宋明水,向奎,張宇,蔡攀,劉建磊,楊仁超
1.中國石化勝利油田勘探管理中心,山東東營 257017 2.山東科技大學地球科學與工程學院,山東青島 266590
泥質(zhì)重力流沉積研究進展及其頁巖油氣地質(zhì)意義
——以東營凹陷古近系沙河街組三段為例
宋明水1,向奎1,張宇1,蔡攀1,劉建磊1,楊仁超2
1.中國石化勝利油田勘探管理中心,山東東營 257017 2.山東科技大學地球科學與工程學院,山東青島 266590
頁巖油氣的勘探開發(fā)推動了泥頁巖沉積機理研究的快速發(fā)展,使得細粒物質(zhì)的搬運和沉積成為當今沉積學界和油氣工業(yè)界共同關(guān)注的焦點。盡管海洋環(huán)境下的泥質(zhì)重力流沉積研究成果頻見報道,但有關(guān)我國新生代湖泊環(huán)境中的泥質(zhì)重力流沉積尚未引起沉積學界的關(guān)注。故本文在國內(nèi)外相關(guān)文獻調(diào)研基礎上,以巖芯觀察和薄片鑒定為重點,分析了渤海灣盆地東營凹陷古近系沙河街組三段湖相泥質(zhì)重力流沉積特征;探討了湖相泥質(zhì)重力流沉積的形成機制;以期為湖泊沉積學研究和陸相頁巖油氣開發(fā)提供參考。研究發(fā)現(xiàn),東營凹陷古近系沙河街組三段發(fā)育泥質(zhì)塊體流、泥質(zhì)碎屑流、泥質(zhì)濁流及泥質(zhì)異重流等多種重力流沉積類型;泥質(zhì)滑塌巖、泥質(zhì)碎屑巖、泥質(zhì)濁積巖和泥質(zhì)異重巖在時空上可以共生共存。認為泥質(zhì)沉積物可以在動蕩水體和較強水動力條件下沉淀;泥質(zhì)重力流沉積在深水沉積區(qū)占有重要地位;泥質(zhì)重力流對于泥頁巖中的粗粒碎屑物質(zhì)、有機質(zhì)的搬運和沉積以及有機質(zhì)的埋藏起到重要作用,因而具有重要的非常規(guī)油氣地質(zhì)意義。
重力流沉積細粒物質(zhì);泥質(zhì)碎屑巖;泥質(zhì)濁積巖;泥質(zhì)異重巖;非常規(guī)油氣;東營凹陷;古近系
隨著頁巖油氣開發(fā)的熱忱不斷高漲[1-2],細粒物質(zhì)沉積學逐漸成為當今沉積學研究的前沿領域和非常規(guī)油氣工業(yè)界的關(guān)注焦點[3-7]。大型沉積盆地中的泥巖、頁巖、油頁巖等細粒沉積巖規(guī)模巨大,不僅可作為常規(guī)油氣的烴源巖,而且細粒沉積巖具有巨大的頁巖油氣、油頁巖等非常規(guī)油氣資源潛力[8-9]。細粒沉積巖中發(fā)育多種重力流沉積,但長期以來的研究多聚焦于致密砂巖儲層[10-12];有關(guān)細粒沉積巖的研究剛剛起步,泥、頁巖中的重力流事件沉積研究尤為薄弱,針對我國中、新生代陸相湖盆細粒沉積巖中的重力流沉積事件研究,必將隨著非常規(guī)油氣開發(fā)和細粒物質(zhì)沉積學研究的深入受到更多的關(guān)注。本文在國內(nèi)外文獻調(diào)研的基礎上,以渤海灣盆地東營凹陷古近系沙河街組三段湖相細粒沉積體系為例,探索了湖相泥質(zhì)重力流沉積的形成機制,以期為湖相泥頁巖沉積學研究和非常規(guī)油氣勘探提供理論參考。
1.1 細粒沉積物搬運—沉積機理
細粒沉積物是指粒徑小于62 μm的黏土級和粉砂級物質(zhì),其成分主要包含黏土礦物、粉砂、碳酸鹽、有機質(zhì)等[3,13-14]。細粒沉積巖分布廣泛,約占沉積巖的三分之二[3,15]。然而,細粒物質(zhì)的沉積、成巖過程極其復雜,是當今沉積學界研究相對薄弱的領域[13]。
1.1.1 泥質(zhì)沉積物可在動蕩水體環(huán)境中搬運和沉積
傳統(tǒng)觀點認為泥質(zhì)只能在靜水環(huán)境中垂向沉降,但這種認識早已被突破[3,16-20]?,F(xiàn)代研究表明,大多數(shù)直徑小于10 μm的黏土顆粒以絮凝物形式沉積,絮凝過程有助于大量泥質(zhì)沉積物在海洋環(huán)境中的長距離搬運[21-22];而直徑大于10 μm的黏土顆粒則主要以單顆粒形式沉降[23]。貌似單調(diào)的紋層或塊狀泥巖實際上是以集合顆粒的形式在動蕩環(huán)境中被搬運和沉積而成[4,17,19]?,F(xiàn)代河口的測量表明,大量的大直徑絮凝物(一般0.2~0.7 mm,或>1 mm)迅速出現(xiàn)在最大流速之后,且能穩(wěn)定存在于高速流體之中[24];一些泥巖含有大量黏土礦物集合顆粒,其粒徑變化從黏土級、粉砂級至粗砂級[4,25-26];水槽實驗也表明,弱固結(jié)的泥(含水約85%)可以被侵蝕成為扁平的泥礫[26];在相當于搬運細砂的流速條件下,泥質(zhì)集合顆??梢孕纬山诲e層理[27]。
上述研究均表明泥質(zhì)沉積物可在動蕩環(huán)境下以集合顆粒的形式被搬運和沉積,這一新認識對于細粒沉積研究有重要的推動作用。但細粒物質(zhì)沉積動力學過程復雜,目前還沒有較為理想的沉積模式[1]。隨著研究的不斷深入,更多的沉積環(huán)境因素將被引入到相關(guān)研究領域;研究范疇將拓展為海洋與陸相環(huán)境兼顧、現(xiàn)代沉積與地史記錄并重的格局。
