高阿祥 周鑫斌張城銘
(西南大學資源環(huán)境學院,重慶 400716)
硒(Ⅳ)預處理下根表鐵膜對水稻幼苗吸收和轉(zhuǎn)運汞的影響*
高阿祥 周鑫斌?張城銘
(西南大學資源環(huán)境學院,重慶 400716)
采用水培試驗的方法研究硒(Se,Ⅳ)預處理下,根表鐵膜對水稻幼苗吸收和轉(zhuǎn)運汞(Hg)的影響。將水稻幼苗置于Se0和Se0.5(mg L-1)培養(yǎng)液中培養(yǎng)2周,再用4種不同濃度的Fe2+溶液(0、25、50和100 mg L-1即Fe0、Fe25、Fe50、Fe100)誘導水稻根表形成不同數(shù)量的鐵膜,隨后置于0.3 mg L-1的HgCl2培養(yǎng)液中繼續(xù)培養(yǎng)72 h。結(jié)果表明,根表鐵膜對水稻幼苗生長無顯著影響,但硒可以增加其生物量。碳酸氫鈉―檸檬酸三鈉―連二亞硫酸鈉(DCB)提取液(即根表鐵膜)中含鐵比例(57.3%~96.2%)顯著高于水稻幼苗地上部(1.1%~17.5%)和根部(2.7%~25.9%),水稻幼苗的大部分鐵被積累至DCB提取液中。隨著根表鐵膜數(shù)量的增加,根和地上部汞含量均顯著降低。在Fe50和Fe100處理中,硒的加入顯著減少了地上部和根部的汞含量,也顯著降低了汞的分配系數(shù),Se(Ⅳ)預處理能明顯提高鐵膜固持汞的量。綜上所述,Se(Ⅳ)預處理和根表鐵膜均能阻礙水稻幼苗對汞的吸收和向地上部的轉(zhuǎn)運,減輕水稻汞脅迫,從而起到保護水稻避免汞毒害的作用。本研究對于提高汞污染區(qū)稻米質(zhì)量和保證糧食安全具有一定的現(xiàn)實意義。
鐵膜;水稻幼苗;硒;汞
汞是一種毒性很強的污染物,并通過食物鏈在人和動物體內(nèi)富集,因其在環(huán)境中具有持久性、生物累積性和強毒性被國際組織列為優(yōu)先控制污染物[1]。我國汞污染狀況較為嚴重,土壤中汞含量的平均值為0.04 mg kg-1,高于世界土壤中汞自然含量的平均值[2]。我國汞污染最嚴重的貴州萬山地區(qū),水稻田總汞達790 mg kg-1[3],作物平均汞濃度達到78 mg kg-1,萬山地區(qū)10%的農(nóng)田硒含量也超過3.0 mg kg-1,屬于典型的富硒土壤[4],而硒又是人體必需的微量營養(yǎng)元素。早期研究表明,硒與汞存在拮抗作用,由于硒與汞能形成難溶性復合物,施硒可減少汞向作物地上部轉(zhuǎn)運[5]。亞硒酸鹽能限制大蒜內(nèi)部汞的積累和轉(zhuǎn)運,主要原因是在大蒜根部形成了谷胱甘肽汞Hg(GSH)2和蛋氨酸汞Hg(Met)2難溶性復合物,進而阻礙了汞向大蒜地上部轉(zhuǎn)運[6]。
稻田是一個兼具水生和陸地特性的生態(tài)系統(tǒng)。稻田土壤中鐵、錳氧化物被還原為Fe2+和Mn2+[7];水稻在生長過程中通過特殊的輸氧組織,將地上部的氧氣由葉和莖輸送至根部,除供根系呼吸消耗外,剩余的氧氣則側(cè)滲至根際中,并在根系氧化酶和鐵氧化細菌等的共同作用下將根際中的Fe2+氧化并在水稻根表面形成鐵氧化物膜[8](簡稱鐵膜)。鐵膜屬兩性膠體,對土壤中某些分子和離子均具有富集作用,一定程度上作為這些分子和離子的儲備庫[9],改變這些元素在土壤固液相的分配比例,從而影響其在土壤中的移動性和生物有效性[10-12]。水稻根表鐵膜可以吸附汞,抑制汞在水稻體內(nèi)的吸收和轉(zhuǎn)運,進而減少汞在稻米中累積[13]。
在生產(chǎn)實踐中,人們通過基施亞硒酸鈉提高水稻籽粒硒含量[14],即在水稻幼苗期根表鐵膜很少或者還沒有形成前,水稻根系已經(jīng)吸收積累大量的硒[15],隨后再形成根表鐵膜,這種情況下會對水稻吸收和轉(zhuǎn)運汞有何影響,目前尚未見報道。本研究采用Fe2+誘導的方式形成水稻根表鐵膜,模擬研究硒(Ⅳ)預處理下根表鐵膜對水稻幼苗吸收和轉(zhuǎn)運汞的影響,該研究可為尋找降低水稻汞吸收途徑、解決食物鏈汞污染提供一定的科學依據(jù)。
1.1 供試水稻硒預處理
試驗在西南大學實驗溫室內(nèi)進行。所用的水稻(Oryza sativa L.)品種為渝香203,挑選籽粒飽滿的水稻種子使用30%的H2O2浸泡消毒10 min,用去離子水洗凈后置于墊有濾紙的培養(yǎng)皿中,在28℃人工培養(yǎng)箱中培養(yǎng)至萌發(fā)5 d后,在1/3濃度霍格蘭培養(yǎng)液中繼續(xù)培養(yǎng)10 d,再置于霍格蘭培養(yǎng)液中培養(yǎng)1周。挑選生長一致的水稻幼苗24株,分為無硒(Se0)和有硒(Se0.5,0.5 mg L-1(以純硒計))兩個處理,采用亞硒酸鈉(Na2SeO3)供應(yīng)硒,置于霍格蘭培養(yǎng)液中硒預處理2周。水稻培養(yǎng)期間用0.1 mol L-1的HCl或NaOH溶液調(diào)整pH為5.5,每3天更換一次營養(yǎng)液。水稻培養(yǎng)條件:28℃/14h光照和20℃/10h黑暗,相對濕度為50%~70%,光照強度為300 μmol m-2s-1。
1.2 鐵膜誘導及硒汞暴露方法
在上述硒培養(yǎng)結(jié)束后,將水稻植株轉(zhuǎn)移至去離子水中浸泡24 h,以消除營養(yǎng)液中其他元素對鐵膜形成的影響。取出水稻植株分別置于0、25、50和100 mg L-1的Fe2+(FeSO4)溶液中(pH=5.5)中培養(yǎng)24 h,分別標記為Fe0、Fe25、Fe50和Fe100。然后將水稻植株轉(zhuǎn)移至霍格蘭培養(yǎng)液中培養(yǎng)48 h后,轉(zhuǎn)至含有0.3 mg L-1HgCl2的霍格蘭培養(yǎng)液中繼續(xù)培養(yǎng)72 h。每個處理設(shè)3次重復。
