劉則燁,向雪瑞,范孟孟,向婷,房春云,江平
(河北醫(yī)科大學,石家莊050017)
?
鹽酸小檗堿預處理對青霉素鈉誘發(fā)小鼠癲癇發(fā)作程度、發(fā)作潛伏期的影響及其機制
劉則燁,向雪瑞,范孟孟,向婷,房春云,江平
(河北醫(yī)科大學,石家莊050017)
目的 觀察鹽酸小檗堿(BBH)預處理對青霉素鈉誘發(fā)小鼠癲癇發(fā)作程度、發(fā)作潛伏期的影響,并探討其機制。方法 雄性昆明種小鼠50只,適應性飼養(yǎng)3 d后隨機分為生理鹽水組、模型組、丙戊酸鈉(VPA)組、BBH1組、BBH2組。VPA組腹腔注射VPA 40 mg/kg,BBH1組以BBH 25 mg/kg灌胃,BBH2組以BBH 50 mg/kg灌胃,生理鹽水組和模型組分別以等量生理鹽水和β-環(huán)糊精灌胃。各組每天給藥1次,連續(xù)給藥3 d。至末次給藥次日,除生理鹽水組外,其余四組均腹腔注射青霉素鈉700萬IU/kg誘發(fā)癲癇。記錄各組小鼠從給藥到出現癲癇癥狀的潛伏期。根據Racine分級標準評估癲癇發(fā)作分級,記錄癲癇大發(fā)作(>Ⅲ級)發(fā)生情況。發(fā)作持續(xù)1 h后,頸椎脫臼處死動物并斷頭取腦,采用液相色譜-質譜聯用法(LC-MS)檢測海馬組織中的谷氨酸(Glu)、γ-氨基丁酸(GABA)、五羥色胺(5-HT)。結果 模型組癲癇發(fā)作Ⅲ級2只、Ⅳ級7只、Ⅴ級1只,癲癇大發(fā)作8只;VPA組Ⅲ級6只、Ⅳ級3只、Ⅴ級1只,共4只達到大發(fā)作;BBH1組Ⅲ級3只、Ⅳ級6只、Ⅴ級1只,7只大發(fā)作;BBH2組Ⅱ級1只、Ⅲ級6只、Ⅳ級3只、Ⅴ級1只,癲癇大發(fā)作4只。BBH2組小鼠癲癇發(fā)作達到Ⅲ級以上的數量與模型組相比,P均<0.05。模型組、VPA組、BBH1組、BBH2組癲癇發(fā)作潛伏期分別為(142.4±68.4)、(237.5±132.6)、(246.9±59.8)、(260.5±52.4)s,BBH1組、BBH2組癲癇發(fā)作潛伏期較模型組延長(P均<0.05)。VPA組海馬組織中GABA表達水平高于模型組(P<0.05)。模型組Glu/GABA高于生理鹽水組(P<0.05);VPA組Glu/GABA低于模型組(P<0.05);BBH1組、BBH2組Glu/GABA低于模型組,但差異無統計學意義。BB1組Glu/5-HT低于模型組(P<0.05)。結論 BBH預處理有助于降低小鼠癲癇發(fā)作分級,延長癲癇發(fā)作潛伏期,其中50 mg/kg劑量效果優(yōu)于25 mg/kg劑量;BBH的抗癲癇機制可能與調節(jié)海馬組織內神經遞質水平有關。
小檗堿;癲癇;神經遞質;谷氨酸;γ-氨基丁酸;五羥色胺;動物實驗
癲癇是慢性反復發(fā)作性短暫腦功能失調綜合征,以腦神經元異常放電引起反復癇性發(fā)作為特征[1]。目前癲癇的發(fā)病機制仍不完全清楚[2,3],一般認為遺傳、中樞神經系統感染、惡性腫瘤、腦血管疾病、先天及圍生期異常、顱腦損傷、寄生蟲病等都是癲癇的可能致病因素[4],免疫和細胞信號通路改變、神經遞質改變、神經膠質細胞改變、神經元形態(tài)和功能異常、離子通道異常都可能參與癲癇的發(fā)病過程[5,6]。癲癇的臨床治療頗為棘手,一般首選藥物治療,目前臨床常用的抗癲癇藥物[如丙戊酸鈉(VPA)等]各有不足。如VPA治療過程中常會出現腹瀉、消化不良、惡心、嘔吐、胃腸道痙攣、月經周期改變等不良反應,還可出現血小板減少引起紫癜、出血時間延長、肝功能損傷及不可逆的聽力損壞等嚴重不良后果。這些均在一定程度上限制了藥物的應用。小檗堿又稱黃連素,是一種異喹啉生物堿,用藥后組織分布廣泛[7]。研究[8]表明小檗堿對癲癇發(fā)作有抑制作用,但具體作用機制尚不明確,也未形成系統的抗癲癇劑型和療法,未能在臨床上廣泛應用于癲癇的治療。本研究觀察了鹽酸小檗堿(BBH)預處理對青霉素鈉誘發(fā)小鼠癲癇發(fā)作程度、發(fā)作潛伏期的影響,并檢測了小鼠海馬組織中的谷氨酸(Glu)、γ-氨基丁酸(GABA)和五羥色胺(5-HT),以期探討小檗堿的抗癲癇作用機制,現報告如下。
