍為3.7%~88.7%,可見其品種差異顯著,據(jù)此為主要衡量指標(biāo),“野苜?!焙汀半]中”被確定為耐Cd品種[16];株高、下胚軸長度、根質(zhì)量、地上部質(zhì)量等指標(biāo)也被用于衡量不同紫花苜蓿品種對(duì)Cd脅迫的響應(yīng)差異(表1)。在Cd處理濃度為50 mg· kg-1時(shí),品種“多葉”(Medicago sativa L.cv.Duoye)的Cd耐性被認(rèn)為強(qiáng)于品種“準(zhǔn)格爾”(Medicago sativa L. cv.Jungar)[24];Cd處理濃度在0~5 mg·L-1范圍時(shí),品種“阿爾岡金”的Cd耐性被認(rèn)為強(qiáng)于品種“新疆大葉”(Medicago sativa L.cv.Xinjiangdaye)[71]。
2.3 根瘤對(duì)Cd脅迫響應(yīng)的品種差異
豆科植物的根瘤是根瘤菌-植物共生體系生物固氮的場(chǎng)所,具有獨(dú)特的結(jié)構(gòu),在形態(tài)學(xué)和生理學(xué)上與其他植物器官有較大區(qū)別[72]。不同品種的紫花苜蓿,其根瘤數(shù)、根瘤重、根瘤菌活性和固氮酶活性等指標(biāo)對(duì)Cd的響應(yīng)均表現(xiàn)出一定差異,如品種“盛世”的根瘤固氮對(duì)Cd脅迫較為敏感,其固氮酶活性在Cd添加量達(dá)5 mg·kg-1時(shí)即受到嚴(yán)重抑制[73],而在相同處理濃度下,品種“多葉”和“準(zhǔn)格爾”根瘤對(duì)Cd的響應(yīng)則表現(xiàn)為輕微的促進(jìn)作用;當(dāng)Cd處理濃度進(jìn)一步增加后,“多葉”和“準(zhǔn)格爾”的根瘤鮮重和根瘤數(shù)才會(huì)顯著下降,且相同Cd濃度下“準(zhǔn)格爾”的降幅大于“多葉”[74]。品種“Gabès”(Medicago sativa L.cv.Gabès)及其中華根瘤菌共生體系可在突尼斯(Tunisia)礦區(qū)含Cd污染的土壤上正常生長并有效結(jié)瘤,從中分離到的根瘤菌菌株可耐受33.6 mg·L-1的Cd脅迫,其中菌株S532能吸收比菌株S112更少量的金屬而表現(xiàn)出較強(qiáng)的Cd耐性[75]。
2.4 生理指標(biāo)對(duì)Cd脅迫響應(yīng)的品種差異
抗氧化系統(tǒng)的響應(yīng)是紫花苜蓿應(yīng)對(duì)Cd脅迫的重要手段之一,在不同的紫花苜蓿品種間存在差異。3.36 mg·L-1的Cd處理嚴(yán)重抑制了品種“Aragon”(Medicago sativa L.var.Aragon)的GR的活性(抑制率>50%),并增加了其APXs的活性[31],同時(shí)增加GSH 和hGSH的含量并促進(jìn)了細(xì)胞活性氧和細(xì)胞外H2O2的產(chǎn)生和形成[64,76];22.4 mg·L-1的Cd處理干擾了品種“Victoria”(Medicago sativa L.Victoria)籽苗根部GSH的內(nèi)平衡和H2S的產(chǎn)生,同時(shí)兩種H2S合成酶(LCD和DCD)的活性受到抑制[56]。
光合作用對(duì)Cd脅迫的響應(yīng)也與紫花苜蓿的品種有關(guān)。在施Cd量為5 mg·kg-1時(shí),品種“WL-323HQ”(Medicago sativa L.cv.WL-323HQ)的葉綠素含量(總?cè)~綠素、葉綠素a和葉綠素b)高于無Cd處理,當(dāng)Cd濃度進(jìn)一步增加時(shí)上述指標(biāo)受到抑制[30];1.0 mg·L-1以下的Cd處理增加了品種“肇東”(Medicago sativa L.cv.Zhaodong)的葉綠素含量,更高濃度則對(duì)其產(chǎn)生抑制,當(dāng)處理濃度達(dá)10 mg·L-1時(shí),“肇東”的葉綠素含量顯著下降(P<0.05)[32]。與之類似,品種“Sargodha 2002”(Medicago sativa L.var.Sargodha 2002)的光合作用在Cd處理濃度為10 mg·L-1時(shí)受到顯著抑制(P<0.05)[28];使用濃度為25 mg·L-1的CdCl2處理“野苜?!焙汀半]中苜?!保l(fā)現(xiàn)其幼苗第五片葉的Fv/Fm值降低程度并不顯著,表明“野苜?!焙汀半]中苜?!惫夂舷到y(tǒng)對(duì)Cd的耐受值可達(dá)25 mg·L-1,耐Cd性相對(duì)較強(qiáng)[15]。