1.1.2 搬運—沉積細粒物質(zhì)的流體類型
泥質(zhì)濁流觀點早在1978年被Piper提出[28],他將鮑馬序列的E段劃分為遞變紋層段、無紋層遞變段及塊狀段,并建立了泥質(zhì)濁積巖模式;其主要特征為粒度遞變、底部突變或與濁積砂巖漸變。其后的學者開展了廣泛的研究,例如:南盤江印支期前陸盆地中發(fā)現(xiàn)的泥質(zhì)濁積巖[29]、東營凹陷古近紀湖泊沉積中交錯層理泥巖及塊狀濁積泥巖[13]、南海珠江口盆地細粒物質(zhì)組成的低密度濁流沉積[30]以及北亞平寧前陸盆地晚漸新世源自遠端細粒濁流沉積泥巖[31]??梢姖崃髟诤Q蟆⒑喘h(huán)境中均可作為搬運—沉積細粒物質(zhì)的主要營力。
Kirbyetal.[32]將細粒沉積物質(zhì)濃度大于10 g/L的水下底流定義為泥質(zhì)流(fluid mud),其內(nèi)部含有黏土粒級、粉砂粒級的顆粒及一定量的有機質(zhì);文獻[18,33]提出了近濱、潮汐和浪控背景下的泥質(zhì)流沉積的鑒定標志。而在許多陸架環(huán)境中受重力驅(qū)動的薄層坡移泥漿流(slurry flow)中,泥質(zhì)被風暴浪產(chǎn)生的紊流支撐,而非自懸浮[34-37];這里的泥漿流是指濁流和碎屑流之間的過渡流體,其沉積物含有10%~35%的泥質(zhì)雜基,且為顆粒支撐[38]。
現(xiàn)已知的將泥質(zhì)搬運至盆地的流體還有異輕流(hypopycnal flow)、異重流(hyperpycnal flow)、風暴激發(fā)的弛緩流(storm-setup relaxation flows)以及重力驅(qū)動液化泥流(gravity-driven fluidized muds),但風或潮汐誘發(fā)的底流循環(huán)可能是更大范圍陸表海泥質(zhì)的搬運營力[39]。盡管針對泥質(zhì)沉積流體的研究取得諸多進展,但理解泥質(zhì)沉積物的搬運仍存在較大難度[4]。
上述流體的定義和內(nèi)涵之間存在劃分標準不一、交叉重疊等不足。國外的研究主要針對現(xiàn)代海洋沉積,而目前我國陸相湖盆細粒沉積體系的研究仍較薄弱,但也不乏針對這一問題的深入思考和有益探索[13,40-41]。針對我國廣泛發(fā)育的中、新生代陸相沉積盆地,急需剖析典型細粒沉積巖組構(gòu)特征,揭示陸相湖盆細粒物質(zhì)的沉積機理、分布規(guī)律與主控因素,建立湖盆細粒沉積體系成因模式,從而推動湖泊沉積學研究和陸相致密油、頁巖油氣的發(fā)展。
1.2 水下沉積物重力流研究新進展
1.2.1 泥質(zhì)重力流沉積
細粒沉積物是深水重力流的重要組分,暨重力是細粒物質(zhì)遠距離搬運的主要營力?;聣蔚钠屏?、三角洲前緣斜坡失穩(wěn)以及源自三角洲的沉積物重力流在水下分流河道和侵蝕溝谷充填方面扮演著重要角色[42]。細粒沉積物波可在受限的峽谷—水道環(huán)境中形成[6],而且在水道維持方面起重要作用[43]。富泥的沉積層特征主要取決于滑坡的規(guī)模和位置、分流河口的位置、盆地地形以及沉積速率[42]。因此,富泥的重力流將影響湖相濁積水道和朵葉體的建造和改造。
近年來,在陸架泥巖中識別了波浪增強沉積物重力流(wave-enhanced sediment gravity flow)沉積及其明顯的“波狀—紋層—均質(zhì)層”三層結(jié)構(gòu)[4,22],表明泥巖也可發(fā)育波狀層理。由于粒度小、觀察難度大以及受實驗條件的限制,細粒物質(zhì)的沉積作用仍是沉積學研究的薄弱領域[13],鑒別泥巖微構(gòu)造(microstructure)仍存在較大難度[4],對深海盆地—平原的水道—朵葉體詳細的內(nèi)部結(jié)構(gòu)仍知之甚少[7]。
盡管現(xiàn)代陸棚上廣泛發(fā)育的泥質(zhì)重力流沉積已有諸多報道[4,25-26,44-45],但地史中泥質(zhì)重力流沉積的研究范例并不多,中、新生代湖相三角洲至深湖背景下的泥質(zhì)重力流沉積研究尤為薄弱。對于泥質(zhì)巖、粉砂巖等細粒沉積巖的微構(gòu)造研究,需要開展毫米級、亞毫米級等細小尺度的觀測和精細描述;并在此基礎上,應用當代細粒沉積學新理論、新技術(shù)對其加以合理解釋、分類及成因研究。
1.2.2 異重流沉積研究新進展
異重流作為一種將大量細粒沉積物搬運至深水盆地的作用機制,近年來引起了廣泛關(guān)注[37,46-52]。異重流是洪水期河流注入較小密度的水體底部而形成的沿盆地底部流動的濁流[53-56]。異重流的發(fā)生主要受控于構(gòu)造和氣候[57-58],因無需大量沉積物的積累和觸發(fā)機制,異重流的發(fā)生頻率比碎屑流和濁流更高[59-62],故地史中的異重巖將比此前預測的多得多[4,63]。