1.3 碳酸氫鈉-檸檬酸三鈉-連二亞硫酸鈉(DCB)法提取水稻根表鐵膜
水稻幼苗收獲后,用去離子水徹底沖洗干凈,分為根部和地上部。將洗凈的根組織沿基部剪下,放入30 ml含有0.03 mol L-1檸檬酸三鈉(Na3C6H5O7·2H2O)、0.125 mol L-1碳酸氫鈉(NaHCO3)及0.5 g保險粉(Na2S2O4)混合溶液中,室溫下浸提1 h,沖洗根組織并定容浸提液至50 ml。用ICP-OES(Optima 2000DV,PerkinElmer,美國)測定DCB浸提液鐵含量,ICP-MS(Thermo Elemental X7,美國)測定汞含量。經(jīng)DCB提取后的水稻根及地上部葉在70℃烘干至恒重,用于汞含量測定。
1.4 樣品消解與測定
分別稱取約0.1 g水稻根、地上部樣品于消化管中,加入5 ml濃硝酸和1 ml H2O2,置于室溫下過夜。然后再向每支消化管中加入5 ml HNO3和2 ml H2O2,分別加熱至90℃恒溫3 h,120℃恒溫3 h,160℃恒溫2 h,直至消化管中剩余液體1 ml左右。冷卻后將剩余液體轉(zhuǎn)移至25 ml容量瓶中定容。植株中硒含量的測定參照Zhang等[16]的方法,植株中汞含量的測定參照李士杏等[17]的方法。
1.5 數(shù)據(jù)分析
汞分配系數(shù) DR(Distribution ratio)=地上部吸收汞的量/總吸收量[18]。試驗所得植株各部位的汞含量采用SPSS 13.0軟件進行統(tǒng)計分析;植株各部位干重數(shù)據(jù)采用方差分析(ANOVA);不同處理濃度間采用最小顯著差異法(LSD)檢驗其顯著性(p<0.05)。
2.1 不同數(shù)量鐵膜對水稻生長的影響
水稻幼苗經(jīng)硒培養(yǎng)2周后,再經(jīng)過24 h的Fe2+溶液處理,根系表面能夠看見明顯的紅色,這表明形成了鐵膜。隨后將水稻幼苗置于0.3 mg L-1HgCl2培養(yǎng)液中繼續(xù)培養(yǎng)72 h,加硒處理相對于不加硒處理,水稻幼苗根部和地上部生物量的增加較為明顯(表1)。這說明,硒可以提高汞處理下水稻幼苗生物量,在一定程度上減輕了汞對水稻的脅迫效應(yīng)。
2.2 硒預處理下水稻幼苗對鐵的吸收
如表2所示,在同一硒處理水平,隨著Fe濃度的增加,水稻幼苗地上部、根和DCB溶液中的鐵含量均有升高,DCB提取液(即根表鐵膜)中含鐵比例(57.3%~96.2%)顯著高于水稻幼苗地上部(1.1%~17.5%)和根部(2.7%~25.9%),水稻幼苗的大部分鐵被積累至DCB提取液中,即累積至
鐵膜中。
表1 不同濃度Se和Fe供應(yīng)的營養(yǎng)液中水稻幼苗生物量Table 1 Biomass of rice seedlings grown in Hoagland solution relative to concentration of Se and Fe
表2 不同濃度Se和Fe供應(yīng)的營養(yǎng)液中水稻幼苗地上部、根和DCB提取液中Fe含量和含鐵比例Table 2 Content and proportion of Fe in dithionite-citrate-bicarbonate(DCB)extracts of iron plaque on the root surface,roots and shoots of rice seedlings grown in nutrient solution,relative to concentration of Se and Fe
在相同鐵供應(yīng)水平下,Se0.5處理的水稻幼苗地上部、根和DCB提取液中的鐵含量均較Se0處理的有所降低。從鐵在水稻幼苗各部位中所占的比例來看,加硒處理后,水稻幼苗地上部和DCB提取液中的鐵含量均顯著降低。
2.3 鐵膜和硒對水稻幼苗吸收轉(zhuǎn)運汞的影響
如圖1所示,在Se0處理中,隨著Fe濃度的增加,水稻幼苗地上部和根中的汞含量均降低;在無鐵膜存在的情況下,Se(Ⅳ)預處理后,水稻地上部汞含量顯著下降(圖1A)。從根中汞含量來看,隨著鐵膜數(shù)量的增加,根中汞含量顯著下降;同一Fe2+濃度下,加硒和未加硒相比,僅有Fe100處理下根中汞含量顯著下降,其他Fe2+濃度處理下汞含量差異不顯著(圖1B)。如圖1C所示,在Se0和Se0.5處理中,隨著鐵膜數(shù)量的增加,DCB提取液(即鐵膜)中的汞含量均有所增加;在Fe0處理中,Se0.5處理鐵膜中汞含量是Se0處理的3.5倍,這說明硒可能顯著增加水稻根系質(zhì)外體汞含量;Fe25處理中,加硒處理后鐵膜中的汞含量也有所增加,但當Fe2+濃度從25~100 mg L-1變化時,加硒處理對DCB提取液中汞含量無顯著影響。
綜上所述,隨著根表鐵膜數(shù)量的增加,根和地上部汞含量均顯著降低。對于Fe0和Fe25處理,硒的加入對地上部和根部的汞含量無顯著影響,但對于Fe50和Fe100處理,硒的加入顯著減少了地上部和根部的汞含量。Se0和Se0.5處理相比,硒的加入顯著增加了根質(zhì)外體或根表鐵膜中汞含量。
圖2可以看出,在低量鐵膜情況下,加硒與不加硒對水稻幼苗汞分配系數(shù)的影響差異不顯著,但是在高量鐵膜存在情況下,加硒顯著降低了汞分配系數(shù)。