表1 紫花苜蓿對(duì)Cd脅迫響應(yīng)的品種差異Table 1 Intraspecific difference of alfalfa in response to Cd stress
紫花苜蓿的滲透調(diào)節(jié)對(duì)Cd脅迫的響應(yīng)也存在品種差異。在Cd處理濃度為1 mg·L-1時(shí),品種“阿爾岡金”的脯氨酸含量小于“新疆大葉”,而MDA含量和電解質(zhì)泄漏率則大于“新疆大葉”,一定程度說明“阿爾岡金”的耐Cd性要強(qiáng)于“新疆大葉”[71];在重度Cd脅迫時(shí)(>30 mg·L-1),品種“肇東”、“準(zhǔn)格爾”和“多葉8925”的電導(dǎo)率出現(xiàn)顯著差異,順序?yàn)椤皽?zhǔn)格爾”>“肇東”>“多葉8925”,說明品種“多葉”膜穩(wěn)定性較強(qiáng),從滲透調(diào)節(jié)的角度而言說明其具有相對(duì)較強(qiáng)的耐Cd性[77]。
2.5 對(duì)Cd吸收與累積的品種差異
品種“Col”(Medicago sativa L var.Col)有較強(qiáng)的Cd吸收累積能力,生長21 d即可吸收水中80%~85% 的Cd,在處理濃度為50 mg·L-1時(shí),其地上部和地下部的吸收量分別可達(dá)1920、12 360 mg·kg-1(DW)[54];品種“新疆大葉”在Cd處理濃度為100 mg·kg-1時(shí),其地上部和地下部的Cd含量分別為16.01、84.21 mg· kg-1(DW)[29],與前者存在較大差異;品種“阿爾岡金”在土壤Cd含量分別低于0.55、9.37 mg·kg-1時(shí),其分枝期和開花期的干草Cd含量不會(huì)超過飼料衛(wèi)生安全限定標(biāo)準(zhǔn)[23];品種“準(zhǔn)格爾”各部分Cd累積量的順序?yàn)榧?xì)根>地上部>粗根,且細(xì)根Cd含量與地上部Cd含量呈顯著正相關(guān),當(dāng)Cd處理濃度為25 mg·kg-1時(shí),地上部Cd累積量達(dá)到了最高的7.715 μg·株-1[25]。可見,不同品種紫花苜蓿吸收和累積Cd的能力存在較大差異(表1)。通過篩選可獲得不同特性品種,高Cd累積品種可作為潛在的Cd污染修復(fù)植物用于土壤的植物修復(fù),低Cd累積品種可作為優(yōu)質(zhì)飼草在Cd污染土壤上種植,充分利用土地的同時(shí)也降低了Cd經(jīng)由食物鏈進(jìn)入人體的風(fēng)險(xiǎn)。
紫花苜蓿對(duì)Cd的響應(yīng)涉及其生長過程的各個(gè)環(huán)節(jié)并存在顯著的品種差異,體現(xiàn)在發(fā)芽、生長、形態(tài)、生理、植株對(duì)Cd的吸收和累積等多個(gè)方面。紫花苜蓿通過信號(hào)分子的調(diào)控、抗氧化系統(tǒng)的激活、對(duì)Cd的螯合、區(qū)室化Cd和耐Cd基因表達(dá)的上調(diào)等手段來抵御和消除Cd的毒害,在這些環(huán)節(jié)中,H2S、NO和CO等被認(rèn)為是可能的信號(hào)分子,HO-1轉(zhuǎn)錄的上調(diào)和HO活性的增強(qiáng)可能是激活抗氧化系統(tǒng)的關(guān)鍵。
隨著土壤Cd污染問題的日趨突出,使用紫花苜蓿對(duì)Cd污染土壤進(jìn)行植物修復(fù)成為一種可能的有效途徑。目前的相關(guān)工作多集中于特定紫花苜蓿品種對(duì)Cd的響應(yīng)特征研究方面,也從機(jī)理上做了一些探討,而對(duì)一系列品種的Cd響應(yīng)差異性篩選、Cd響應(yīng)和品種差異的分子機(jī)理等方面的研究相對(duì)較少,以哪些指標(biāo)作為品種差異的評(píng)判標(biāo)準(zhǔn)則尚無定論。后續(xù)的研究工作可重點(diǎn)圍繞上述幾個(gè)方面深入開展,以期為紫花苜蓿用于Cd污染土壤的修復(fù)和綜合利用等提供理論基礎(chǔ)和技術(shù)支持。
[1]黃益宗,郝曉偉,雷鳴,等.重金屬污染土壤修復(fù)技術(shù)及其修復(fù)實(shí)踐[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(3):409-417.
