• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Models and detection of spontaneous recurrent seizures in laboratory rodents

    2017-08-24 07:50:10BinGuKatherineDalton
    Zoological Research 2017年4期

    Bin Gu, Katherine A. Dalton

    ?

    Models and detection of spontaneous recurrent seizures in laboratory rodents

    Bin Gu1,*, Katherine A. Dalton2

    1Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA2Psychology & Neuroscience Program, University of North Carolina, Chapel Hill, NC 27599, USA

    Epilepsy, characterized by spontaneous recurrent seizures (SRS), is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.

    Spontaneous recurrent seizures; Animal model; Epilepsy

    INTRODUCTION

    Epilepsy, a chronic neurological disorder that is characterized by spontaneous recurrent seizures (SRS), is the fourth most common neurological disorder (Hirtz et al., 2007). Epilepsy was first described over 2500 years ago, yet there is still relatively little known about the underlying cause and currently no disease-modifying therapies exist. Current treatment options include antiepileptic drugs (AEDs), ketogenic diet, neurosurgical resection, and electrical stimulation of the central nervous system (CNS), which work for some but not all afflicted individuals (Laxer et al., 2014). Thus, there is an urgent unmet clinical need to discover treatments for the entire epileptic population. Most currently available AEDs were first identified using simple acute seizure models (i.e., pentylenetetrazol induced seizure and maximal electroshock seizure models) (L?scher, 2011). These acute models fail to mirror the spontaneous nature of seizures seen in epilepsy. This issue is hypothesized to contribute to the large percentage of epileptic patients (~30%) for whom AEDs fail to prevent or control SRS. Therefore, studying epilepsy using laboratory animals exhibiting SRS will provide an important tool to explore the underlying mechanism of epilepsy and develop novel therapeutic approaches.

    Epilepsy has been studied in a wide range of species of laboratory animals from simple organisms (e.g.,,and) to non-human primates. Along this spectrum,(rat) and(mouse) are the two most commonly used laboratory animals given their small size, docility, rapid breeding, and availability of advanced genetic tools. Importantly, rat and mouse models provide good construct, face, and predictive validities of epilepsy and demand relatively low cost and maintenance for chronic study of SRS. In this review, we discuss the methodology of SRS recording, and summarize both genetic and acquired models of SRSin rat and mouse, with particular emphasis on modeling and detection of SRS. Mechanism and treatment of epileptogenesis are addressed in other reviews (Goldberg & Coulter, 2013; L?scher et al., 2013; McNamara et al., 2006; Pitk?nen & Lukasiuk, 2011; Varvel et al., 2015).

    MONITORING AND DETECTION OF SRS IN RODENTS

    Chronic recording and detection of SRS in rodents is fundamental for preclinical research of epilepsy. Rigorous monitoring of SRS requires continuous time-locked video-EEG 24/7 in freely moving rodents. To capture biopotentials of the brain, most studies utilize single or multiple unipolar or bipolar recording electrodes which are intracranially placed. Skull or intracerebral electrode arrays are also used to cover broader brain regions. EEGs are acquired via either tethered or telemetry (wireless) recording systems in free-roaming, conscious rodents (Figure 1A). If a telemeter is used, it is either directly mounted on the head or tunneled and secured subcutaneously on the back or abdomen of rodents, providing the advantage of eliminating a wired interface between the animal and instrumentation. This minimizes the electrical noise and movement artifacts inherent in a tethered system. An inductive charging technique enables the telemeter to work 24/7 without the interruption of recharging the batteries.

    Figure 1 Schematic of video-EEG recording and EEG analyses

    A: Schematic of video-EEG recording of mouse using tethered (Left panel) or radio telemetry (right panel) system; B: Representative EEG trace (top panel) and spectrogram (bottom panel) of SRS and movement artifact.

    Given the rare, unpredictable nature and extremely diverse morphologies of SRS, identification of SRS is a technically challenging task. In most basic research settings, off-line visual inspection of EEG is performed by investigators to identify possible discrete epileptiform episodes, which are further confirmed by reviewing the time-locked video for behavioral correlates. Typical electrographic SRS features rhythmic neuronal firing characterized by increase of frequency and amplitude (especially in the gamma band) with clear initiation, propagation and termination (Figure 1B, left panel). In rodents, discrete epileptic discharges typically last seconds and are frequently followed by postictal suppression, which lasts minutes until normal electrographic activities resume. Electrographic SRS coincide with behavior phenotypes including rigid posture, facial automatisms, myoclonus, jumping and wild running, loss of postural control, tonic hindlimb extension, and death, which can be further semi-quantified using modified Racine’s scale (Ben-Ari, 1985; Racine, 1972). Spontaneous absence seizures characterized by spike-wave discharges (SWD) and behavioral arrest are also frequently observed in some models.

    To achieve successful SRS monitoring and detection, the following factors also need to be considered: (1) depending on models, SRS are relatively rare and tend to cluster. The seizure-free latent or interictal period may last days or even weeks before first or subsequent SRS emerge. Therefore, long-term (weeks to months) recording is required to achieve meaningful interpretation; (2) in most studies, brain areas covered by electrodes are limited. Electrographic seizures may occur out of the recording site, and in the absence of overt behavior change; (3) rodents are commonly singly housed during monitoring to minimize damage of recording device and facilitate video analysis. How social isolation affects SRS needs to be evaluated; (4) to visualize animal behavior during dark cycles, in some studies, the recording area is illuminated, thereby disrupting the normal light/dark cycle of monitored animals. Infrared light and imaging devices are recommended for behavior monitoring during dark cycle if circadian rhythm is considered (Cho, 2012; Hofstra & De Weerd, 2009); (5) SRS automatic detection algorithm is available, but manual validation is strongly recommended.

    SRS IN RODENT MODELS OF EPILEPSY

    SRS in genetic models of epilepsy

    Approximately 40% of epilepsies are idiopathic. Genetics play a significant role in the development, maintenance, and difficulty of treatingepilepsy. A growing number of epilepsy-related single gene mutations have been identified. Animals possessing analogous genetic manipulations (engineered or spontaneous) have proven useful in the search for the possible treatment for idiopathic epilepsy (Table 1).

    Ion channel genes

    Ion channels control the electrical transduction of cells, thereby playing a pivotal role in regulating neuronal excitability. Most epilepsy-related genes encode proteins composing voltage- or ligand-gated ion channels. Below we summarize genetic models of epilepsy that result from mutations in various types of ion channels.