圖1 不同濃度Se和Fe處理下水稻幼苗地上部(A)、根(B)和DCB提取液(C)中的Hg含量Fig 1 Content of mercury in shoots(A),roots(B)and dithionite-citrate-bicarbonate(DCB)(C)extracts of rice seedlings grown in nutrient solution relative to concentration of Se and Fe
圖2 不同濃度Se和Fe處理對水稻幼苗汞分配系數(shù)的影響Fig 2 Effect of Se and Fe treatments on distribution ratio of mercury in rice seedlings relative to concentration of Se and Fe
如圖3,汞主要分布在水稻幼苗的根系中,無論加硒與否,隨著Fe濃度的增加,水稻幼苗地上部和根系中汞所占的比例均會逐漸減少,但增加了鐵膜中汞所占的比例。隨著鐵膜數(shù)量增加,Se0和Se0.5處理的水稻幼苗地上部中汞所占比例分別從3.18%降低至2.40%、2.90%降低至1.32%;根中汞所占比例分別從91.44%降低至65.23%、80.46%降低至64.11%;而鐵膜中的汞則分別從5.32%提高至32.37%、16.64%提高至34.57%,說明鐵膜可以吸附大量的汞。鐵濃度從Fe0到Fe100變化時,在相同鐵濃度下,Se0.5處理與Se0處理相比,水稻幼苗地上部和根中汞所占比例均逐漸降低,但鐵膜中的汞所占比例逐漸升高。這說明隨著根表鐵膜數(shù)量的增加,水稻幼苗根和地上部中汞所占的比例有所降低,加硒后鐵膜吸附了更多的汞,增加了鐵膜中汞的比例,相應(yīng)降低了地上部汞的含量及比例。
圖3 不同濃度Se和Fe處理下水稻幼苗不同部位中Hg含量百分比Fig 3 Distribution ratio of Hg in different parts of rice seedlings grown in nutrient solution relative to concentration of Se and Fe
圖4 不同濃度Se和Fe處理下根表鐵膜中Hg和Fe的關(guān)系Fig 4 Relationship between Hg concentration and Fe concentration in the iron plaque on the root surface of rice seedlings grown in nutrient solution relative to concentration of Se and Fe
如圖4所示,鐵膜鐵與鐵膜汞兩者呈現(xiàn)線性關(guān)系,其R2值在加硒和不加硒情況下均大于0.95(p<0.01),表明兩者線性擬合度極好。圖4可看出,隨著鐵膜數(shù)量的增加,鐵膜汞也呈上升趨勢。直線斜率由4.347變?yōu)?.269,表明,硒預處理會明顯提升鐵膜汞的累積變化趨勢,這說明Se(Ⅳ)預處理能明顯提高鐵膜固持汞的量。
硒是動物和人體的必需營養(yǎng)元素,現(xiàn)已發(fā)現(xiàn)硒對植物生長也非常有利。鄭甲成和劉婷[19]通過研究不同濃度硒肥對水稻硒含量和產(chǎn)量的影響證實,適當?shù)奈蕽舛龋?0~15 g hm-2)能夠促進水稻植株生長,顯著增加水稻生物量和籽粒產(chǎn)量,但過量的硒肥濃度(≥25 g hm-2)則抑制了水稻植株生長。本研究結(jié)果得出,硒可以提高汞處理下水稻幼苗生物量(表1)。
硒在提高植物抗逆性、緩解重金屬脅迫以及阻礙植物對重金屬吸收等方面有著重要作用,但其機制尚不明確。主流觀點認為,硒是谷胱甘肽過氧化物酶(GSH-Px)的必需組分,GSH-Px利用谷胱甘肽(GSH)將有毒的過氧化物還原成無毒的物質(zhì),清除由重金屬引起的自由基[20]。本試驗得出,Se(Ⅳ)預處理能夠阻礙水稻鐵從根向地上部轉(zhuǎn)運(表2)。從生理學角度來看,F(xiàn)eng等[21]發(fā)現(xiàn)硒可以減輕蜈蚣草對鐵的吸收和轉(zhuǎn)運,其主要機理為低劑量硒(2 mg L-1)能夠降低蜈蚣草體內(nèi)丙二醛含量和過氧化氫酶活性,而高劑量硒(20 mg L-1)能夠增加蜈蚣草體內(nèi)丙二醛含量和過氧化氫酶活性。硒也可以激活植物螯合肽(PC)合成酶及增加PC合成的前體,使植物產(chǎn)生更多的PC,形成更多的重金屬-PC配合物[22],其在植物體內(nèi)不易移動,硒阻礙水稻鐵從根向地上部轉(zhuǎn)運,其具體機理尚需進一步研究。
鐵膜降低了水稻幼苗地上部汞含量和汞分配系數(shù),鐵膜數(shù)量越多,固持在根表鐵膜中的汞越多,表明水稻根表鐵膜限制了汞從根到地上部的轉(zhuǎn)運。鐵膜對于其他元素也有吸附固持作用,如Liu等[23]的結(jié)果,鐵膜中銅、鋅、磷和砷的濃度與鐵膜數(shù)量呈正相關(guān)。有研究表明,鐵膜能夠吸附無機汞(IHg)和有機汞(MeHg),隨著鐵膜數(shù)量的增加,水稻根內(nèi)IHg和地上部MeHg均顯著減少,水稻根系內(nèi)Hg的化學形態(tài)卻未改變[24]。Zhang等[25]研究了Se對于水稻—土壤系統(tǒng)中MeHg / IHg吸收和遷移的影響后發(fā)現(xiàn),Se的水平與稻谷中MeHg / IHg 的水平負相關(guān),而且,增加土壤中的硒水平,IHg和MeHg向地上部遷移均會持續(xù)降低。