HUANG Yi-zong,HAO Xiao-wei,LEI Ming,et al.The remediation technology and remediation practice of heavy metals-contaminated soil [J].Journal of Agro-Environment Science,2013,32(3):409-417.
[2]Murakami M,Ae N,Ishikawa S,et al.Phytoextraction by a high-Cd-accumulating rice:Reduction of Cd content of soybean seeds[J].Environ Sci Technol,2008,42(16):6167-6172.
[3]J?rup L,?kesson A.Current status of cadmium as an environmental health problem[J].Toxicology and Applied Pharmacology,2009,238 (3):201-208.
[4]謝黎虹,許梓榮.重金屬鎘對(duì)動(dòng)物及人類的毒性研究進(jìn)展[J].浙江農(nóng)業(yè)學(xué)報(bào),2003,15(6):52-57.
XIE Li-hong,XU Zi-rong.The toxicity of heavy metal cadmium to animals and humans[J].Acta Agriculturae Zhejiangensis,2003,15(6):52-57.
[5]莊國泰.我國土壤污染現(xiàn)狀與防控策略[J].中國科學(xué)院院刊,2015, 30(4):477-483.
ZHUANG Guo-tai.Current situation of national soil pollution and strategies on prevention and control[J].Bulletin of Chinese Academy of Sciences,2015,30(4):477-483.
[6]劉維濤,周啟星.重金屬污染預(yù)防品種的篩選與培育[J].生態(tài)環(huán)境學(xué)報(bào),2010,19(6):1452-1458.
LIU Wei-tao,ZHOU Qi-xing.Selection and breeding of heavy metal pollution-safe cultivars[J].Ecology and Environmental Sciences,2010, 19(6):1452-1458.
[7]Liu W T,Zhou Q X,An J,et al.Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars[J]. Journal of Hazardous Materials,2010,173(1/2/3):737-743.
[8]Yang J,Teng Y G,Zuo R,et al.Comparison of bioavailable vanadium in alfalfa rhizosphere soil extracted by an improved BCR procedure and EDTA,HCl,and NaNO3single extractions in a pot experiment with VCd treatments[J].Environmental Science and Pollution Research,2015, 22(12):8833-8842.
[9]Nouairi I,Mrabet M,Rabhi M,et al.Cu-tolerant Sinorhizobium meliloti strain is beneficial for growth,Cu accumulation,and mineral uptake of alfalfa plants grown in Cu excess[J].Archives of Agronomy and Soil Science,2015,61(12):1707-1718.
[10]Liu Z F,Ge H G,Li C,et al.Enhanced phytoextraction of heavy metals from contaminated soil by plant Co-cropping associated with PGPR[J]. Water Air and Soil Pollution,2015,226(3):1-10.
[11]Pajuelo E,Carrasco J A,Romero L C,et al.Evaluation of the metal phytoextraction potential of crop legumes.regulation of the expression of O-acetylserine(Thiol)Lyase under metal stress[J].Plant Biology,2007,9(5):672-681.
[12]Benzarti S,Mohri S,Ono Y.Plant response to heavy metal toxicity:Comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges)and nonaccumulator plants:Lettuce,radish,and alfalfa[J].Environmental Toxicology,2008,23(5):607-616.
[13]王新,賈永鋒.紫花苜蓿對(duì)土壤重金屬富集及污染修復(fù)的潛力[J].土壤通報(bào),2009,40(4):932-935.
WANG Xin,JIA Yong-feng.Heavy metals accumulation and phytoremediation of alfalfa in contaminated soil[J].Chinese Journal of Soil Science,2009,40(4):932-935.
[14]樊瑞,馮永軍,郝桂喜,等.富鎘基質(zhì)中紫花苜蓿的生長與利用研究[J].草業(yè)科學(xué),2009,26(10):67-72.
FAN Rui,FENG Yong-jun,HAO Gui-xi,et al.Study on growth and utilization of alfalfa grown in Cd-rich substrate[J].Pratacultural Science, 2009,26(10):67-72.
[15]宋瑜.紫花苜蓿(Medicago sativaL.)抗鎘品種金屬硫蛋白基因差異顯示分析[D].蘭州:蘭州大學(xué),2009.