    Of the many ion channels, a number of disruptions in genes encoding voltage-gated sodium channels have been described in multiple human epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Disruptions of genes encoding either α (SCN1A, SCN2A and SCN8A) or β (SCN1B) subunits of voltage-gated sodium channels are sufficient to trigger SRS in rodents (Chen et al., 2004, 2007; Dutton et al., 2013; Kearney et al., 2001; Martin et al., 2010; Ogiwara et al., 2007; Papale et al., 2009; Wagnon et al., 2015; Yu et al., 2006). In addition, two modifier loci (and) and multiple candidate modifier genes that influence theScn2aepilepsy phenotype have also been identified and refined (Hawkins & Kearney, 2012).

    Table 1 SRS in transgenic models of epilepsy

    Continued

    Gene ModificationLatency Frequency and features of SRSReferences Shank3Shank3OEN/AHyperexcitability discharges accompanied by EEG SRSHan et al., 2013 CNTNAP2CNTNAP2-/-6 moSRS with generalized interictal spike dischargesPe?agarikano et al., 2011 Epm2AEpm2A-/-<9 mo80% exhibited myoclonic SRS, more frequent during dark cycle Ganesh et al., 2002 Celf4Celf4Ff/Ff or Celf4Ff/+3 moRecurrent tonic-clonic seizures or absence seizures*Yang et al., 2007 Map2k1caMEK1 flox/flox::Nestin-Cre6–8 wkLifetime behavioral arrest and forelimb myoclonus (6.2 SRS/7 hr) Nateri et al., 2007

    *: model or strain dependent phenotype; ECS: editing site complementary sequence; OE: overexpression; SRS: spontaneous recurrent seizures; SUDEP: sudden unexpected death in epilepsy; SWD: spike-wave discharges.

    Potassium channels also play an important role in action potentials by helping to return the neuron back to its resting membrane potential.andencode a pair of proteins (Kv1.1 and 1.2) which are members of the voltage-dependent potassium channel subfamily A.orknockout mice display frequent, severe SRS throughout their lives. In addition, SRS caused death in 50% oforknockout mice beginning from three weeks of age (Brew et al., 2007; Douglas et al., 2007; Smart et al., 1998). Mutations ofand, whichencode subfamily Q of voltage-gated potassium channels have been found in patients with benign familial neonatal convulsions (BFNC).ormutant mice exhibit early onset generalized tonic-clonic SRS concurrent with M-current defects (Singh et al., 2008). Mice carryingScn2atransgene together withmutations (or V182M) result in an exacerbated epileptic phenotype (Kearney et al., 2006). A gain-of-function mutation of genewhich encodes calcium-activated potassium channel accessory β4 subunit also led to SRS (Brenner et al., 2005).

    Calcium channels are important for neuronal excitability and intracellular signaling. Activation of T-type calcium channels evoke burst-firing in the thalamocortical circuitry that gives rise to SWD associated with absence epilepsy (Chen et al., 2014; Cheong & Shin, 2013). α1G T-type calcium currents play a critical role in the genesis of spontaneous absence seizures resulting from hypofunctioning P/Q-type channels (α1) (Jun et al., 1999; Song et al., 2004). These attacks have also been shown to reflect absence seizures in(),(tg) and() mice, which have spontaneously occurring mutant (Fletcher et al., 1996; Jun et al., 1999; Zwingman et al., 2001). In addition to pore-forming α1 subunit, loss of function mutations in ancillary subunits of calcium channels, including naturally occurring mutations in the β subunit gene) mouse, loss of α2δ2 subunit protein inmouse (anddu) and dysfunctional calcium channel γ2 subunits in() and() mice also result in SRS (Burgess et al., 1997; Zamponi et al., 2010).

    In addition to voltage-gated ion channels, mutations of ligand-gated ion channel genes also result in SRS in mice. Heterozygous mice carrying an editing-deficient GRIA2 subunit allele express AMPA receptors with increased calcium permeability and develop SRS (Brusa et al., 1995). Fast ionotropic nicotinic acetylcholine receptor (nAChR) subunit genes, α2 (), α4 () and β2 (), have been affiliated with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) when mutated. Mice withmutations (S252For+L264) exhibited frequent SRS with diverse seizure semiology ranging from behavioral arrest to convulsive jerking (Klaassen et al., 2006). GABAAγ2-subunites have five known seizure associated mutations. Of these mutations, the R43Q mutation is of particular interest because it is related to childhood absence epilepsy and febrile seizures (Wallace et al., 2001). Both heterozygousknock-out and R43Q knock-in mice exhibited spontaneous absence seizures accompanied by SWD (Reid et al., 2013; Tan et al., 2007).

    Non-ion channel genes

    SRS are also related to interruptions of non-ion channel genes that are involved in diverse neurological disorders including tuberous sclerosis complex (TSC), Alzheimer’s disease(AD) and autism. Notably, SRS can arise as a comorbid phenotype and/or secondary consequence of gene modification from germline.

    Epilepsy is the most common presenting symptom in TSC. Up to 80%–90% of individuals with TSC will develop epilepsy during their lifetime. Two genes,and, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Both genes, when conditionally inactivated in mice, have been shown to contribute to epileptic phenotype, among whichled to more severe and frequent seizures (Zeng et al., 2011).

    Prevalence of epilepsy in Alzheimer’s disease is significantly higher than in age-matched control populations. Manipulation of AD related genes (e.g.,and) can also cause SRS in mice. One study showed thatknockout mice were predisposed to both spontaneous and chemically induced seizures (Hitt et al., 2010). Autosomal-dominant mutations in amyloid precursor protein (APP) cause hereditary early-onset familial Alzheimer's disease (FAD). Transgenic mice overexpressing a mutant form of human APP (hAPP) have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks (Palop et al., 2007). It was shown that 65% of mice carrying human APP with Swedish double mutation () cointegrated with human preselinin-1 with exon 9 deletion () exhibited unprovoked seizures (Minkeviciene et al., 2009; Um et al., 2012).

    Autism spectrum disorder (ASD) related genes are also extensively studied given the fact that epilepsy is common in individuals with autistic-like behavior resulting from particular genetic predisposition. A null mutation of maternalgene (exon 1–2 or exon 15 and 16) results in core pathologies of Angelman syndrome including spontaneous EEG abnormality in mice (Jiang et al., 1998b; Miura et al., 2002). Spontaneous behavioral seizures were witnessed in mice with 1.6Mb large deletion (to) and loss ofselectively from the GABAergic neurons (Jiang et al., 2010; Judson et al., 2016). Global or conditional manipulation ofgene in Rett syndrome model mice is also sufficient to elicit SRS, including spontaneous epileptiform discharges (Chao et al., 2010; D'Cruz et al., 2010; Shahbazian et al., 2002; Zhang et al., 2014). Mutations in the gene encoding SHANK3 and large duplications of the region spanning SHANK3 both cause ASD. Overexpression of SHANK3 in mice leads to SRS and maniac-like behavior (Han et al., 2013). Thegene which encodes a transmembrane protein that is essential in interactions between neurons and glia is strongly associated with ASD. Deletion ofleads to autistic-like behavior as well as SRS (Pe?agarikano et al., 2011).