Se(Ⅳ)預處理能夠降低水稻幼苗地上部汞含量(圖1A)。究其具體機理,一方面可能是硒和汞在水稻根內(nèi)形成難溶性復合物HgSe(pKsp = -64.5),從而限制了汞向地上部轉(zhuǎn)運。Khan和Wang[26]研究表明,在植物體內(nèi)或根表硒與汞發(fā)生拮抗作用,容易形成難溶的HgSe復合物,從而抑制了植物對汞的吸收和轉(zhuǎn)運。Zhang等[25]通過研究根部土壤施硒發(fā)現(xiàn),植株地上部對汞的吸收和轉(zhuǎn)運也有顯著減少。這可能是由于游離的SeO32-或SeO42-會被還原為Se2-,游離的Se2-可以與游離的Hg2+結(jié)合,形成HgSe復合物沉淀。Afton和Caruso[27]研究大蔥和雪里蕻根部發(fā)現(xiàn),大部分HgSe難溶性復合物均被固定在根部,并未轉(zhuǎn)運至植株地上部,表明硒汞復合物基本固著于植物根部,進而減少植株地上部對汞的吸收。大蒜添加硒后,能夠降低體內(nèi)Hg-S結(jié)合力而生成谷胱甘肽汞化物Hg(GSH)2和Hg(Met)2,從而減少大蒜對汞的吸收和積累,硒通過降低大蒜對汞的吸收轉(zhuǎn)運而起著保護大蒜被汞毒害的作用[6]。
另一方面,根據(jù)Lewis酸理論,無機汞對硫醇有著較高的親和力,并可與硫氫結(jié)合成難溶解、穩(wěn)定的硫醇鹽螯合物[28]。植物螯合肽(PCs)是一種富含-SH的多肽,僅能在植物體內(nèi)形成[29],因為其含有大量的巰基,對Hg2+的親和力很大。Carrasco-Gil等[30]證明了Hg2+在水稻根中以Hg(Cys)2、Hg(GS)2和HgPCs等螯合物存在,從而降低Hg2+的毒性。Osaki等[31]發(fā)現(xiàn)重金屬Hg2+進入植物后,首先與PCs結(jié)合形成低分子量植物螯合肽復合物(LMW),在ATP的作用下穿過液胞膜轉(zhuǎn)運至液泡中儲存,并被隔離和固定在液泡內(nèi)。因此,進入細胞中的大部分Hg與PC結(jié)合成螯合物,然后進入液泡中固定和隔離[32],進而限制了汞向地上部的轉(zhuǎn)運。
其次,Rascio[33]在早期的研究中發(fā)現(xiàn),當植物受到重金屬脅迫時,植物能產(chǎn)生新的組織來隔離和富集這些重金屬,例如初生根皮層通過形成內(nèi)周皮而起隔離作用,使重金屬在植株根部細胞壁沉淀而“束縛”其跨膜吸收,或使重金屬高度積累在根部,減少重金屬向地上部各組織的轉(zhuǎn)移。Wang等[34]證實,硒抑制了根細胞對汞的吸收,主要原因是硒處理能增強水稻根系質(zhì)外體屏障,增加了根中內(nèi)外皮層初生壁的凱氏帶以及次生壁栓質(zhì)化和木質(zhì)化等保護組織,這些保護組織可以阻礙根細胞對汞等有毒物質(zhì)的被動吸收。Se(Ⅳ)預處理顯著降低水稻地上部汞含量和汞分配系數(shù)的具體機理還需進一步研究。那么,在水稻生產(chǎn)實踐中,水稻移栽后根系先吸收硒隨后產(chǎn)生根表鐵膜,在整個生育時期特別是成熟期水稻根系吸收Se(Ⅳ)以及根表鐵膜對水稻籽粒汞積累有何影響,有待進一步研究。
水培條件下,沉積在根表的鐵膜阻礙了水稻對汞的吸收和向地上部轉(zhuǎn)運,隨著鐵膜數(shù)量的增加,鐵膜中固持汞的量也顯著增加,鐵膜能顯著降低水稻苗期汞積累。Se(Ⅳ)預處理能明顯提高鐵膜固持汞的量,同時顯著降低水稻地上部汞含量和分配系數(shù)。Se(Ⅳ)能夠減輕水稻汞脅迫效應(yīng),降低水稻汞從根部向地上部轉(zhuǎn)移,減少地上部汞積累。在水稻灌漿和成熟期,根表鐵膜和Se(Ⅳ)對水稻籽粒汞積累的影響尚需進一步研究。
[1] Jiang G B,Shi J B,F(xiàn)eng X B. Mercury pollution in China. Environmental Science and Technology,2006,40(12):3672—3678
[2] 洪春來,賈彥博,楊肖娥,等. 農(nóng)業(yè)土壤中汞的生物地球化學行為及其生態(tài)效應(yīng). 土壤通報,2007,38(3):590—596
Hong C L,Jia Y B,Yang X E,et al. Biogeochemistry and ecological effect of mercury in agricultural soil(In Chinese). Chinese Journal of Soil Science,2007,38(3):590—596
[3] Qiu G L,F(xiàn)eng X B,Wang S F,et al. Mercury and methylmercury in riparian soil,sediments,minewaste calcines,and moss from abandoned Hg mines in east Guizhou Province,southwestern China. Applied Geochemistry,2005,20(3):627—638
[4] Zhang H,F(xiàn)eng X B,Larssen T,et al. In inland China,rice,rather than fish,is the major pathway for methylmercury exposure. Environment Health Perspectives,2010,118(9):1183—1188
[5] Mounicou S,Shah M,Meija J,et al. Localization and speciation of selenium and mercury in Brassica junceaimplications for Se-Hg antagonism. Journal of Analytical Atomic Spectrometry,2006,21(4):404—412