SONG Yu.Differential display of metallothionein gene in Cd-tolerant alfalfa(Medicago sativaL.)varieties[D].Lanzhou:Lanzhou University, 2009.
[16]Wang X,Song Y,Ma Y,et al.Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa(Medicago sativa L.)[J]. Environmental Pollution,2011,159(12):3627-3633.
[17]白音達(dá)來,包額爾頓嘎.不同濃度硝酸鎘對(duì)紫花苜蓿種子萌發(fā)及幼苗生長的影響[J].農(nóng)業(yè)科技通訊,2013(6):128-130.
BAI In-da-lai,BAO Er-dun-ga.Effects of different concentrations cadmium nitrate on seed germination and seedling growth of alfalfa[J]. Bulletin of Agricultural Science and Technology,2013(6):128-130.
[18]王文斌,金樑,李晶,等.不同pH條件下CdCl2對(duì)紫花苜蓿種子萌發(fā)的脅迫效應(yīng)[J].環(huán)境科學(xué)研究,2013,26(10):1095-1102.
WANG Wen-bin,JIN Liang,LI Jing,et al.Effects of CdCl2stress under different pH to seed germination in alfalfa[J].Research of Environmental Sciences,2013,26(10):1095-1102.
[19]張良繪,朱俊瑾,朱新萍,等.Cd2+與NaCl脅迫對(duì)紫花苜蓿種子萌發(fā)的影響[J].新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,38(1):51-55.
ZHANG Liang-hui,ZHU Jun-jin,ZHU Xin-ping,et al.Effects of Cd2+and NaCl stress on seed germination of alfalfa[J].Journal of Xinjiang Agricultural University,2015,38(1):51-55.
[20]尹國麗,師尚禮,寇江濤,等.Cd脅迫對(duì)紫花苜蓿種子發(fā)芽及幼苗生理生化特性的影響[J].西北植物學(xué)報(bào),2013,33(8):1638-1644.
YIN Guo-li,SHI Shang-li,KOU Jiang-tao,et al.Seed germination and physiological and biochemical characteristics of alfalfa under cadmium stress[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(8):1638-1644.
[21]Antipchuk A F,Rangelova V N,Tantsiurenko E V.Species and strain sensitivity of diasotrophs to heavy metals[J].Mikrobiolohichnyi Zhurnal, 2002,64(3):44-51.
[22]Neumann H,Werner D.Gene expression of Medicago sativa inoculated with Sinorhizobium meliloti as modulated by the xenobiotics cadmium and fluoranthene[J].Zeitschrift fur Naturforschung C,Journal of Biosciences,2000,55(3/4):222-232.
[23]李新博,謝建治,李博文,等.鎘對(duì)紫花苜蓿不同生長期生物量的影響及飼用安全評(píng)價(jià)[J].草業(yè)學(xué)報(bào),2009,18(5):266-269.
LI Xin-bo,XIE Jian-zhi,LI Bo-wen,et al.A study on cadmium content of alfalfa at different growth stages and an evaluation of forage feed security[J].ActaPrataculturae Sinica,2009,18(5):266-269.
[24]徐蘇凌,邢承華,方勇.鎘脅迫對(duì)紫花苜蓿生長及植株鎘含量的影響[J].廣東微量元素科學(xué),2008,15(3):23-26.
XU Su-ling,XING Cheng-hua,FANG Yong.The effect of cadmium stress on growth and Cd content of alfalfa[J].Guangdong Trace Elements Science,2008,15(3):23-26.
[25]李希銘,宋桂龍.鎘脅迫對(duì)紫花苜蓿鎘吸收特征及根系形態(tài)影響[J].草業(yè)學(xué)報(bào),2016,25(2):178-186.
LI Xi-ming,SONG Gui-long.Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress[J].Acta Prataculturae Sinica,2016,25(2):178-186.
[26]蘇向楠.NO對(duì)Cd脅迫下紫花苜蓿幼苗氧化損傷與Cd積累的調(diào)控作用及其機(jī)制[D].蘭州:蘭州交通大學(xué),2015.
SU Xiang-nan.Regulatory role and mechanism of NO on oxidative damage and the accumulation of Cd in alfalfa seedlings under the Cd stress[D].Lanzhou:Lanzhou Jiaotong University,2015.
[27]丁曉輝,任麗萍,張春榮,等.Cd2+脅迫對(duì)紫花苜蓿葉綠素和可溶性糖含量的影響[J].華北農(nóng)學(xué)報(bào),2007,22(增刊):64-66. DING Xiao-hui,REN Li-ping,ZHANG Chun-rong,et al.Effect of Cd2+stress on the content of chlorophyll and soluble sugar of alfalfa[J]. ActaAgriculturae Boreali-Sinica,2007,22(Suppl 1):64-66.