異重巖的主要特征是逆粒序段—正粒序段成對出現(xiàn),逆粒序—正粒序段的轉(zhuǎn)換常表現(xiàn)為層內(nèi)微侵蝕面,其頂、底接觸關(guān)系以突變?yōu)橹鱗53-55]。由于其巨大的懸浮載荷及其下潛、流動過程中存在著侵蝕作用,異重流可以保持懸浮載荷濃度并做長距離流動[64-65],因而,異重巖的分布可直達盆地中心深水區(qū)。例如,松遼盆地中心嫩江組具前積結(jié)構(gòu)的富泥沉積被認為是高懸浮載荷河流入湖形成的泥質(zhì)三角洲沉積[66],其作用機制應與異重流密切相關(guān)。
古近紀渤海灣斷陷盆地構(gòu)造極其活躍,斷裂系統(tǒng)發(fā)育,坡降較大,氣候濕潤,物源區(qū)近,臨近物源區(qū)洪水河口,半咸水湖盆湖水密度較低,這些地質(zhì)背景特征均有利于異重流的發(fā)生,但異重流形成的細粒沉積并未引起足夠的重視。隨著細粒物質(zhì)沉積學認知的進步和研究的深入,泥質(zhì)異重巖必將受到沉積學家的密切關(guān)注。
1.2.3 水下沉積物重力流類型及其轉(zhuǎn)化
盡管水下沉積物重力流研究已有許多經(jīng)典之作,但對于重力流與其沉積特征之間的關(guān)系仍然知之甚少[56,58,67-69],在細粒沉積流體性質(zhì)方面的認識尤其薄弱。當受地震、火山、風暴或河流洪水等激發(fā),斜坡失穩(wěn)并產(chǎn)生重力流,將形成滑塌巖、濁積巖和碎屑巖[61,69-70]。水下重力流之間的轉(zhuǎn)化是普遍存在的[65],碎屑流與濁流可相互轉(zhuǎn)化;異重流也可轉(zhuǎn)化為碎屑流,或誘發(fā)斜坡失穩(wěn)而產(chǎn)生碎屑流和濁流[71];非黏性的濁流能夠影響?zhàn)ば缘能浤喑练e底質(zhì),侵蝕產(chǎn)生泥質(zhì)碎屑,進而形成泥質(zhì)碎屑流[72]。因此,異重巖可與濁積巖、碎屑巖共存[12]。
重力流沉積類型多樣,如何鑒別其類型,如何根據(jù)其類型及組合分析流體性質(zhì)的轉(zhuǎn)化成為重力流沉積學研究的關(guān)鍵。本文以渤海灣盆地東營凹陷沙三段為例,分別從地質(zhì)背景、沉積物特征、成因機制及其非常規(guī)油氣地質(zhì)意義等方面展開討論,力圖為相關(guān)領域的研究提供參考。
渤海灣盆地東營凹陷古近系沙河街組自下而上可分為沙四段、沙三段、沙二段、沙一段;其中沙三段是烴源巖和巖性圈閉最發(fā)育的層段。古近紀東營凹陷是一個大型的寬緩箕狀凹陷[73],其東西長90 km,南北寬65 km ,面積約5 700 km2。研究區(qū)主要位于東營凹陷中—東部(圖1)。在古近紀區(qū)域拉張的地質(zhì)背景下,研究區(qū)內(nèi)發(fā)育一系列NEE向正斷層,斷面整體向北傾斜,造就了北陡南緩的盆地地形特點,而這種古地貌特征控制了東營凹陷的沉積格局[74]。沙河街組主要發(fā)育湖泊、三角洲沉積體系,來自盆地東部的東營三角洲和永安三角洲分別自東部、北東部向湖盆中心進積[75];重力流沉積自三角洲前緣至湖盆中心均有發(fā)育[76]。
3.1 泥質(zhì)滑塌變形構(gòu)造(泥質(zhì)滑塌巖)
泥質(zhì)沉積物滑塌變形構(gòu)造在東營凹陷沙三段三角洲前緣—湖泊沉積中較為常見(圖2)。包卷變形構(gòu)造的物質(zhì)成分以泥質(zhì)沉積物為主,混有一定量的粉砂或細砂。不同成分、顏色的條帶凸顯了變形構(gòu)造特征。深灰色泥巖與淺灰色的粉砂質(zhì)泥巖呈現(xiàn)彎曲變形一致的條帶狀,變形層段厚度約12 cm(圖2A);深灰色泥巖中包含淺灰色扭曲狀粉砂質(zhì)泥巖條帶和團塊,變形層段厚度約18 cm,而變形構(gòu)造底部可見深灰色頁巖水平層理,且未變形(圖2B);或深灰色泥巖中局部發(fā)生變形,淺灰色條帶寬度不一,部分為后期方解石充填,變形層段厚度約9 cm(圖2C);深灰色泥巖發(fā)生彎曲變形,淺灰色細砂巖脈呈不規(guī)則狀貫穿其中(圖2D);灰色泥質(zhì)粉砂巖夾彎曲狀深灰色泥巖條帶,厚度約6 cm,頂部紋層未變形(圖2E);灰色粉砂質(zhì)泥巖中部夾一層褐紅色泥巖,呈現(xiàn)緊閉的平臥褶皺,厚度約3 cm(圖2F)。