[6] Zhao J T,Gao Y X,Li Y F,et al. Selenium inhibits the phytotoxicity of mercury in garlic(Allium sativum). Environmental Research,2013,125(7):75—81
[7] 鄭蕓蕓,李忠意,李九玉,等. 鐵膜對水稻根表電化學性質(zhì)和氮磷鉀短期吸收的影響. 土壤學報,2015,52(3):690—696
Zheng Y Y,Li Z Y,Li J Y,et al. Effect of iron plaque on surface electrochemical properties and short-term N,P and K uptake by rice roots(In Chinese). Acta Pedologica Sinica,2015,52(3):690—696
[8] Jiang F Y,Chen X,Luo A C. Iron plaque formation on wetland plants and its influence on phosphorus,calcium and metal uptake. Aquatic Ecology,2009,43(4):879—890
[9] Hansel C M,F(xiàn)endorf S,Sutton S,et al.Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology,2001,35(19):3863—3868
[10] Zheng R L,Cai C,Liang J H,et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd,Zn,Pb,As in rice(Oryza sativa L.)seedlings. Chemosphere,2012,89(7):856—862
[11] Huang Y C,Chen Z,Liu W J. Influence of iron plaque and cultivars on antimony uptake by and translocation in rice(Oryza sativa L.)seedlings exposed to Sb(Ⅲ)or Sb(Ⅴ). Plant and Soil,2012,352(1/2):41—49
[12] Hossain M B,Jahiruddin M,Loeppert R H,et al. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant and Soil,2009,317(1):167—176
[13] 李云云,趙甲亭,高俞希,等. 根表鐵膜的形成和添加硒對水稻幼苗吸收轉(zhuǎn)運無機汞和甲基汞的影響. 生態(tài)毒理學報,2014,9(5):972—977
Li Y Y,Zhao J T,GaoY X,et al.Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice(Oryza sativa L.)(In Chinese). Asian Journal of Ecotoxicology,2014,9(5):972—977
[14] 張聯(lián)合,趙巍,郁飛燕,等. 水稻離體葉片吸收亞硒酸鹽的生理特性. 土壤學報,2012,49(1):189—193
Zhang L H,Zhao W,Yu F Y,et al. Physiological characteristics of selenite uptake by excised leaves of rice(In Chinese). Acta Pedologica Sinica,2012,49(1):189—193
[15] 周鑫斌,施衛(wèi)明,楊林章. 葉面噴硒對水稻籽粒硒富集及分布的影響. 土壤學報,2007,44(1):73—78
Zhou X B,Shi W M,Yang L Z. Effect of foliar application of selenite on selenium accumulation and distribution in rice(In Chinese). Acta Pedologica Sinica,2007,44(1):73—78
[16] Zhang L H,Shi W M,Wang X C. Difference in selenite absorption between high-and low-selenium rice cultivars and its mechanism. Plant and Soil,2006,282(1):183—193
[17] 李士杏,李波,王定勇. 腐殖酸對土壤汞向植株遷移的影響. 西南大學學報(自然科學版),2002,24(4):378—380
Li S X,Li B,Wang D Y. Effect of humus on the shift of mercury from the soil to the plants(In Chinese). Journal of Southwest University(Natural Science Edition),2002,24(4):378—380