[28]Mahmood S,Malik S A,Tabassum A,et al.Biometric and biochemical attributes of alfalfa seedlings as indicators of stress induced by excessive cadmium[J].Journal of Soil Science and Plant Nutrition,2014,14 (3):546-553.
[29]孫寧驍,宋桂龍.紫花苜蓿對(duì)鎘脅迫的生理響應(yīng)及積累特性[J].草業(yè)科學(xué),2015,32(4):581-585.
SUN Ning-xiao,SONG Gui-long.Physiological response of Medicago sativa to cadmium stress and accumulation property[J].Pratacultural Science,2015,32(4):581-585.
[30]徐蘇凌,方勇,邢承華.酸雨和Cd脅迫對(duì)紫花苜蓿生長和抗氧化酶系統(tǒng)的影響[J].浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2008,34 (4):467-472.
XU Su-ling,FANG Yong,XING Cheng-hua.Complex effects of acid rain and cadmium on growth and antioxidase system of alfalfa[J].Journal of Zhejiang University(Agric&Life Sci),2008,34(4):467-472.
[31]Laura Flores-Caceres M,Hattab S,Hattab S,et al.Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants[J].Plant Science,2015, 233:165-173.
[32]吳旭紅,付本麗.不同濃度鎘對(duì)苜蓿生長及抗氧化系統(tǒng)的影響[J].黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2005,22(3):363-365.
WU Xu-hong,FU Ben-li.Effects of different concentrations of cadmium on growth and antioxidant system in Medicago sativa L.cv[J].Journal of Natural Science of Heilongjiang University,2005,22(3):363-365.
[33]楊玉惠,張春榮,夏立江,等.鎘鋅污染對(duì)紫花苜蓿體內(nèi)鎘含量及品質(zhì)的影響[J].華北農(nóng)學(xué)報(bào),2008,23(增刊2):363-366.
YANG Yu-hui,ZHANG Chun-rong,XIA Li-jiang,et al.Effect of cadmium and zinc pollutions of alfalfa quality and cadmium content[J]. Acta Agriculturae Boreali-Sinica(Acta Agric Boreali Sin),2008,23 (Suppl 2):363-366.
[34]Marcelo Lara-Viveros F,Ventura-Maza A,Ehsan M,et al.Cd and Pb content in soil and plants of different crops irrigated with wastewater in the Mezquital Valley,Hidalgo,Mexico[J].Revista Internacional de Contaminacion Ambiental,2015,31(2):127-132.
[35]Aslam S,Sharif F,Khan A U.Effect of lead and cadmium on growth of Medicago sativa L.and their transfer to food chain[J].Journal of Animal and Plant Sciences,2015,25(2):472-477.
[36]王曉娟,王文斌,楊龍,等.重金屬鎘(Cd)在植物體內(nèi)的轉(zhuǎn)運(yùn)途徑及其調(diào)控機(jī)制[J].生態(tài)學(xué)報(bào),2015,35(23):7921-7929.
WANG Xiao-juan,WANG Wen-bin,YANG Long,et al.Transport pathways of cadmium(Cd)and its regulatory mechanisms in plant[J]. ActaEcologicaSinica,2015,35(23):7921-7929.
[37]Verbruggen N,Hermans C,Schat H,et al.Mechanisms to cope with arsenic or cadmium excess in plants[J].Current Opinion in Plant Biology, 2009,12(3):364-372.
[38]Seregin I V,Kozhevnikova A D.Roles of root and shoot tissues in transport and accumulation of cadmium,lead,nickel,and strontium[J]. Russian Journal of Plant Physiology,2008,55(1):1-22.
[39]李躍鵬,尹華,葉錦韶,等.紫花苜蓿吸收水溶液中Cd2+過程的陽離子交換[J].環(huán)境科學(xué),2011,32(11):3341-3347.
LI Yue-peng,YIN Hua,YE Jin-shao,et al.Cation exchanges during the process of Cd2+absorption by alfalfa in aqueous solutions[J].Environmental Science,2011,32(11):3341-3347.
[40]林雙雙.AM真菌調(diào)節(jié)紫花苜蓿對(duì)重金屬元素Cd的吸收和分配策略[D].蘭州:蘭州大學(xué),2013. LIN Shuang-shuang.Strategies of AM fungi on growth and uptake,distribution of cadmium by alfalfa(Medicago sativa L.)[D].Lanzhou:Lanzhou University,2013.
[41]Liu M H,Sun J,Li Y,et al.Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil[J].Chemosphere,2017,167:204-211.