    Along these lines, disruption of non-ion channel genes involved in many other disorders with epileptic manifestation also results in SRS in mice. Disruption of fibroblast growth factors 13 (FGF13) on the X chromosome is associated with GEFS+. Female mice in which oneallele was deleted exhibited SRS (Puranam et al., 2015). Leucin-rich, glioma inactivated 1 (LGI1) is a secreted protein linked to human autosomal dominant epilepsy with auditory features (ADEAF).deletion in mice results in early onset SRS and seizure-related death. Selective deletion of(Boillot et al., 2014; Chabrol et al., 2010). The genehas been indicated in an autosomal recessive disorder known as Lafora Disease. Deletion ofcan cause spontaneous myoclonic seizures with approximately 80% penetrance at the age of 9 months (Ganesh et al., 2002). Disruption of expression of doublecortin (Nosten-Bertrand et al., 2008), synapsin (Ketzef et al., 2011), CELF4 (Yang et al., 2007) or conditional expression of a constitutively active form of MAP/ERK kinases (Nateri et al., 2007) in the murine brain all led to SRS.

    Besides genetically modified mice, SRS are also found in rats and mice withmutations reported periodically in laboratories worldwide, like GAERS rat, WAG/Rij rat, lde/lde rat and,tg,mice (Noebels, 2006). Among these strains, GAERS rat and WAG/Rij rat are well validated genetic models of human absence epilepsy. Spontaneous absence seizures featuring SWD first appear at P30–P40 in GAERS rat, whereas they are observed at around P60–P80 in WAG/Rij rat. SWD in both strains are fully manifested with age and last throughout their lifetime (Coenen & van Luijtelaar, 2003; De Sarro et al., 2015; Marescaux et al., 1992). The progression of absence seizures with age in WAG/Rij and GAERS rats resembles genetically-determined epileptogenesis similar to post-brain insult epileptogenesis (Russo et al., 2016).

    SRS in acquired models of epilepsy

    It is estimated that up to 50% of all epilepsy cases are initiated by neurological insults also known as acquired epilepsy. To model acquired epilepsy in rodents, an episode of prolonged seizures, namely status epilepticus (SE), is commonly induced to trigger SRS (Table 2).

    Table 2 SRS in acquired models of epilepsy

    *: model or strain dependent phenotype; SE: status epilepticus; TBI: traumatic brain injury; KA: Kainic acid;DSP-4: N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride; TLE: temporal lobe epilepsy; SRS: spontaneous recurrent seizures; BLA: basolateral amygdala; AB: angular bundle: CCI: controlled cortical impact; LFP: lateral fluid percussion.

    Post-SE models

    Kainic acid (KA, an ionotropic glutamate receptors agonist) and pilocarpine (a cholinergic muscarinic agonist) are two of the most commonly used chemicals to trigger SE (Ben-Ari, 1985; Ben-Ari et al., 1980; Turski et al., 1987, 1989). Systemic or intracerebral administration of KA causes SE followed by the emergence of SRS with remarkable histopathological correlation of hippocampal sclerosis in both rats and mice (Lévesque & Avoli, 2013). Compared to KA, pilocarpine-induced SE (in the presence or absence of lithium) results in higher mortality and wider spread brain damage in general along with SRS. The latency to onset of SRS and frequency of SRS varies depending on dose and administration route of chemicals as well as strains of animal. Convulsive SE can also be induced by microinjection of bicuculine into the anterior piriform cortex after a lesion of the locus coeruleus, which results in SRS in rat (Giorgi et al., 2006). In addition to chemically-induced convulsive SE, convulsive or non-convulsive SE can be induced by sustained electrical stimulation in the angular bundle or the basolateral amygdala of a rat, and can evoke SRS along with hippocampal sclerosis (Brandt et al., 2003; Gorter et al., 2001; Norwood et al., 2010). SE that occurred during early developmental stage can also cause SRS in adults. Unilateral injection of tetanus toxin into the hippocampus of P10 rats produces recurrent seizures for one week followed by epileptiform burst discharges (electrographic seizures on rare occasions) in adults (Jiang et al., 1998a; Lee et al., 1995). Both longitudinal and retrospective clinical studies reveal early life febrile SE causes temporal lobe epilepsy (TLE) in adults. Similarly, prolonged febrile seizures induced by hyperthermia in P10 rats render 35.2% of them epileptic in adulthood (Dubé et al., 2006).

    Brain insults

    SRS can also develop following direct brain insults such as traumatic brain injury (TBI), stroke and viral infection in both human and rodents in the absence of SE. TBI caused by controlled cortical impact (CCI) or lateral fluid-percussion injury (FPI) is able to elicit SRS in rats and mice (Bolkvadze & Pitk?nen, 2012; D'ambrosio et al., 2004; Hunt et al., 2009; Kharatishvili et al., 2006). Rats that experienced global hypoxia at P10 or hypoxic-ischemic insult at P7 developed progressive SRS in adulthood (Kadam et al., 2010; Rakhade et al., 2011; Williams et al., 2004). Rats exposed to methylazoxymethanol in utero exhibited altered GluRs expression and developed sporadic SRS in adulthood (Harrington et al., 2007). Viral encephalitis of the CNS causes severe brain damage and epilepsy. Libbey et al. described the first mouse model of viral-induced epilepsy after intracerebral infection with Theiler's murine encephalomyelitis virus, where the seizures were transient and remitted after 10 days post infection (Libbey & Fujinami, 2011; Libbey et al., 2008).

    Kindling models

    Kindling is the process in which a train of repeated subconvulsive or subthreshold stimuli (electrical, audiogenic or chemical) renders a na?ve animal more susceptible to subsequent stimuli. Kindling is a canonical model used for the study of epileptogenesis, yet it receives increasing criticism due to the lack of SRS. However, over-electrical kindling ultimately results in SRS (Kogure et al., 2000; McIntyre et al., 2002). Recent research revealed eight day consecutive flurothyl-kindling is sufficient to elicit SRS immediately after kindling, which remits weeks later (Kadiyala et al., 2016).

    CONCLUDING REMARKS

    Chronic rodent SRS recording is fundamental to preclinical study of epilepsy. A lack of standard methodology for SRS recording hampers the reproducibility of available models as well as the discovery of novel animal models of SRS. We recommend chronic 24/7 simultaneous video-EEG recording for rigorous study of SRS in rodents, and the recording period should vary from weeks to months depending on the model that is being used. Exclusive EEG recording often results in false positives because movement artifacts from grooming, drinking, and eating frequently generate epileptiform-like activity with rhythmic increases of frequency and amplitude (Figure 1B, right panel). Simultaneous analysis of behavior and EEG is necessary because exclusive video monitoring commonly fails to identify focal seizures or absence seizures since these lack overt behavioral manifestations.