1.1 實驗動物與主要材料 雄性清潔級昆明種小鼠50只,體質量18~20 g,由河北省實驗中心提供。小鼠飼養(yǎng)于普通環(huán)境,自由攝食飲水,經適應性飼養(yǎng)3 d后,按體質量隨機分為生理鹽水組、模型組、VPA組、BBH1組和BBH2組。注射用青霉素鈉,BBH,生理鹽水,API 4000 Q-Trap質譜儀,LC-30A液相色譜系統,Analysis1.6軟件,BS124S電子天平。
1.2 小檗堿預處理及癲癇誘導
1.2.1 藥物劑量選擇及給藥方式 在預實驗中,將注射10、20、40 mg/kg VPA的小鼠用于制作癲癇模型,觀察各組癲癇發(fā)作潛伏期并最終確定VPA給藥濃度為40 mg/kg(此組平均潛伏期最短);VPA組參考臨床及實驗室給藥方式,決定選擇腹腔注射給藥。預實驗中采用丙二醇、二甲亞砜溶解BBH,但因BBH在二者內溶解性低或溶劑毒性過大等原因放棄,最終選擇用25%β-環(huán)糊精作為小檗堿溶劑。預實驗發(fā)現50 mg/kg的BBH為實驗對象可耐受最大劑量,并顯示出一定效果,故選擇25、50 mg/kg的BBH用于實驗;BBH腹腔注射后實驗對象死亡率過高,故BBH組采用灌胃給藥。在安全性及控制癲癇發(fā)作方面,各組具有可比性。
1.2.2 藥物預處理及癲癇誘導 VPA組腹腔注射VPA 40 mg/kg,BBH1組以BBH 25 mg/kg灌胃,BBH2組以BBH 50 mg/kg灌胃,生理鹽水組和模型組分別以等量生理鹽水和β-環(huán)糊精灌胃。各組每天給藥1次,連續(xù)給藥3 d。至末次給藥次日,除生理鹽水組外,其余四組均腹腔注射青霉素鈉700萬IU/kg誘導癲癇。
1.3 癲癇發(fā)作分級評價及潛伏期觀察 根據Racine分級標準[5]評價癲癇發(fā)作的分級:無抽搐發(fā)作為0級;耳、面部抽搐為Ⅰ級;節(jié)律性點頭、無站立為Ⅱ級;肌陣攣伴雙前肢立起為Ⅲ級;肌陣攣伴有雙后肢立起或跳躍,或陣發(fā)性全身強直發(fā)作為Ⅳ級;頻繁的強直陣攣發(fā)作,失去體位控制,或持續(xù)30 min以上的強制陣攣發(fā)作為Ⅴ級。癲癇發(fā)作>Ⅲ級記為大發(fā)作。記錄各組小鼠從給藥到出現癲癇癥狀的潛伏期。
1.4 海馬組織中神經遞質含量測定 癲癇發(fā)作持續(xù)1 h后,頸椎脫臼處死動物并立即斷頭取腦,在冰上完整取出雙側海馬,稱重后剪碎,以10倍體積的甲醇/水在冰水浴下間斷勻漿,離心(5 000 r/min×5 min,4 ℃)后取上清與等體積甲醇充分混合,離心(12 000 r/min×10 min,4 ℃)后取上清液備用。采用液相色譜-質譜聯用法(LC-MS)檢測海馬組織中的Glu、GABA及5-HT。
2.1 癲癇發(fā)作級別 模型組癲癇發(fā)作均在Ⅲ級以上,其中Ⅲ級2只、Ⅳ級7只、Ⅴ級1只,癲癇大發(fā)作8只;VPA組Ⅲ級6只、Ⅳ級3只、Ⅴ級1只,共4只達到大發(fā)作;BBH1組Ⅲ級3只、Ⅳ級6只、Ⅴ級1只,7只達到大發(fā)作;BBH2組Ⅱ級1只、Ⅲ級6只、Ⅳ級3只、Ⅴ級1只,癲癇大發(fā)作4只。BBH2組小鼠癲癇發(fā)作達到Ⅲ級以上的數量與模型組相比,P均<0.05。
2.2 癲癇發(fā)作潛伏期 模型組、VPA組、BBH1組、BBH2組癲癇發(fā)作潛伏期分別為(142.4±68.4)、(237.5±132.6)、(246.9±59.8)、(260.5±52.4)s,BBH1組、BBH2組癲癇發(fā)作潛伏期較模型組延長(P均<0.05)。
2.3 海馬組織中Glu、GABA、5-HT表達比較 VPA組海馬組織中GABA表達水平高于模型組(P<0.05)。模型組Glu/GABA高于生理鹽水組(P<0.05);VPA組Glu/GABA低于模型組(P<0.05);BBH1組、BBH2組Glu/GABA低于模型組,但差異無統計學意義。BB1組Glu/5-HT低于模型組(P<0.05)。詳見表1。
表1 各組小鼠海馬組織中Glu、GABA、5-HT表達水平比較