[42]陳保冬.叢枝菌根減輕宿主植物鋅、鎘毒害機(jī)理研究[D].北京:中國農(nóng)業(yè)大學(xué),2002.
CHEN Bao-dong.Role of arbuscular mycorrhizae in alleviation of zinc and cadmium phytotoxicity[D].Beijing:China Agricultural University, 2002.
[43]黃藝,陳有鑑,陶澍.污染條件下VAM玉米元素積累和分布與根際重金屬形態(tài)變化的關(guān)系[J].應(yīng)用生態(tài)學(xué)報(bào),2002,13(7):859-862.
HUANG Yi,CHEN You-jian,TAO Shu.Uptake and distribution of Cu, Zn,Pb and Cd in maize related to metals speciation change in rhizosphere[J].Chinese Journal of Applied Ecology,2002,13(7):859-862.
[44]Hattab S,Boussetta H,Banni M.Influence of nitrate fertilization on Cd uptake and oxidative stress parameters in alfalfa plants cultivated in presence of Cd[J].Journal of Soil Science and Plant Nutrition,2014, 14(1):89-99.
[45]Zaccheo P,Crippa L,Pasta V D M.Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower[J].Plant and Soil,2006,283(1):43-56.
[46]劉芳,陳嬌君,劉世亮,等.檸檬酸對(duì)褐土中DTPA提取態(tài)銅、鎘含量及對(duì)紫花苜蓿吸收銅、鎘的影響[J].環(huán)境工程學(xué)報(bào),2013,7 (7):2781-2787.
LIU Fang,CHEN Jiao-jun,LIU Shi-liang,et al.Effect of citric acid (CA)on DTPA extractable Cu&Cd content in cinnamon soil and Cu &Cd uptake by alfalfa[J].Chinese Journal of Environmental Engineering,2013,7(7):2781-2787.
[47]Gharaibeh M A,Marschner B,Heinze S.Metal uptake of tomato and alfalfa plants as affected by water source,salinity,and Cd and Zn levels under greenhouse conditions[J].Environmental Science and Pollution Research,2015,22(23):18894-18905.
[48]Parlak K U,Yilmaz D D.Ecophysiological tolerance of Lemna gibba L. exposed to cadmium[J].Ecotoxicology&Environmental Safety,2013, 91(4):79-85.
[49]Tanaka K,Fujimaki S,Fujiwara T,et al.Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J].Soil Science and Plant Nutrition,2007,53(1):72-77.
[50]張玉秀,于飛,張媛雅,等.植物對(duì)重金屬鎘的吸收轉(zhuǎn)運(yùn)和累積機(jī)制[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2008,16(5):1317-1321.
ZHANG Yu-xiu,YU Fei,ZHANG Yuan-ya,et al.Uptake,translocation and accumulation of cadmium in plant[J].Chinese Journal of Eco-Agriculture,2008,16(5):1317-1321.
[51]劉利,郝小花,田連福,等.植物吸收、轉(zhuǎn)運(yùn)和積累鎘的機(jī)理研究進(jìn)展[J].生命科學(xué)研究,2015,19(2):176-184.
LIU Li,HAO Xiao-hua,TIAN Lian-fu,et al.Research progresses on the mechanism of Cd absorption,transport and accumulation in plant [J].Life Science Research,2015,19(2):176-184.
[52]Qu J,Wang L,Yuan X,et al.Effects of ammonium molybdate on phytoremediation by alfalfa plants and(im)mobilization of toxic metals in soils[J].Environmental Earth Sciences,2011,64(8):2175-2182.
[53]Niu Z X,Sun L N,Sun T H,et al.Evaluation of phytoextracting cadmium and lead by sunflower,ricinus,alfalfa and mustard in hydroponic culture[J].Journal of Environmental Sciences(China),2007,19(8):961-967.
[54]Singh A,Eapen S,Fulekar M H.Potential of Medicago sativafor uptake of cadmium from contaminated environment[J].Romanian Biotechnological Letters,2009,14(1):4164-4169.
[55]Elouear Z,Bouhamed F,Boujelben N,et al.Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants[J].Sustainable Environment Research,2016,26(3):131-135.
[56]Cui W T,Chen H P,Zhu K K,et al.Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced(Homo)glutathione and reactive oxygen species homeostases[J].Plos One,2014,9(10):e109669.
[57]Li L,Wang Y Q,Shen W B.Roles of hydrogen sulfide and nitric oxidein the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots[J].Biometals,2012,25(3):617-631.
[58]Han Y,Zhang J,Chen X Y,et al.Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa[J].New Phytologist,2008,177(1):155-166.