    While there are many ways to model SRS in rodents, the researcher first needs to decide what type of epilepsy they want to most closely recapitulate. Idiopathic or acquired epilepsy? TLE or absence seizures? Then the researcher needs to weigh the risks and benefits of each model that is chosen by studying the mortality and success rates and taking into consideration the developmental stage, length of latent period, frequency of SRS, electrographic and behavioral features of SRS,etc. Successful implication of rodent model of SRS will facilitate our knowledge of epilepsy and finally lead to discovery of potential biomarkers and therapies.

    ACKNOWLEDGEMENTS

    We thank Kamesh Krishnamurthy (Duke University, USA) for critical discussions and reading of the manuscript.

    Ben-Ari Y, Tremblay E, Ottersen OP. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy.5(3): 515-528.

    Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.14(2): 375-403.

    Boillot M, Huneau C, Marsan E, Lehongre K, Navarro V, Ishida S, Dufresnois B, Ozkaynak E, Garrigue J, Miles R, Martin B, Leguern E, Anderson MP, Baulac S. 2014. Glutamatergic neuron-targeted loss ofepilepsy gene results in seizures.137: 2984-2996.

    Bolkvadze T, Pitk?nen A. 2012. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse.29(5): 789-812.

    Brandt C, Glien M, Potschka H, Volk H, L?scher W. 2003. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats.55(1-2): 83-103.

    Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW. 2005. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures.8(12): 1752-1759.

    Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, Robbins CA, McKee-Johnson J, Chiu SY, Messing A, Tempel BL. 2007. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons.98(3): 1501-1525.

    Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R. 1995. Early-onset epilepsy and postnatal lethality associated with an editing-deficient-allele in mice.270(5242): 1677-1680.

    Burgess DL, Jones JM, Meisler MH, Noebels JL. 1997. Mutation of the Ca2+channel β subunit geneis associated with ataxia and seizures in the lethargic () mouse.88(3): 385-392.

    Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, Rivaud-Péchoux S, Fricker D, Baulac M, Miles R, LeGuern E, Baulac S. 2010. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice.133(9): 2749-2762.

    Chao HT, Chen HM, Samaco RC, Xue MS, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JLR, Noebels JL, Rosenmund C, Zoghbi HY. 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.468(7321): 263-269.

    Chen CL, Westenbroek RE, Xu XR, Edwards CA, Sorenson DR, Chen Y, McEwen DP, O'malley HA, Bharucha V, Meadows LS, Knudsen GA, Vilaythong A, Noebels JL, Saunders TL, Scheuer T, Shrager P, Catterall WA, Isom LL. 2004. Mice lacking sodium channel1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture.24(16): 4030-4042.

    Chen CL, Dickendesher TL, Oyama F, Miyazaki H, Nukina N, Isom LL. 2007. Floxed allele for conditional inactivation of the voltage-gated sodium channel β1 subunit.45(9): 547-553.

    Chen YC, Parker WD, Wang KL. 2014. The role of T-type calcium channel genes in absence seizures.5: 45.

    Cheong E, Shin HS. 2013. T-type Ca2+channels in absence epilepsy.1828(7): 1560-1571.

    Cho CH. 2012. Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy.6: 55.

    Coenen AM, van Luijtelaar ELJM. 2003. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats.33(6): 635-655.

    D'ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. 2004. Post-traumatic epilepsy following fluid percussion injury in the rat.127: 304-314.

    D'Cruz JA, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks JH. 2010. Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice.38(1): 8-16.

    De Sarro G, Russo E, Citraro R, Meldrum BS. 2015. Genetically epilepsy-prone rats (GEPRs) and DBA/2 mice: two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs.2015, doi: 10.1016/j.yebeh.2015.06.030.

    Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C. 2007. Sleep inknockout mice.5: 42.

    Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. 2006. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis.129: 911-922.

    Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, Escayg A. 2013. Preferential inactivation ofin parvalbumin interneurons increases seizure susceptibility.49: 211-220.

    Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA. 1996. Absence epilepsy in tottering mutant mice is associated with calcium channel defects.87(4): 607-617.

    Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K, Agarwala KL, Hasegawa Y, Bai DS, Ishihara T, Hashikawa T, Itohara S, Cornford EM, Niki H, Yamakawa K. 2002. Targeted disruption of thegene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice.11(11): 1251-1262.

    Giorgi FS, Mauceli G, Blandini F, Ruggieri S, Paparelli A, Murri L, Fornai F. 2006. Locus coeruleus and neuronal plasticity in a model of focal limbic epilepsy.47 Suppl 5: 21-25.

    Goldberg EM, Coulter DA. 2013. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction.14(5): 337-349.

    Gorter JA, Van Vliet EA, Aronica E, Da Silva FHL. 2001. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons.13(4): 657-669.

    Han K, Holder JL Jr, Schaaf CP, Lu H, Chen HM, Kang H, Tang JR, Wu ZY, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. 2013.overexpression causes manic-like behaviour with unique pharmacogenetic properties.503(7474): 72-77.

    Harrington EP, M?ddel G, Najm IM, Baraban SC. 2007. Altered glutamate receptor-transporter expression and spontaneous seizures in rats exposed to methylazoxymethanol in utero.48(1): 158-168.

    Hawkins NA, Kearney JA. 2012. Confirmation of an epilepsy modifier locus on mouse chromosome 11 and candidate gene analysis by RNA-Seq.11(4): 452-460.

    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. 2007. How common are the "common" neurologic disorders?68(5): 326-337.

    Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. 2010. BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization.5: 31.

    Hofstra WA, de Weerd AW. 2009. The circadian rhythm and its interaction with human epilepsy: a review of literature.13(6): 413-420.

    Hunt RF, Scheff SW, Smith BN. 2009. Posttraumatic epilepsy after controlled cortical impact injury in mice.215(2): 243-252.

    Jiang MH, Lee CL, Smith KL, Swann JW. 1998a. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy.18(20): 8356-8368.

    Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaud AL. 1998b. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.21(4): 799-811.

    Jiang YH, Pan YZ, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels J, Beaud AL. 2010. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion fromto.5(8): e12278.

    Judson MC, Wallace ML, Sidorov MS, Burette AC, Gu B, van Woerden GM, King IF, Han JE, Zylka MJ, Elgersma Y, Weinberg RJ, Philpot BD. 2016. GABAergic neuron-specific loss ofcauses angelman syndrome-like EEG abnormalities and enhances seizure susceptibility.90(1): 56-69.