渤海灣盆地東營凹陷古近系沙河街組沙三段泥質(zhì)巖變形構(gòu)造特征是其成因分析的重要基礎?;冃螛?gòu)造系泥質(zhì)沉積物在斜坡失穩(wěn)的情況下[21,71],沿斜坡向下滑動,由于底部的摩擦大于中上部,滑塌體中上部在慣性作用下持續(xù)向前運動。由于在運動過程中,沉積物富含水、呈塑性狀態(tài),且層內(nèi)連續(xù)性一般未被破壞。沉積體在發(fā)生滑動、滾動或變形過程中,砂質(zhì)、粉砂質(zhì)沉積物會被卷入、混合并發(fā)生變形?;蛘撸瑝K體在運動過程中,軟沉積物受到擾動,孔隙水產(chǎn)生液化,形成砂巖脈等液化變形構(gòu)造。在三角洲前緣地帶,沉積速率一般較快,來自物源區(qū)的大量碎屑物質(zhì)堆積于前三角洲和湖泊相泥巖之上,孔隙流體壓力逐漸增大;使得三角洲前緣地帶極易發(fā)生變形。其一,當富含孔隙水的泥巖難以承受上部沉積載荷時,超高孔隙壓力會自發(fā)釋放[60],引起三角洲前緣斜坡上的松散沉積物發(fā)生滑塌變形;其二,當受到地震、火山、洪水、風浪等外部作用疊加,也可誘發(fā)三角洲前緣斜坡失穩(wěn),產(chǎn)生滑塌變形。
圖1 渤海灣盆地東營凹陷構(gòu)造地質(zhì)簡圖(據(jù)文獻[76])Fig.1 Structural sketch map of Dongying sag in the Bohai Bay Basin (after reference[76])
圖2 東營凹陷沙三段滑塌變形構(gòu)造泥質(zhì)巖A. 史122井,3 346.18 m;B. 史126井,3 387.76 m;C. 營691井,3 008.92 m;D.史134井,3 058.60 m;E. 營691井,2 856.7 m;F. 王541井,3 053.40 mFig.2 Slump deformations of mudstones in the Shahejie Formation Sha 3 member in the Dongying sag
3.2 泥質(zhì)碎屑構(gòu)造(泥質(zhì)碎屑巖)
泥質(zhì)碎屑構(gòu)造是指泥質(zhì)沉積物中含有大量先期沉積并經(jīng)過再改造的沉積構(gòu)造,巖石基質(zhì)為泥質(zhì)(或粉砂質(zhì)泥),同時含大量泥質(zhì)巖碎屑,巖石中的總泥質(zhì)含量體積比≥50%。泥質(zhì)碎屑結(jié)構(gòu)與砂質(zhì)碎屑巖的區(qū)別在于:前者泥質(zhì)含量高(體積比≥50%),基質(zhì)以泥質(zhì)為主;后者泥質(zhì)含量多低于巖石體積比30%,最多不超過巖石體積比50%,基質(zhì)為砂質(zhì)顆粒。它們的相同之處是都含有泥質(zhì)碎屑。具有泥質(zhì)碎屑構(gòu)造的泥質(zhì)沉積巖,稱之泥質(zhì)碎屑巖(狹義)。此處僅限于具有泥質(zhì)碎屑結(jié)構(gòu)的泥質(zhì)沉積巖;含有一定泥質(zhì)、以陸源礫石—砂級顆粒為主的粗碎屑巖不在此范疇。
深灰色泥質(zhì)碎屑5~60 mm不等,呈現(xiàn)不規(guī)則碎片狀雜亂分布于淺灰色粉砂質(zhì)泥組成的基質(zhì)之中,泥質(zhì)碎屑可呈點或線狀接觸;泥質(zhì)碎屑向上礫徑變大,單層厚度大于20 cm(圖3A)?;虼罅可罨疑噘|(zhì)碎屑以不規(guī)則狀、撕裂狀散布于淺灰色泥質(zhì)粉砂基質(zhì)之中,泥質(zhì)粉砂沉積物可見液化變形特征,單層厚度大于10 cm(圖3B)。此外,泥質(zhì)沉積物液化變形構(gòu)造常見?;疑鄮r中,貫穿不規(guī)則彎曲狀砂巖和粉砂巖細脈(圖3C);或灰色泥巖中分布大量的扭曲狀粉砂巖條帶,可見球枕構(gòu)造(圖3D),淺灰色粉砂質(zhì)沉積物將泥質(zhì)分割為不規(guī)則條帶或碎片。
泥質(zhì)碎屑構(gòu)造的成因可以有兩種解釋:其一,泥質(zhì)沉積物經(jīng)滑塌、崩解和變形而形成泥質(zhì)碎屑流,泥質(zhì)碎屑流在盆地斜坡腳至盆地平原之間發(fā)生快速堆積而成;其二,由重力流侵蝕堤岸系統(tǒng)的泥巖(或具有較強黏結(jié)性的泥質(zhì)沉積物)產(chǎn)生的泥質(zhì)碎屑混入重力流沉積體系,形成泥質(zhì)碎屑結(jié)構(gòu)。在未固結(jié)成巖的泥質(zhì)沉積物被繼續(xù)搬運的過程中,變形構(gòu)造常見。由于密度、含水飽和度和黏度的不同,不同成分的沉積物之間發(fā)生復雜的調(diào)整,導致巖石變形、崩解、混合,造成巖性的強非均質(zhì)性[67]。泥質(zhì)巖的液化變形構(gòu)造可以發(fā)生于原地,也可以發(fā)生于塊體搬運過程之中。砂質(zhì)、粉砂質(zhì)沉積物的液化變形與貫穿侵入可加劇泥質(zhì)沉積物的碎片化過程和沉積物的混雜作用[77]。
3.3 泥質(zhì)正粒序構(gòu)造(泥質(zhì)濁積巖)
東營凹陷沙三段泥質(zhì)巖常見正粒序結(jié)構(gòu)(圖4),泥質(zhì)巖下部顏色淺、與泥質(zhì)粉砂巖呈漸變過渡;上部泥質(zhì)較純,泥巖顏色較深,反映粒度、泥質(zhì)含量、有機質(zhì)含量和沉積速率的逐漸變化。這種粒度的變化和沉積物組分的變化在顯微鏡下具有清晰的反映(圖5A,B),下部粉砂質(zhì)石英顆粒含量高,向上粒度變細,泥質(zhì)、有機質(zhì)含量逐漸增加。厚層的濁積泥巖的上部,可見火焰狀構(gòu)造;濁積泥巖厚度變化較大,從1 mm~3 cm不等(圖4A)。正粒序泥巖多呈薄層狀與濁積砂巖、粉砂巖共生,形成韻律互層結(jié)構(gòu),厚度介于1~5 mm之間(圖4B)。或3 mm~ 1 cm厚的薄層濁積泥巖覆蓋于明顯的正粒序砂巖之上(圖4C)。