注:與生理鹽水組相比,*P<0.05;與模型組相比,#P<0.05。
癲癇是大腦神經元突發(fā)性異常放電,導致短暫大腦功能障礙的一種慢性疾病。由于異常放電的起始部位、累及范圍和傳遞方式的不同,癲癇發(fā)作的臨床表現復雜多樣[9~11]。癲癇作為一種常見病和多發(fā)病,其治療方案的研究不斷進展,尤其是腦保護藥物的研究進展迅速。在癲癇動物模型制備中,青霉素是較早被公認的致癇物,它可以破壞大腦皮層興奮與抑制的平衡關系,削弱抑制性神經遞質的作用,進而引起癲癇發(fā)作[12,13]。本實驗中模型組小鼠癲癇發(fā)作均達Ⅲ級及以上,成功復制了急性小鼠癲癇模型。
在本實驗中,模型組癲癇發(fā)作Ⅲ級2只、Ⅳ級7只、Ⅴ級1只,癲癇大發(fā)作8只;VPA組Ⅲ級6只、Ⅳ級3只、Ⅴ級1只,共4只達到大發(fā)作;BBH1組Ⅲ級3只、Ⅳ級6只、Ⅴ級1只,7只大發(fā)作;BBH2組Ⅱ級1只、Ⅲ級6只、Ⅳ級3只、Ⅴ級1只,癲癇大發(fā)作4只。25、50 mg/kg的BBH不同程度地降低了小鼠癲癇發(fā)作級數,其中BBH2組癲癇發(fā)作級別明顯低于模型組;作為陽性對照,VPA組癲癇發(fā)作級別亦降低,效果與BBH2組接近。BBH1組、BBH2組癲癇發(fā)作潛伏期較模型組延長,表明小檗堿在一定劑量條件下具有延緩癲癇發(fā)作、減輕發(fā)作嚴重程度的效果。
有研究認為引起癲癇發(fā)作的神經元反復陣發(fā)性過度放電與腦內興奮性和抑制性神經遞質的比例失衡有關,其中Glu、GABA、5-HT尤其受到關注,本實驗也選擇這三種神經遞質進行檢測。生理狀態(tài)下,Glu是中樞系統重要的興奮性神經遞質,而GABA和5-HT則是中樞神經系統重要的抑制性神經遞質。它們與相應受體進行作用會影響神經元的內外離子流動平衡進而影響神經元興奮性,三者水平失衡與癲癇發(fā)作有密切關系。GABA的受體分為A、B、C三型,其中A型屬于配體門控的氯離子通道,其興奮可以產生抑制性突觸后電位而抑制癲癇發(fā)作[14],故GABA減少在癲癇發(fā)作中可能有重要作用[15]。同理,5-HT的中樞抑制作用也有可能抑制癲癇發(fā)作,雖然可見其水平與BBH劑量有關,但無統計學差異,可能需要通過增大樣本量進行驗證。Glu的受體包括離子型與代謝型受體,Glu大量蓄積并觸發(fā)離子型受體會使突觸興奮性過度增加而誘發(fā)癲癇[16]??傊?,中樞神經系統內Glu的增加和GABA的減少均有可能增大癲癇發(fā)作的風險。姚君茹等[17]認為Glu等神經遞質早期胞內大量合成并釋放可能是癲癇發(fā)作的重要誘因。
研究[18,19]提示小檗堿具有調節(jié)腦內神經遞質含量、影響神經元興奮性的作用,而Lin等[20]則提出小檗堿具有增加腦內抑制性神經遞質GABA表達的作用。本實驗結果顯示,模型組Glu/GABA高于生理鹽水組,說明癲癇狀態(tài)下Glu/GABA平衡被打亂。VPA組海馬組織中GABA水平高于模型組,Glu/GABA低于模型組,提示VPA的抗癲癇作用可能與調節(jié)Glu/GABA有關。BBH1組Glu/5-HT低于模型組,推測小檗堿可抑制興奮性遞質與海馬區(qū)受體結合,開放鈣通道、減少鈣內流,進而減輕細胞器損傷,減少細胞膜不穩(wěn)定的發(fā)生機會,最終達到降低神經元興奮性、提高癲癇發(fā)生閾值的目的[21]。我們還發(fā)現,BBH1組、BBH2組Glu/GABA低于模型組,但差異無統計學意義,這可能與納入樣本量較小有關。我們推測小檗堿有助于降低興奮性遞質與抑制性遞質的比值,可能對減少癲癇發(fā)生頻率、減輕發(fā)作嚴重程度有重要意義。就本實驗而言,可認為BBH 50 mg/kg對延長癲癇發(fā)作潛伏期和降低發(fā)作級別更有效,具體更加精確的劑量有待進一步研究。至于小檗堿通過何種方式影響Glu與GABA的代謝,仍是今后進一步研究的方向。