    Jun K, Piedras-Rentería ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW, Shin HS. 1999. Ablation of P/Q-type Ca2+channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit.96(26): 15245-15250.

    Kadam SD, White AM, Staley KJ, Dudek FE. 2010. Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy.30(1): 404-415.

    Kadiyala SB, Yannix JQ, Nalwalk JW, Papandrea D, Beyer BS, Herron BJ, Ferland RJ. 2016. Eight flurothyl-induced generalized seizures lead to the rapid evolution of spontaneous seizures in mice: a model of epileptogenesis with seizure remission.36(28): 7485-7496.

    Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AL, Meisler MH. 2001. A gain-of-function mutation in the sodium channel generesults in seizures and behavioral abnormalities.102(2): 307-317.

    Kearney JA, Yang Y, Beyer B, Bergren SK, Claes L, DeJonghe P, Frankel WN. 2006. Severe epilepsy resulting from genetic interaction betweenand.15(6): 1043-1048.

    Ketzef M, Kahn J, Weissberg I, Becker AJ, Friedman A, Gitler D. 2011. Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice.189: 108-122.

    Kharatishvili I, Nissinen JP, Mcintosh TK, Pitk?nen A. 2006. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats.140(2): 685-697.

    Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J. 2006. Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy.103(50): 19152-19157.

    Kogure S, Kitayama M, Matsuda Y. 2000. Simultaneous kindling of the bilateral hippocampi: an advanced model for epilepsy research.41(8): 929-932.

    Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR. 2014. The consequences of refractory epilepsy and its treatment.37: 59-70.

    Lee CL, Hrachovy RA, Smith KL, Frost Jr JD, Swann JW. 1995. Tetanus toxin-induced seizures in infant rats and their effects on hippocampal excitability in adulthood.677(1): 97-109.

    Lévesque M, Avoli M. 2013. The kainic acid model of temporal lobe epilepsy.37(10): 2887-2899.

    Libbey JE, Kirkman NJ, Smith MCP, Tanaka T, Wilcox KS, White HS, Fujinami RS. 2008. Seizures following picornavirus infection.49(6): 1066-1074.

    Libbey JE, Fujinami RS. 2011. Neurotropic viral infections leading to epilepsy: focus on Theiler's murine encephalomyelitis virus.6(11): 1339-1350.

    L?scher W. 2011. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs.20(5): 359-368.

    L?scher W, Klitgaard H, Twyman RE, Schmidt D. 2013. New avenues for anti-epileptic drug discovery and development.12(10): 757-776.

    Marescaux C, Vergnes M, Depaulis A. 1992. Genetic absence epilepsy in rats from strasbourg-a review.35: 37-69.

    Martin MS, Dutt K, Papale LA, Dubé CM, Dutton SB, de Haan G, Shankar A, Tufik S, Meisler MH, Baram TZ, Goldin AL, Escayg A. 2010. Altered function of thevoltage-gated sodium channel leads to γ-aminobutyric acid-ergic (GABAergic) interneuron abnormalities.285(13): 9823-9834.

    McIntyre DC, Poulter MO, Gilby K. 2002. Kindling: some old and some new.50(1-2): 79-92.

    McNamara JO, Huang YZ, Leonard AS. 2006. Molecular signaling mechanisms underlying epileptogenesis.2006(356): re12.

    Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fül?p L, Penke B, Zilberter Y, Harkany T, Pitk?nen A, Tanila H. 2009. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy.29(11): 3453-3462.

    Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, Wagstaff J. 2002. Neurobehavioral and electroencephalographic abnormalities inmaternal-deficient mice.9(2): 149-159.

    Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JGR, Kann O, Behrens A. 2007. ERK activation causes epilepsy by stimulating NMDA receptor activity.26(23): 4891-4901.

    Noebels JL. 2006. CHAPTER 17-spontaneous epileptic mutations in the mouse A2-Pitk?nen, Asla. schwartzkroin PA and Moshé SL.: Models of Seizures and Epilepsy. Burlington: Academic Press, 223-232.

    Norwood BA, Bumanglag AV, Osculati F, Sbarbati A, Marzola P, Nicolato E, Fabene PF, Sloviter RS. 2010. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single "cryptic" episode of focal hippocampal excitation in awake rats.518(16): 3381-3407.

    Nosten-Bertrand M, Kappeler C, Dinocourt C, Denis C, Germain J, Tuy FPD, Verstraeten S, Alvarez C, Métin C, Chelly J, Giros B, Miles R, Depaulis A, Francis F. 2008. Epilepsy inknockout mice associated with discrete lamination defects and enhanced excitability in the hippocampus.3(6): e2473.

    Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S, Yanagawa Y, Obata K, Furuichi T, Hensch TK, Yamakawa K. 2007. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying angene mutation.27(22): 5903-5914.

    Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L. 2007. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease.55(5): 697-711.

    Papale LA, Beyer B, Jones JM, Sharkey LM, Tufik S, Epstein M, Letts VA, Meisler MH, Frankel WN, Escayg A. 2009. Heterozygous mutations of the voltage-gated sodium channelare associated with spike-wave discharges and absence epilepsy in mice.18(9): 1633-1641.

    Pe?agarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong HM, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH. 2011. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits.147(1): 235-246.

    Pitk?nen A, Lukasiuk K. 2011. Mechanisms of epileptogenesis and potential treatment targets.10(2): 173-186.

    Puranam RS, He XP, Yao LJ, Le T, Jang W, Rehder CW, Lewis DV, McNamara JO. 2015. Disruption ofcauses synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus.35(23): 8866-8881.

    Racine RJ. 1972. Modification of seizure activity by electrical stimulation: II. Motor seizure.32(3): 281-294.

    Rakhade SN, Klein PM, Huynh T, Hilario-Gomez C, Kosaras B, Rotenberg A, Jensen FE. 2011. Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures.52(4): 753-765.

    Reid CA, Kim T, Phillips AM, Low J, Berkovic SF, Luscher B, Petrou S. 2013. Multiple molecular mechanisms for a single GABAAmutation in epilepsy.80(11): 1003-1008.

    Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. 2016. Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden mechanisms and a new theory on seizure development.71: 388-408.

    Shahbazian M, Young JI, Yuva-Paylor LA, Spencer CM, Antalffy BA, Noebels JL, Armstrong DL, Paylor R, Zoghbi HY. 2002. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3.35(2): 243-254.

    Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, Noebels JL, White HS, Wilcox KS, Leppert MF. 2008. Mouse models of humanandmutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization.586(14): 3405-3423.

    Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL. 1998. Deletion of the KV1.1 potassium channel causes epilepsy in mice.20(4): 809-819.

    Song I, Kim D, Choi S, Sun M, Kim Y, Shin HS. 2004. Role of the α1G T-type calcium channel in spontaneous absence seizures in mutant mice.24(22): 5249-5257.