濁積泥巖的快速堆積與欠壓實脫水,在后期的砂質(zhì)沉積物覆蓋之后,由于二者的反密度梯度,極易發(fā)生軟沉積物變形構(gòu)造[69]。細粒沉積物在濁流中以懸浮方式被搬運,當流體紊流度降低時,懸浮沉積物依次沉降,故正粒序是濁積巖最顯著的特征[61]。正粒序泥巖與濁積砂巖頻繁共生,每一個細砂巖—粉砂巖—泥質(zhì)巖的正粒序組合系同一次濁流事件的沉積產(chǎn)物,故與濁積砂巖伴生的泥質(zhì)巖應歸于濁積泥巖的范疇。
圖3 東營凹陷沙三段泥質(zhì)碎屑巖與液化變形構(gòu)造A.史122井,3 402.8 m;B.史126井,3 323.16 m;C.營691井,2 684.12 m;D.史115井,3 036.61 m。Fig.3 Mudstone debrites and liquified deformation structures in the Shahejie Formation Sha 3 member in the Dongying sag
圖4 東營凹陷沙三段泥質(zhì)濁積巖A.史122井,3 422.08 m;B.王541井,3 051.10 m;C.王541井,3 057.50 m;DB.碎屑流砂巖;FS.火焰狀構(gòu)造;SSDS.軟沉積物變形構(gòu)造;TM.濁積泥巖;TS.濁積砂巖Fig.4 Mudstone turbidites in the Shahejie Formation Sha 3 member in the Dongying sag
圖5 東營凹陷沙三段泥質(zhì)濁積巖(A、B)、顯微交錯層理(C)與異重巖(D)A,B,C.牛頁1井,3 409.05 m,A和C(單偏光),B(正交偏光);D.樊頁1井,3 443.95 m(單偏光);OM.有機質(zhì);CL.黏土紋層;QZ.石英;CB.碳酸鹽;CS.交錯層理Fig.5 Mudstone turbidites, micro-cross beddings and hyperpycnites in the Shahejie Formation Sha 3 member in the Dongying sag
3.4 泥質(zhì)韻律粒序構(gòu)造(泥質(zhì)異重巖)
渤海灣盆地東營凹陷沙三段泥質(zhì)巖韻律紋層的常見,厚度多介于1~5 mm。顯微鏡下,泥質(zhì)巖粒度的變化易于識別,在泥頁巖中,可見泥質(zhì)—有機質(zhì)紋層與泥晶方解石紋層組成的顯微交錯層理(圖5C)。粉砂質(zhì)泥巖可見逆粒序—正粒序的成對出現(xiàn),粒序紋層之間夾顏色較深的泥質(zhì)—有機質(zhì)紋層(圖5D)。在每一個韻律層組合之間,泥質(zhì)、有機質(zhì)含量較高;在韻律層由逆粒序向正粒序轉(zhuǎn)換之際,細粉砂等含量較高,且單顆粒直徑達到該層粒徑的最大。
泥頁巖中微型交錯層理的出現(xiàn)表明泥質(zhì)等細粒沉積物不僅可以在低能環(huán)境下通過懸浮沉淀,也可以在較強的水動力條件下發(fā)生沉積。濁積巖常見正粒序,對于逆粒序的成因難以解釋,尤其是逆粒序—正粒序的成對出現(xiàn),可以用洪水異重流沉積機理來解釋[51-55,78]。異重流是一種洪水河流輸入型的穩(wěn)定濁流,由于兩種水體的密度差和沿斜坡向下的重力分量的作用,密度較大的洪水河流潛入?yún)R水盆地水體底部,并沿盆地底部做長距離搬運懸浮沉積物的一種流體[51-52]。異重流的搬運機制主要依靠紊流的揚舉力,從流體本質(zhì)上講,它與濁流是相同的,屬于廣義的濁流范疇[51-55]。泥質(zhì)巖中的顯微交錯層理表明其沉積過程受動蕩水體的控制;這種水體的動蕩可能由濁流事件引起,也可能由季風引起的湖流產(chǎn)生。但作為事件沉積層,常被夾于正常泥頁巖沉積層之中。
上述研究表明,東營凹陷沙三段泥質(zhì)巖成因類型復雜,滑塌變形泥質(zhì)巖、泥質(zhì)碎屑巖、泥質(zhì)濁積巖和泥質(zhì)異重巖均有發(fā)育。在東營三角洲快速向湖盆進積的過程中,三角洲前緣砂質(zhì)沉積物常常覆蓋于前三角洲泥質(zhì)沉積物之上,在同沉積作用階段,泥質(zhì)巖未經(jīng)壓實脫水;隨著上覆沉積物厚度的不斷增加,松軟沉積物中的孔隙流體壓力不斷增加;加之上覆砂質(zhì)沉積物密度大于下伏泥質(zhì)沉積物密度,這種反密度梯度在重力作用下呈非均衡、非穩(wěn)定狀態(tài);當孔隙壓力積累到一定程度,超過沉積物的黏性阻力時,變形構(gòu)造隨之發(fā)生;或一旦有外部因素激發(fā)時,三角洲前緣的斜坡快速失穩(wěn)[6,60],變形、滑塌、液化、崩解接踵而至。因此,變形構(gòu)造泥巖、泥質(zhì)碎屑巖、泥質(zhì)濁積巖等重力流沉積可以呈現(xiàn)連續(xù)、漸變的空間接觸關(guān)系。