[18] 龍小林,向珣朝,徐艷芳,等. 鎘脅迫下秈稻和粳稻對鎘的吸收、轉(zhuǎn)移和分配研究. 中國水稻科學,2014,28(2):177—184
Long X L,Xiang X C,Xu Y F,et al. Absorption,transfer and distribution of Cd in indica and japonica rice under Cd stress(In Chinese). Chinese Journal of Rice Science,2014,28(2):177—184
[19] 鄭甲成,劉婷. 不同濃度硒肥對秈稻硒含量和產(chǎn)量的影響. 土壤,2014,46(1):88—93
Zheng J C,Liu T. Selenium content and yield of indica rice under different selenium concentration(In Chinese). Soils,2014,46(1):88-93
[20] Yadav S K. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany,2010,76(2):167—179
[21] Feng R W,Wei C Y,Tu S X. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany,2013,87:58—68
[22] Feng R W,Wei C Y. Antioxidative mechanisms on selenium accumulation in Pteris vittata L.,a potential selenium phytoremediation plant. Plant,Soil and Environment,2012,58(3):105—110
[23] Liu W J,Zhu Y J,Smith F A,et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings(Oryza sativa L.)grown in solution culture? Journal of Experimental Botany,2004,55(403):1707—1713
[24] Li Y Y,Zhao J T,Zhang B,et al. The influence of iron plaque on the absorption,translocation and transformation of mercury in rice(Oryza sativa L.)seedlings exposed to different mercury species. Plant and Soil,2016,398(1):87—97
[25] Zhang H,F(xiàn)eng X B,Zhu J M,et al. Selenium in soil inhibits mercury uptake and translocation in rice(Oryza sativa L.). Environmental Science and Technology,2012,46(18):10040—10046
[26] Khan M A K,Wang F Y. Mercury-Selenium compounds and their toxicological significance:Toward a molecularunderstanding of the Mercury-Selenium antagonism. Environmental Toxicology and Chemistry,2009,28(8):1567—1577
[27] Afton S E,Caruso J A. The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. Journal of Analytical Atomic Spectrometry,2009,24(6):759—766
[28] Hoffmeyer R E,Singh S P,Doonan C J,et al. Molecular mimicry in mercury toxicology. Chemical Research in Toxicology,2006,19(6):753—759
[29] Strasdeit H,Duhme A K,Kneer R,et al. Evidence for discrete Cd(SCys)4units in cadmium phytochelatin complexes from EXAFS spectroscopy. Journal of the Chemical Society-Chemical Communications,1991,16(16):1129—1130
[30] Carrasco-Gil S,Siebner H,LeDuc D L,et al. Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environmental Science and Technology,2013,47(7):3082—3090
[31] Osaki Y,Shirabe T,Nakanishi H,et al. Characterization of phytochelatin synthase produced by the primitive red alga Cyanidioschyzon merolae. Metallomics,2009,1(4):353—358