    Tan HO, Reid CA, Single FN, Davies PJ, Chiu C, Murphy S, Clarke AL, Dibbens L, Krestel H, Mulley JC, Jones MV, Seeburg PH, Sakmann B, Berkovic SF, Sprengel R, Petrou S. 2007. Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy.104(44): 17536-17541.

    Turski L, Cavalheiro EA, Czuczwar SJ, Turski WA, Kleinrok Z. 1987. The seizures induced by pilocarpine: behavioral, electroencephalographic and neuropathological studies in rodents.39(5): 545-555.

    Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. 1989. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy.3(2): 154-171.

    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM. 2012. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates fyn to impair neurons.15(9): 1227-1235.

    Varvel NH, Jiang JX, Dingledine R. 2015. Candidate drug targets for prevention or modification of epilepsy., 55: 229-247.

    Wagnon JL, Korn MJ, Parent R, Tarpey TA, Jones JM, Hammer MF, Murphy GG, Parent JM, Meisler MH. 2015. Convulsive seizures and SUDEP in a mouse model ofepileptic encephalopathy.24(2): 506-515.

    Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF. 2001. Mutant GABAAreceptor γ2-subunit in childhood absence epilepsy and febrile seizures.28(1): 49-52.

    Williams PA, Dou P, Dudek FE. 2004. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia.45(10): 1210-1218.

    Yang Y, Mahaffey CL, Béerubé N, Maddatu TP, Cox GA, Frankel WN. 2007. Complex seizure disorder caused bydeficiency in mice.3(7): e124.

    Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA. 2006. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy.9(9): 1142-1149.

    Zamponi GW, Lory P, Perez-Reyes E. 2010. Role of voltage-gated calcium channels in epilepsy.460(2): 395-403.

    Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. 2011.gene inactivation causes a more severe epilepsy phenotype thaninactivation in a mouse model of tuberous sclerosis complex.20(3): 445-454.

    Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW. 2014. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures.34(7): 2754-2763.

    Zwingman TA, Neumann PE, Noebels JL, Herrup K. 2001. Rocker is a new variant of the voltage-dependent calcium channel gene.21(4): 1169-1178.

    05 April 2017; Accepted: 20 June 2017

    This study was supported by the American Epilepsy Society Fellowship (2016)