泥質(zhì)異重流、碎屑流與濁流存在復雜的共生共存關(guān)系。其一,碎屑流向濁流轉(zhuǎn)化[24,65]:砂質(zhì)碎屑流可以與水體混合、稀釋,向濁流轉(zhuǎn)化,這種轉(zhuǎn)化一般發(fā)生于流體的中上部和尾部。其二,濁流向碎屑流轉(zhuǎn)化[67]:隨著懸浮沉積物的沉降,濁流底部懸浮沉積物濃度不斷增加;且流體侵蝕底床或水下天然堤,堤岸物質(zhì)可以重新進入水道系統(tǒng),當濃度增大到一定程度,并含有一定泥質(zhì)碎屑時,濁流轉(zhuǎn)化為碎屑流。其三,異重流也可向砂質(zhì)碎屑流轉(zhuǎn)化,或誘發(fā)砂質(zhì)碎屑流的產(chǎn)生[71]。前者的轉(zhuǎn)化機制與上述濁流向碎屑流的轉(zhuǎn)化機制相同。而洪水期的河流強烈的沖刷作用以及流體對底部沉積物施加的切應力,都是誘發(fā)三角洲前緣斜坡失穩(wěn)滑塌的可能因素。因而,異重流也可誘發(fā)碎屑流及濁流的發(fā)生。在平水期或河流洪水中的懸浮沉積物濃度不足以產(chǎn)生異重流時,河流攜帶的沉積物在分流河口以河口壩或水下分流河道的形式就近沉積;當這種積累達到一定程度,并有外部因素激發(fā)時,滑塌—液化變形—碎屑流—濁流等依次產(chǎn)生。因此,碎屑巖、濁積巖與異重巖可以在一定時空范圍內(nèi)共生共存。
需要說明的是,作為重力流事件沉積細粒巖層,只是夾于正常(非事件沉積)泥頁巖沉積層中的一部分,不能代表全部的泥頁巖沉積,正常的泥頁巖沉積層仍然占據(jù)相當?shù)谋戎亍嶋H工作中,根據(jù)沉積物結(jié)構(gòu)、沉積構(gòu)造特征,可加以區(qū)分(表1)。重力流沉積細粒巖與正常泥巖的區(qū)分也主要依據(jù)沉積物結(jié)構(gòu)、沉積構(gòu)造特征。正常沉積泥頁巖一般具有均勻塊狀構(gòu)造或水平紋層發(fā)育,且紋層內(nèi)難以識別粒序、顏色變化。
但事件沉積與正常沉積泥頁巖的區(qū)分目前只能在野外、巖芯、或在鏡下識別;由于多數(shù)細粒沉積層薄、夾層多,許多薄層的厚度遠低于測井數(shù)據(jù)采樣間隔0.125 m,暨測井分辨率難以識別極薄層的泥質(zhì)沉積;地震反射方面,更是無法達到極薄層的識別。
表1 泥質(zhì)重力流沉積類型對比
湖相泥、頁巖類型多樣,沉積機理復雜。其中,陸源碎屑物質(zhì)的輸入占據(jù)重要地位,尤其是對泥、頁巖儲集性能和壓裂密切相關(guān)的較粗粒脆性礦物的輸入機制,重力流作為一種將沉積物向盆地中心深水區(qū)搬運的主要流體,對其重要性的認識有待于提高。在東營凹陷沙三段頁巖油氣儲層中,重力流沉積層較為常見(圖5A~D)。對于頁巖油氣而言,重力流沉積的地質(zhì)意義主要集中于以下幾個方面:
第一,重力流沉積泥質(zhì)巖影響烴源巖的物質(zhì)積累和保存。重力流將泥質(zhì)、有機質(zhì)等遠距離搬運至盆地深水沉積區(qū),促進有機質(zhì)的富集和保存[20]。尤其是洪水輸入型濁流——異重流常含有大量陸源有機物質(zhì),這些物質(zhì)一方面為微生物提供了大量營養(yǎng),或直接增加源巖的有機碳含量[59];另一方面,大量有機質(zhì)及碎屑物質(zhì)的輸入會在一定程度上影響盆地的生態(tài)環(huán)境,進而影響微生物的繁衍和有機質(zhì)的積累;此外,重力流事件向沉積盆地輸入大量陸源物質(zhì),是一種重要的搬運—沉積機制;這種事件沉積會在較短的時間內(nèi)加快深水區(qū)的沉積速率,從而有利于有機質(zhì)的埋藏和保存。
第二,重力流沉積細粒巖是重要的頁巖油氣儲層。對于非常規(guī)油氣而言,重力流搬運—沉積的砂巖已成為深水致密砂巖油氣藏的主要儲集層;而重力流搬運—沉積而成的粉砂巖、泥頁巖等是頁巖油氣的主要儲集體。例如,在陸相湖泊背景下沉積的細粒沉積巖具有巨大的頁巖氣資源量[8-9]。東營凹陷沙河街組頁巖油氣儲層中亦發(fā)現(xiàn)大量重力流成因的細粒沉積層(圖5A~D)。碎屑顆粒之間的粒間孔、有機質(zhì)粒內(nèi)孔以及微裂縫等往往是頁巖油氣的主要儲集空間,其中的較粗碎屑顆粒、有機質(zhì)的搬運與重力流沉積作用密切相關(guān)。