[1] Ngugi AK, Bottomley C, Fegan G, et al. Premature mortality in active convulsive epilepsy in rural Kenya: causes and associated factors[J]. Neurology, 2014,82(7):582-589.
[2] Pittau F, Fahoum F, Zelmann R, et al. Negative BOLD response to interictal epileptic discharges in focal epilepsy[J]. Brain Topogr, 2013,26(4):627-640.
[3] Khaing M, Lim KS, Tan CT. Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report[J]. Epileptic Disord, 2014,16(3):370.
[4] Hildebrand MS, Dahl HH, Damiano JA, et al. Recent advances in the molecular genetics of epilepsy[J]. J Med Genet, 2013,50(5):271-279.
[5] 劉明剛,朱權,孫美珍,等.血腦屏障通透性在外傷性癲癇大鼠中的作用機制研究[J].中西醫(yī)結合心腦血管病雜志,2013,11(10):1244-1247.
[6] Mishra V, Shuai B, Kodali M, et al. Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation[J]. Sci Rep, 2015,5:17807.
[7] Tan XS, Ma JY, Feng R, et al. Tissue distribution of berberine and its metabolites after oral administration in rats[J]. PLoS One, 2013,8(10):e77969.
[8] Bhutada P, Mundhada Y, Bansod K, et al. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice[J]. Epil Behav, 2010,18(3):207.
[9] 蔡秀俠,宋昌鵬,牛艷花.卡馬西平聯合丙戊酸鈉治療早期癲癇的效果觀察[J].中國實用神經疾病雜志,2015,5(7):101-102.
[10] 曹利,戴艷萍,李軍,等.神經內科癲癇病臨床診斷及治療效果探討[J].中外醫(yī)療,2015(8):114-115.
[11] 蘇艷,趙世剛,楊蘊天,等.癲癇病因及發(fā)病機制[J].腦與神經疾病雜志,2016,24(4):262-264.
[12] 黃小平,歐陽國,丁煌,等.黃芪甲苷與三七有效成分配伍對小鼠腦缺血再灌注后神經細胞凋亡和內質網應激的影響[J].中草藥,2015,46(15):2257-2264.
[13] 劉春,宋成云,王旭,等.不同劑量青霉素致SD大鼠癲癇的實驗研究[J].交通醫(yī)學,2011,25(2):126-128.
[14] Pavlov I, Walker MC. Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy[J]. Neuropharmacology, 2013,69(6):55-61.
[15] 肖文,李臣鴻.GABA緊張性抑制電流及其對癲癇的功能性研究[J].科教導刊(下旬),2016(12):50-51.
[16] Cho CH. New mechanism for glutamate hypothesis in epilepsy[J]. Front Cellu Neurosci, 2013,7(7):127.
[17] 姚君茹,潘三強,呂來清,等.慢性癲癇模型大鼠腦谷氨酶神經元的變化[J].解剖科學進展,2004,10(1):26-29.