    , E-mail: bin_gu@med.unc.edu

    10.24272/j.issn.2095-8137.2017.042

    青青草视频在线视频观看| 久久久久视频综合| 欧美另类一区| 国产探花极品一区二区| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频| 成人二区视频| 一级a做视频免费观看| 亚洲久久久国产精品| 最近的中文字幕免费完整| 狂野欧美激情性xxxx在线观看| 五月玫瑰六月丁香| 一级毛片 在线播放| 精品人妻偷拍中文字幕| 全区人妻精品视频| 最近手机中文字幕大全| 亚洲怡红院男人天堂| 亚洲成人av在线免费| 午夜精品国产一区二区电影| 国产高清有码在线观看视频| 亚洲色图 男人天堂 中文字幕 | 国产免费视频播放在线视频| 人人妻人人澡人人爽人人夜夜| 国产乱来视频区| 搡老乐熟女国产| 有码 亚洲区| 黑人猛操日本美女一级片| 日韩av免费高清视频| 日韩av在线免费看完整版不卡| 永久网站在线| 91精品一卡2卡3卡4卡| 插阴视频在线观看视频| 视频中文字幕在线观看| 高清不卡的av网站| 久久国产亚洲av麻豆专区| 久久青草综合色| 青青草视频在线视频观看| 综合色丁香网| a级毛片免费高清观看在线播放| 在线观看三级黄色| 亚洲欧洲日产国产| 精品午夜福利在线看| 少妇被粗大猛烈的视频| 男的添女的下面高潮视频| 日本黄大片高清| 国产精品99久久久久久久久| 亚洲精品一二三| 在线播放无遮挡| 18+在线观看网站| 亚洲精品一二三| a级片在线免费高清观看视频| 天天影视国产精品| 亚洲三级黄色毛片| 日韩视频在线欧美| 久久这里有精品视频免费| 日韩视频在线欧美| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va| 狂野欧美激情性bbbbbb| 人人妻人人爽人人添夜夜欢视频| 五月伊人婷婷丁香| 男男h啪啪无遮挡| 18禁观看日本| av有码第一页| 成人国产av品久久久| 一级二级三级毛片免费看| 亚洲国产av新网站| 综合色丁香网| 乱人伦中国视频| 丁香六月天网| 永久网站在线| 中文精品一卡2卡3卡4更新| 日日爽夜夜爽网站| 亚洲伊人久久精品综合| 国产色爽女视频免费观看| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 午夜久久久在线观看| 久久国内精品自在自线图片| 晚上一个人看的免费电影| 国产色婷婷99| 亚洲av日韩在线播放| 99热网站在线观看| 最近中文字幕高清免费大全6| 婷婷成人精品国产| kizo精华| 少妇人妻 视频| 久久午夜综合久久蜜桃| 久久久久精品性色| 欧美激情国产日韩精品一区| 亚洲色图 男人天堂 中文字幕 | 午夜久久久在线观看| 中文字幕av电影在线播放| 久久精品国产亚洲av天美| 中国美白少妇内射xxxbb| 国产熟女欧美一区二区| 精品久久蜜臀av无| 成人无遮挡网站| 在线免费观看不下载黄p国产| 一个人免费看片子| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 人人澡人人妻人| 一级毛片我不卡| 久久久a久久爽久久v久久| 国产在线视频一区二区| 久久久久久久久大av| 黄片播放在线免费| 超碰97精品在线观看| 不卡视频在线观看欧美| 日本与韩国留学比较| 综合色丁香网| 麻豆精品久久久久久蜜桃| 丝瓜视频免费看黄片| 99re6热这里在线精品视频| 国产女主播在线喷水免费视频网站| 国产精品免费大片| 女性被躁到高潮视频| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 亚洲天堂av无毛| 国产高清有码在线观看视频| 欧美丝袜亚洲另类| 99国产精品免费福利视频| av福利片在线| 啦啦啦中文免费视频观看日本| 久久久久久人妻| 欧美人与善性xxx| 国产熟女午夜一区二区三区 | 久久这里有精品视频免费| videosex国产| 一区二区av电影网| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 日韩制服骚丝袜av| 99九九在线精品视频| 日韩电影二区| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 国产亚洲精品久久久com| 国产一区有黄有色的免费视频| 色网站视频免费| 少妇丰满av| 一本大道久久a久久精品| 成年av动漫网址| 国产成人一区二区在线| 我的女老师完整版在线观看| 热99国产精品久久久久久7| 久热这里只有精品99| 免费看光身美女| 一区二区三区精品91| 在线观看国产h片| 午夜激情av网站| 亚洲国产成人一精品久久久| 国产乱人偷精品视频| 国产白丝娇喘喷水9色精品| 亚洲成色77777| 丁香六月天网| 久久亚洲国产成人精品v| 天天影视国产精品| 精品亚洲乱码少妇综合久久| 亚洲国产精品999| 精品国产露脸久久av麻豆| 亚洲av中文av极速乱| 国产一区二区在线观看av| 黑人猛操日本美女一级片| 成人漫画全彩无遮挡| 搡老乐熟女国产| 狂野欧美激情性xxxx在线观看| 日韩强制内射视频| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 国产探花极品一区二区| 日韩av在线免费看完整版不卡| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 美女脱内裤让男人舔精品视频| 亚洲av成人精品一二三区| 欧美 日韩 精品 国产| 99热6这里只有精品| 内地一区二区视频在线| 亚洲精品国产av蜜桃| 三上悠亚av全集在线观看| 欧美日韩亚洲高清精品| 另类亚洲欧美激情| 午夜福利,免费看| 亚洲久久久国产精品| 在线精品无人区一区二区三| 免费高清在线观看日韩| 久久久国产一区二区| 亚洲精品国产av成人精品| 高清在线视频一区二区三区| 欧美三级亚洲精品| 国产精品无大码| 久久精品国产自在天天线| 亚洲精品视频女| 如日韩欧美国产精品一区二区三区 | 午夜免费观看性视频| 天堂俺去俺来也www色官网| 亚洲成人一二三区av| 久久婷婷青草| av黄色大香蕉| 在线观看免费视频网站a站| 久久久久久久久久人人人人人人| 伦理电影大哥的女人| 亚洲成人av在线免费| 高清午夜精品一区二区三区| 这个男人来自地球电影免费观看 | 日韩视频在线欧美| 一区二区日韩欧美中文字幕 | av电影中文网址| 男男h啪啪无遮挡| 啦啦啦中文免费视频观看日本| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 哪个播放器可以免费观看大片| 最近手机中文字幕大全| 国产av一区二区精品久久| 色网站视频免费| 十分钟在线观看高清视频www| 色婷婷av一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 国产精品三级大全| 国产日韩一区二区三区精品不卡 | 国产伦精品一区二区三区视频9| 只有这里有精品99| 男女边摸边吃奶| 大香蕉久久成人网| 国产欧美日韩综合在线一区二区| 各种免费的搞黄视频| xxx大片免费视频| 亚洲精品国产色婷婷电影| 国产av国产精品国产| 色视频在线一区二区三区| 99热6这里只有精品| 美女视频免费永久观看网站| 日日啪夜夜爽| 丝袜喷水一区| 欧美变态另类bdsm刘玥| 少妇的逼水好多| 伦理电影大哥的女人| 久久热精品热| 两个人的视频大全免费| 免费高清在线观看视频在线观看| 久久久久久伊人网av| 一级片'在线观看视频| 最近中文字幕高清免费大全6| 欧美日韩国产mv在线观看视频| 久久精品久久久久久久性| 在线观看免费视频网站a站| 精品国产一区二区久久| 国产片特级美女逼逼视频| 麻豆精品久久久久久蜜桃| h视频一区二区三区| 国产精品一区二区在线不卡| 男女边摸边吃奶| 蜜臀久久99精品久久宅男| 菩萨蛮人人尽说江南好唐韦庄| 国产成人免费观看mmmm| 边亲边吃奶的免费视频| 一级毛片黄色毛片免费观看视频| 大香蕉久久成人网| 日本wwww免费看| 国产熟女午夜一区二区三区 | 黄片无遮挡物在线观看| 汤姆久久久久久久影院中文字幕| 91国产中文字幕| 国产精品秋霞免费鲁丝片| 国产精品国产三级专区第一集| 国产男人的电影天堂91| 国语对白做爰xxxⅹ性视频网站| 三上悠亚av全集在线观看| 国产日韩欧美在线精品| 午夜福利,免费看| 精品人妻熟女av久视频| 久久久久久人妻| 在线观看免费视频网站a站| 熟女电影av网| 亚洲精品,欧美精品| 亚洲熟女精品中文字幕| 男女边吃奶边做爰视频| 最近中文字幕高清免费大全6| 婷婷色综合www| 欧美丝袜亚洲另类| 另类精品久久| 亚洲欧美中文字幕日韩二区| 成人无遮挡网站| 欧美成人精品欧美一级黄| 成年女人在线观看亚洲视频| 少妇高潮的动态图| 日本黄大片高清| 丰满乱子伦码专区| 中国三级夫妇交换| 免费观看性生交大片5| 国产日韩欧美视频二区| 午夜福利视频在线观看免费| 国产探花极品一区二区| 日韩人妻高清精品专区| 久久午夜综合久久蜜桃| 熟妇人妻不卡中文字幕| 不卡视频在线观看欧美| 国产欧美日韩综合在线一区二区| 一本久久精品| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| 多毛熟女@视频| 黄色视频在线播放观看不卡| 欧美激情国产日韩精品一区| 十八禁网站网址无遮挡| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 