[32] Malik A J,Goel S,Kaur N,et al. Selenium antagonizes the toxic effects of arsenic on mungbean(Phaseolus aureus Roxb.)plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany,2012,77:242—248
[33] Rascio N. Metal accumulation by some plants growing on zinc-mine deposits. Oikos,1977,29(2):250—253
[34] Wang X,Tam F Y,Shi F,et al. Selenium addition alters mercury uptake,bioavailability in the rhizosphere and root anatomy of rice(Oryza sativa L). Annals of Botany,2014,114(2):271—278
Effect of Iron Plaque on Root on Uptake and Translocation of Mercury in Rice Seedlings Treated with Selenium(Ⅳ)
GAO Axiang ZHOU Xinbin?ZHANG Chengming
(College of Resources and Environment,Southwest University,Chongqing 400716,China)
【Objective】 Iron plaque on root adsorbs heavy metal elements in the soil,thus reducing the content of heavy metals in the environment the plant grows in,while selenium is antagonistic to heavy metal elements in plant roots,thus inhibiting the transfer of Cd,As,Mn and some other heavy metals in the roots of rice seedlings as was found in the researches. In the presence of a proper amount of iron plaque,selenium reacts with Cd,As,Mn,and so on to form insoluble compounds that accumulate in the iron plaque,thus reducing toxicity of these heavy metals to the plants. In this study,a hydroponic experiment was conducted to explore effects of the iron plaque on the surface of the roots of rice seedlings on absorption and transport of mercury by the plants treated with selenium. 【Method】Having been disinfected and washed clean,rice seeds were sown in Hoagland culture medium for germination. Out of the seedlings,24 consistent in growth were selected and transplanted into two groups of vessels with Hogland culture medium,one treated without selenium(Se0)and the other with selenium(Se0.5,0.5 mg L-1in the form of Na2SeO3),for cultivation for 2 weeks. Then the rice plants were moved into Fe2+(FeSO4)solutions(pH=5.5),0,25,50 and 100 mg L-1in concentration,or Treatment Fe0,F(xiàn)e25,F(xiàn)e50 and Fe100,separately,for 24 h,to let iron plaque form on root surface. And then the rice plants were then transferred into HgCl2solution,0.3 mg L-1in concentration for 72 h of cultivation. Each treatment had three replicates. 