[59]Cui W T,Gao C Y,Fang P,et al.Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water[J].Journal of Hazardous Materials,2013,260:715-724.
[60]Cui W T,Fu G Q,Wu H H,et al.Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa[J].Biometals,2011,24(1):93-103.
[61]Jin Q J,Zhu K K,Xie Y J,et al.Heme oxygenase-1 is involved in ascorbic acid-induced alleviation of cadmium toxicity in root tissues of Medicago sativa[J].Plant and Soil,2013,366(1/2):605-616.
[62]Cui W T,Li L,Gao Z Z,et al.Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa[J].Journal of Experimental Botany,2012,63 (15):5521-5534.
[63]Fu G Q,Zhang L F,Cui W T,et al.Induction of heme oxygenase-1 with beta-CD-hemin complex mitigates cadmium-induced oxidative damage in the roots of Medicago sativa[J].Plant and Soil,2011,345 (1/2):271-285.
[64]Sobrino-Plata J,Ortega-Villasante C,Laura Flores-Caceres M,et al. Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa[J].Chemosphere,2009,77(7):946-954.
[65]黃晶,凌婉婷,孫艷娣,等.叢枝菌根真菌對(duì)紫花苜蓿吸收土壤中鎘和鋅的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(1):99-105.
HUANG Jing,LING Wan-ting,SUN Yan-di,et al.Impacts of arbuscular mycorrhizal fungi inoculation on the uptake of cadmium and zinc by alfalfa in contaminated soil[J].Journal of Agro-Environment Science,2012,31(1):99-105.
[66]Wang Y P,Huang J,Gao Y Z.Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in MedicagosativaL.and resists cadmium toxicity[J].Plos One,2012,7(11):e48669.
[67]Rahman M A,Zada M,Lee D-G,et al.Identification of copper and cadmium induced genes in alfalfa leaves through annealing control primer based approach[J].Journal of the Korean Society of Grassland Science,2015,35(3):264-268.
[68]張春榮,夏立江,杜相革,等.鎘對(duì)紫花苜蓿種子萌發(fā)的影響[J].中國農(nóng)學(xué)通報(bào),2004,20(5):253-255.
ZHANG Chun-rong,XIA Li-jiang,DU Xiang-ge,et al.Effect of cadmium germination of Medicago sativa seeds[J].Chinese Agricultural Science Bulletin,2004,20(5):253-255.
[69]慈恩,高明,王子芳,等.鎘對(duì)紫花苜蓿種子萌發(fā)與幼苗生長的影響研究[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2007,15(1):96-98.
CI En,GAO Ming,WANG Zi-fang,et al.Effects of cadmium on seed germination and growth of alfalfa[J].Chinese Journal of Eco-Agriculture,2007,15(1):96-98.
[70]韓多紅,孟紅梅.重金屬鎘對(duì)阿爾岡金和金皇后種子發(fā)芽和出苗的影響[J].種子,2006,25(10):71-72.
HAN Duo-hong,MENG Hong-mei.Effect of cadmium stress on germination and seedlings of Algonuin and Golden-Empress[J].Seed,2006, 25(10):71-72.
[71]韓多紅,孟紅梅,王進(jìn),等.鎘對(duì)紫花苜蓿種子萌發(fā)等生理特性的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2007,25(5):151-154,171.
HAN Duo-hong,MENG Hong-mei,WANG Jin,et al.Effect of Cd2+on physiological characteristics of alfalfa[J].Agricultural Research in the Arid Areas,2007,25(5):151-154,171.
[72]Neumann H,Bode-Kirchhoff A,Madeheim A,et al.Toxicity testing of heavy metals with the Rhizobium-legume symbiosis:High sensitivity to cadmium and arsenic compounds[J].Environmental Science and Pollution Research International,1998,5(1):28-36.
[73]慈恩,朱潔,高明,等.鎘對(duì)紫花苜蓿生長和結(jié)瘤固氮的影響[J].安徽農(nóng)業(yè)科學(xué),2010,38(12):6421-6423,6476.
CI En,ZHU Jie,GAO Ming,et al.Effects of cadmium on growth,nodulation and nitrogen fixation of alfalfa(Medicago sativa)[J].Journal of Anhui Agricultural Sciences,2010,38(12):6421-6423,6476.
[74]徐蘇凌,方勇,邢承華.鎘脅迫對(duì)紫花苜蓿生長及結(jié)瘤的影響[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,30(6):1049-1052.
XU Su-ling,FANG Yong,XING Cheng-hua.Effect of cadmium stress on growth and nodulation in alfalfa[J].Acta Agriculturae Universitatis Jiangxiensis,2008,30(6):1049-1052.