第三,重力流搬運—沉積的碎屑顆粒影響水平井壓裂工藝參數(shù)。在討論泥頁巖壓裂力學性質(zhì)之時,石英、長石、方解石等脆性礦物的含量是其中重要的評價指標。盡管泥質(zhì)巖中存在成巖成因的粉砂級石英[79],但具有較好磨圓和分選的石英、長石等碎屑顆粒多數(shù)是由物源區(qū)經(jīng)搬運—沉積而成。傳統(tǒng)的認為泥質(zhì)巖形成于靜水低能環(huán)境絮凝沉淀的觀點,難以解釋泥質(zhì)巖中存在的砂質(zhì)、粉砂質(zhì)沉積物;但對于重力流而言,可將大量較粗顆粒沉積物搬運至盆地中心深水沉積區(qū)。許多紋層狀的泥頁巖,其中相當一部分極有可能由重力流沉積而成。由于此前的常規(guī)油氣儲層研究主要關(guān)注砂、礫巖等粗碎屑沉積巖;對于非常規(guī)油氣儲集性能和壓裂工藝參數(shù)評價至關(guān)重要的碎屑礦物來源及成因分析,需要加強沉積作用機理的研究。
(1) 通過廣泛的文獻調(diào)研,認為泥、粉砂等細粒沉積物可以在動蕩的高能水體環(huán)境中發(fā)生搬運—沉積;相關(guān)的實驗、現(xiàn)代沉積觀測和地史中的沉積記錄研究均證明了這一點,并逐漸被國外的地質(zhì)同行普遍接受;有關(guān)泥質(zhì)沉積物只能在水動力條件極弱的靜水環(huán)境中沉積的傳統(tǒng)觀點需要與時俱進。
(2) 泥、粉砂等細粒物質(zhì)可以被重力流搬運至盆地中心深水沉積區(qū),但由于沉積紋層一般較細,在以往的研究中往往不被重視。研究表明,深水沉積細粒巖中有相當一部分是重力流事件沉積層,需要沉積學家根據(jù)細粒沉積巖的結(jié)構(gòu)、組分、微沉積構(gòu)造等仔細加以甄別。
(3) 陸相湖盆中,來自三角洲前緣的細粒沉積物在重力作用下,發(fā)生滑動、滑塌、變形、崩解、稀釋等作用,產(chǎn)生泥質(zhì)滑塌巖、泥質(zhì)碎屑巖、泥質(zhì)濁積巖、泥質(zhì)異重巖等重力流沉積細粒巖;多種重力流沉積細粒巖在時空上可以共生共存,垂向上反復疊置,橫向上呈連續(xù)、漸變關(guān)系過渡。
(4) 重力流沉積細粒巖對于頁巖油氣在生烴物質(zhì)聚集、儲集空間形成和壓裂工藝參數(shù)評價方面均可能產(chǎn)生重要影響,重力流沉積細粒巖具有重要的頁巖油氣地質(zhì)意義。
致謝 勝利油田物探研究院陳杰、河口采油廠劉奎元、孫波和朱曉平等高級工程師在巖芯觀察期間提供了大力幫助,審稿專家和編輯仔細審閱本文并提出寶貴建議,作者在此向他們致以崇高的敬意和衷心的感謝!
References)
[1] Law B E, Curtis J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11): 1851-1852.
[2] Pollastro R M. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 551-578.
[3] Aplin A C, Macquaker J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[4] Plint A G. Mud dispersal across a Cretaceous prodelta: storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.
[5] Hovikoski J, Lemiski R, Gingras M, et al. Ichnology and sedimentology of a mud-dominated deltaic coast: upper Cretaceous Alderson Member (Lea Park Fm), Western Canada[J]. Journal of Sedimentary Research, 2008, 78(12): 803-824.
[6] Kostic S. Upper flow regime bedforms on levees and continental slopes: turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere, 2014, 10(6): 1094-1103.
[7] Terlaky V, Rocheleau J, Arnott A W C. Stratal composition and stratigraphic organization of stratal elements in an ancient deep-marine basin-floor succession, Neoproterozoic Windermere Supergroup, British Columbia, Canada[J]. Sedimentology, 2016, 63(1): 136-175.