[18] Peng WH, Lo KL, Lee YH, et al. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice[J]. Life Sciences, 2007,81(11):933-938.
[19] Ikhyun K, Hyunsook C, Kunseong S, et al. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson's disease[J]. Neuroscience Letters, 2010,486(1):29.
[20] Lin TY, Lin YW, Lu CW, et al. Berberine inhibits the release of glutamate in nerve terminals from rat cerebral cortex[J]. PLoS One, 2013,8(6):e67215.
[21] Sivam SP, Hudson PM, Tilson HA, et al. GABA and dopamine interaction in the basal ganglia: dopaminergic supersensitivity following chronic elevation of brain gamma-aminobutyric acid levels[J]. Brain Res, 1987,412(1):29.
Effects of berberine pretreatment on degree and incubation period of epileptic seizure in mice with penicillin-induced epilepsy
LIUZeye,XIANGXuerui,FANMengmeng,XIANGTing,FANGChunyun,JIANGPing
(HebeiMedicalUniversity,Shijiazhuang050017,China)
Objective To observe the effects of berberine (BBH) pretreatment on the degree and the incubation period of epileptic seizure induced by penicillin in mice and to discuss the mechanism. Methods After adaptive feeding of 3 days, fifty male Kunming mice were randomly divided into five groups including the saline group, model group, VPA group, BBH 1 group, and BBH 2 group. The mice in the VPA group were given intraperitoneal injection of 40 mg/kg VPA , mice in the BBH 1 group were given 25 mg/kg BBH by gavage and BBH 2 group with 50 mg/kg BBH in the same way. The saline and model groups were given the same volume of saline or 25% β-cyclodextrin, and all the groups were administered once a day for three days. Up to the next day of the last time, except for the saline group, all the other four groups were given an intraperitoneal injection of 7×106IU/kg penicillin to induce epileptic seizure. We recorded the incubation period for each group of mice from administration to the onset of epilepsy. We evaluated the onset classification byRacine criterion and recorded the seizure attack (more than III-grade). Animals showing seizure attack for 1 h were killed by dislocation of cervical vertebra. Brain tissues were taken out and processed for further estimation, we used LC-MS to test the content of glutamic acid (Glu), γ-aminobutyric acid (GABA) and serotonin (5-HT). Results As for the seizures, there were 2 cases of class Ⅲ, 7 cases of class Ⅳ, 1 case of class V, and 8 cases of grand mal epilepsy, respectively, in the model group; in the VPA group, they were 6, 3, 1, and 4; in the BBH 1 group, they were 3, 6, 1, and 7; in the BBH 2 group, there was i case of class II, 6 cases of class Ⅲ, 3 cases of class Ⅳ, 1 case of class V, and 4 cases of grand mal epilepsy. The number of mice with seizures more than class Ⅲ in the BBH 2 group was significantly different as compared with that of the model group (allP<0.05). The incubation period of the model group, VPA group, BBH 1 and BBH 2 groups were (142.4±68.4),(237.5±132.6),(246.9±59.8), and (260.5±52.4)s . The incubation period of the BBH 1 and BBH 2 groups was longer than that of the model group (allP<0.05). The level of GABA in the VPA group was higher than that of the model group (P<0.05). The Glu/GABA of the model group was higher than that of the saline group (P<0.05). The Glu/GABA of the VPA group was lower than that of the model group (P<0.05). The levels of Glu/GABA in the BBH1 group and the BBH2 group were lower than that of the model group, but the difference was not statistically significant. The Glu/5-HT in the BBH1 group was lower than that of the model group (P<0.05). Conclusions The BBH pretreatment helps to reduce the scale of epileptic seizures in mice and prolong the incubation period. Among them, the overcome of 50 mg/kg dose is better than 25 mg/kg. The anti-epileptic mechanism of BBH may be associated with regulating neurotransmitter levels in the hippocampus.
berberine; epilepsy; neurotransmitter; glutamic acid; γ-aminobutyric acid; serotonin; animal experiment
河北醫(yī)科大學大學生創(chuàng)新計劃項目(USIP2016045)。
劉則燁(1995-),男,本科,主要研究方向為神經藥理學。E-mail:1482080766@qq.com
江平(1973-),女,博士,副教授,主要研究方向為神經藥理學。E-mail:jp_sjz2002@163.com
10.3969/j.issn.1002-266X.2017.27.005
R741.05;R965.1
A
1002-266X(2017)27-0019-04
2017-03-15)