[75]Zribi K,Djebali N,Mrabet M,et al.Physiological responses to cadmium,copper,lead,and zinc of Sinorhizobium sp.strains nodulating Medicago sativa grown in Tunisian mining soils[J].Annals of Microbiology, 2012,62(3):1181-1188.
[76]Ortega-Villasante C,Hernandez L E,Rellan-Alvarez R,et al.Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings[J].New Phytologist,2007,176(1):96-107.
[77]吳旭紅.三個(gè)苜蓿品種對(duì)鎘污染的生理生態(tài)反應(yīng)及抗性比較[J].生態(tài)環(huán)境,2005,14(5):658-661.
WU Xu-hong.Comparison of the resistance of three varieties of alfalfa to cadmium stress[J].Ecology and Environment,2005,14(5):658-661.
Response and intraspecific differences of alfalfa to cadmium(Cd)stress
YANG Shu,LI Yuan*,BI Yu-fen,ZU Yan-qun,HE Yong-mei,JIA Le
(College of Resources and Environment,Yunnan Agricultural University,Kunming 650201,China)
The responses of alfalfa(Medicago sativa L.)to Cd stress are reviewed in this paper,as follows:The response of alfalfa growth to Cd stress presented trends of promotion at low concentrations and inhibition at high concentrations.The stress damage caused by Cd on alfalfa was alleviated by physiological responses including antioxidative system activation changes in biological membrane permeability,photosynthesis regulation,and osmotic regulation.Possible Cd adsorption strategies included H+exchange in the plasma membrane of the root epidermis and Ca2+and Mg2+cation channels in their roots.Cd uptake in alfalfa roots was affected by the rhizosphere environment and bioavailability of Cd in soil.When Cd transported from root to shoots,it accumulated in the roots of alfalfa with an increase of Cd content in the soil. Of alfalfa plants regulated their response to Cd stress with mechanisms included signal molecular regulation,antioxidant system regulation, combining Cd with thiols,subcellular distribution of Cd,and upregulation of Cd-resistant gene expression.H2S,NO,and CO were considered possible signal molecules,while upregulation of heme oxygenase-1(HO-1)transcription and increased heme oxygenase(HO)activity could be the key to activating the antioxidant system.Intraspecific differences of alfalfa in response to Cd stress are also reviewed in this paper,including the following:Seed germination and seedling growth of alfalfa showed remarkable differences among cultivars under Cd stress, and the maximum Cd tolerance value of various alfalfa cultivars was more than nine times greater than that of the minimum value.Under Cd stress,there were remarkable differences in nodule growth,plant morphology,and biomass between alfalfa cultivars,and the root length was considered an important indicator in evaluating intraspecific differences.The changes in physiological indicators,such as glutathione reduc-tase(GR)and ascorbate peroxidases(APXs)activity,GSH,hGSH,chlorophyll,proline,and MDA concentrations,and the leakage rate of electrolytes were very different among various alfalfa cultivars under the same level of Cd stress.Absorption and accumulation of Cd in alfalfa also had intraspecific differences.Generally,Cd stress in alfalfa should be studied further in the future to establish criteria to judge intraspecific differences,studying significant differences in system selection,analysis at the molecular level of stress response mechanisms, and intraspecific differences to Cd stress as this would help provide theoretical and practical bases for using alfalfa for the restoration and utilization of Cd-contaminated soil.
Medicago sativa L.;cadmium stress;stress response;intraspecific differences;mechanism
X171.5
A
1672-2043(2017)08-1453-09
10.11654/jaes.2017-0341
2017-03-12
楊姝(1976—),女,云南祿豐人,碩士,副教授,主要從事土壤重金屬污染方面的研究工作。E-mail:zkbun@sina.com
*通信作者:李元E-mail:liyuan03@yahoo.com.cn
環(huán)境保護(hù)部土壤污染綜合治理重大專項(xiàng)(YNBY2016-002);NSFC-云南聯(lián)合基金項(xiàng)目(U1202236)
Project supported:The Soil Pollution Comprehensive Treatment Major Projects of Ministry of Environmental Protection(YNBY2016-002);NSFC-Yunnan Joint Fund Project(U1202236)
楊姝,李元,畢玉芬,等.紫花苜蓿對(duì)Cd脅迫的響應(yīng)及品種差異研究進(jìn)展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(8):1453-1461.
YANG Shu,LI Yuan,BI Yu-fen,et al.Response and intraspecific differences of alfalfa to cadmium(Cd)stress[J].Journal of Agro-Environment Science,2017, 36(8):1453-1461.
農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào)2017年8期