【Result】No significant effect of the iron plaque was found on growth of the rice seedlings,but selenium was to be able to increase the plants in biomass. With rising Fe concentration in the solution,iron contents in the shoots and roots of the plants and in the dithionite-citrate-bicarbonate(DCB)solution all increased. The iron content in the DCB solution(extraction of root surface iron plaque)reached 57.3%~96.2%,significantly higher than that(1.1%~17.5%)in theshoot and(2.7%~25.9%)in the root of the rice seedlings,Most of the iron in the seedling plants were accumulated in the iron plaque or DCB extract. With the rising amount of iron plaque on the root surface,the content of mercury in the roots and shoots of the plants decreased significantly. The addition of selenium did not affect much the content of mercury in the shoots and roots of the plants in Treatments Fe0 and Fe25,but it did reduce the content of mercury significantly in Treatments Fe50 and Fe100. With the formation of iron plaque on the root surface,the content of mercury in the shoots and roots reduced because the iron plaque adsorbed much mercury and the addition of Se(Ⅳ)enabled the iron plaque to adsorb more mercury,thus increasing the proportion of mercury in the iron plaque and consequently reducing that in the shoots of the plans. Quite obviously,Se significantly enhances Hg fixation capacity of the iron plaque on the root surface of rice seedlings. 【Conclusion】Under hydroponic conditions,iron deposits on the root surface to form iron plaque,which inhibits Hg adsorption by rice roots and upward transfer of Hg in the plant. With the forming of more iron plaque,Hg fixation capacity of the coating increases significantly,too,thus markedly reducing Hg accumulation in the rice seedling. Se(Ⅳ)can alleviate the effect of mercury stress on rice,inhibit Hg transfer from roots to shoots and reduce Hg accumulation in the shoots,thus playing a role in protecting rice from mercury toxication. This study has certain practical significance in improving the quality of rice in mercury contaminated area and ensuring food safety.
Iron plaque;Rice seedlings;Se;Hg
S143.7+1
A
(責任編輯:陳榮府)
10.11766/trxb201610060383
* 國家自然科學基金項目(31372141,31672238)資助 Supported by the National Natural Science Foundation of China(Nos. 31372141 and 31672238)
? 通訊作者 Corresponding author,E-mail:zxbissas@swu.edu.cn
高阿祥(1992—),男,江蘇泗洪人,碩士研究生,主要從事植物硒營養(yǎng)研究。E-mail:gax3737@163.com
2016-10-06;
2017-01-11;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-02-13