晚上一个人看的免费电影| 久久久精品免费免费高清| 女人久久www免费人成看片| 大陆偷拍与自拍| 精品久久蜜臀av无| 精品久久蜜臀av无| 欧美另类一区| 国模一区二区三区四区视频| 亚洲人成网站在线播| 欧美成人午夜免费资源| 尾随美女入室| 午夜福利在线观看免费完整高清在| 日韩中字成人| 97在线视频观看| 男人爽女人下面视频在线观看| 亚洲综合精品二区| 国产一级毛片在线| 欧美日本中文国产一区发布| 精品少妇黑人巨大在线播放| 午夜福利,免费看| 午夜福利网站1000一区二区三区| 观看av在线不卡| 爱豆传媒免费全集在线观看| 在线观看美女被高潮喷水网站| 在线观看国产h片| 久久国内精品自在自线图片| 99热全是精品| 97超视频在线观看视频| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃 | 国产精品国产三级专区第一集| 国产一区二区在线观看日韩| 久久免费观看电影| 日韩伦理黄色片| 亚洲内射少妇av| 久久久久精品久久久久真实原创| 亚洲精品av麻豆狂野| 国产精品嫩草影院av在线观看| 美女国产高潮福利片在线看| 超碰97精品在线观看| 亚洲性久久影院| 日日撸夜夜添| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 亚洲av不卡在线观看| 丁香六月天网| 看免费成人av毛片| 日韩视频在线欧美| 夜夜看夜夜爽夜夜摸| 夫妻午夜视频| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| av.在线天堂| 美女国产视频在线观看| 午夜91福利影院| 伊人久久国产一区二区| 日韩一区二区视频免费看| 一区在线观看完整版| 丰满乱子伦码专区| 免费日韩欧美在线观看| 国产高清三级在线| 日本av免费视频播放| 观看美女的网站| 99久国产av精品国产电影| 国产又色又爽无遮挡免| av免费在线看不卡| 精品少妇久久久久久888优播| 香蕉精品网在线| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 如何舔出高潮| 亚洲无线观看免费| 少妇丰满av| 能在线免费看毛片的网站| 亚洲国产最新在线播放| 一个人免费看片子| 不卡视频在线观看欧美| 亚洲欧美成人综合另类久久久| 亚洲婷婷狠狠爱综合网| 国产成人午夜福利电影在线观看| 国产黄色免费在线视频| 午夜免费鲁丝| 丝袜脚勾引网站| 看免费成人av毛片| av免费观看日本| 精品少妇内射三级| 97精品久久久久久久久久精品| 一级毛片aaaaaa免费看小| 欧美精品一区二区大全| 国国产精品蜜臀av免费| 久久精品夜色国产| 蜜桃久久精品国产亚洲av| 亚洲av日韩在线播放| 亚洲av福利一区| 久久精品国产亚洲网站| 日韩一区二区视频免费看| 欧美日韩视频精品一区| 一区二区三区免费毛片| 十八禁高潮呻吟视频| 国产精品.久久久| 日本vs欧美在线观看视频| 国产精品久久久久成人av| 国产精品麻豆人妻色哟哟久久| 肉色欧美久久久久久久蜜桃| 亚洲综合色网址| 一边摸一边做爽爽视频免费| 日韩成人伦理影院| 男的添女的下面高潮视频| av免费在线看不卡| 韩国av在线不卡| 18+在线观看网站| 国产极品天堂在线| 中文字幕av电影在线播放| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 黄色怎么调成土黄色| 特大巨黑吊av在线直播| 免费看光身美女| 婷婷色综合大香蕉| 免费观看无遮挡的男女| 一级爰片在线观看| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 久久久国产欧美日韩av| 男女免费视频国产| 91精品国产国语对白视频| 国产免费又黄又爽又色| 满18在线观看网站| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 欧美激情国产日韩精品一区| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 亚洲国产精品一区二区三区在线| 99热网站在线观看| 美女cb高潮喷水在线观看| 熟女av电影| 国产精品成人在线| 久久ye,这里只有精品| 下体分泌物呈黄色| 久久久久久久久久久丰满| 日韩熟女老妇一区二区性免费视频| 少妇丰满av| 男人爽女人下面视频在线观看| h视频一区二区三区| 国产精品一区二区在线观看99| 欧美国产精品一级二级三级| 国产69精品久久久久777片| 亚洲精品一二三| 一级毛片黄色毛片免费观看视频| 亚洲精品久久久久久婷婷小说| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 观看av在线不卡| 久久久久久久精品精品| 又黄又爽又刺激的免费视频.| 国产免费视频播放在线视频| 熟女人妻精品中文字幕| videos熟女内射| 夜夜看夜夜爽夜夜摸| 观看av在线不卡| 简卡轻食公司| 人人妻人人澡人人爽人人夜夜| 色视频在线一区二区三区| 男女无遮挡免费网站观看| 久久久久久久久大av| 国产精品蜜桃在线观看| 亚洲精品乱码久久久久久按摩| 久久久久网色| 久久久久久久久久久免费av| 热re99久久国产66热| 国产精品一二三区在线看| 大话2 男鬼变身卡| 美女内射精品一级片tv| 中文字幕人妻熟人妻熟丝袜美| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| 免费黄色在线免费观看| 亚洲中文av在线| 人人妻人人澡人人爽人人夜夜| 国产伦精品一区二区三区视频9| 亚洲精品成人av观看孕妇| av有码第一页| 桃花免费在线播放| 国产一级毛片在线| 国产精品一区二区在线观看99| 视频区图区小说| 99九九在线精品视频| 亚洲少妇的诱惑av| 国产一区二区三区av在线| 黄色毛片三级朝国网站| 自线自在国产av| 久久热精品热| 有码 亚洲区| 999精品在线视频| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 免费少妇av软件| 91国产中文字幕| 男人爽女人下面视频在线观看| 亚洲成色77777| 伦理电影免费视频| 亚洲不卡免费看| 99视频精品全部免费 在线| 精品少妇久久久久久888优播| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线| 丰满乱子伦码专区| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说| 日韩制服骚丝袜av| 晚上一个人看的免费电影| 视频在线观看一区二区三区| 午夜福利视频精品| 国产成人精品福利久久| 国国产精品蜜臀av免费| 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 桃花免费在线播放| 久久精品国产亚洲网站| 老司机影院毛片| 中文字幕av电影在线播放| 日韩视频在线欧美| 日本色播在线视频| 校园人妻丝袜中文字幕| 国产不卡av网站在线观看| 国产精品成人在线| 综合色丁香网| 美女中出高潮动态图| av在线观看视频网站免费| 高清av免费在线| videos熟女内射| 少妇被粗大猛烈的视频| 日韩 亚洲 欧美在线| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频| 99久久精品一区二区三区| 久久久久精品久久久久真实原创| 特大巨黑吊av在线直播| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 成人午夜精彩视频在线观看| √禁漫天堂资源中文www| 国产精品蜜桃在线观看| 边亲边吃奶的免费视频| 一边亲一边摸免费视频| 久久久国产欧美日韩av| 国产欧美另类精品又又久久亚洲欧美| 免费黄网站久久成人精品| 亚洲美女黄色视频免费看| 免费黄网站久久成人精品| 最新中文字幕久久久久| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 国产女主播在线喷水免费视频网站| 亚洲五月色婷婷综合| 国产精品国产三级国产av玫瑰| av在线老鸭窝| 高清不卡的av网站| 色网站视频免费| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 久久久久久人妻| 日韩伦理黄色片| 久久精品熟女亚洲av麻豆精品| 视频中文字幕在线观看| 国产精品一区二区在线观看99| 夫妻午夜视频| 国产在线免费精品| 啦啦啦视频在线资源免费观看| 性高湖久久久久久久久免费观看| 18禁在线播放成人免费| 国产精品99久久久久久久久| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 亚洲av福利一区| 又黄又爽又刺激的免费视频.| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线播| 中文天堂在线官网| 热99国产精品久久久久久7| 亚洲av二区三区四区| 成人无遮挡网站| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办| 视频区图区小说| 亚洲性久久影院| 一区二区三区免费毛片| 亚洲精品日韩av片在线观看| 国产精品蜜桃在线观看| 搡老乐熟女国产| 日本-黄色视频高清免费观看| 性色av一级|