[8] 劉巖,周文,鄧虎成,等. 鄂爾多斯盆地上三疊統(tǒng)延長組含氣頁巖地質(zhì)特征及資源評價[J]. 天然氣工業(yè),2013,33(3):19-23. [Liu Yan, Zhou Wen, Deng Hucheng, et al. Geological characteristics of gas-bearing shales in the Yanchang Formation and its resource assessment in the Ordos Basin[J]. Natural Gas Industry, 2013, 33(3): 19-23.]
[9] 王永煒,高勝利,高潮. 鄂爾多斯盆地延長探區(qū)陸相頁巖氣勘探[J]. 地質(zhì)科技情報,2014,33(6):88-98. [Wang Yongwei, Gao Shengli, Gao Chao. Continental shale gas exploration and discussion on issues related to geological theory in Yanchang exploration area, Ordos Basin[J]. Geological Science and Technology Information, 2014, 33(6): 88-98.]
[10] Zou Caineng, Wang Lan, Li Ying, et al. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China[J]. Sedimentary Geology, 2012, 265-266: 143-155.
[11] Yang Hua, Deng Xiuqin. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(5): 549-557.
[12] Yang Renchao, He Zhiliang, Qiu Guiqiang, et al. A Late Triassic gravity flow depositional system in the southern Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 724-733.
[13] 姜在興,梁超,吳靖,等. 含油氣細粒沉積巖研究的幾個問題[J]. 石油學報,2013,34(6):1031-1039. [Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.]
[14] 柳波,呂延防,孟元林,等. 湖相紋層狀細粒巖特征、成因模式及其頁巖油意義——以三塘湖盆地馬朗凹陷二疊系蘆草溝組為例[J]. 石油勘探與開發(fā),2015,42(5):598-607. [Liu Bo, Lv Yanfang, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: a case study of Permian Lucaogou Formation in Malang sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.]
[15] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744.
[16] Schieber J. Evidence for episodic high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA[J]. Sedimentary Geology, 1994, 93(3/4): 193-208.
[17] Macquaker J H S, Bohacs K M. On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735.
[18] Ichaso A A, Dalrymple R W. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway[J]. Geology, 2009, 37(6): 539-542.
[19] Ghadeer S G, Macquaker J H S. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments[J]. Journal of the Geological Society, 2011, 168(5): 1121-1132.
[20] Ghadeer S G, Macquaker J H S. The role of event beds in the preservation of organic carbon in fine-grained sediments: analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England[J]. Marine and Petroleum Geology, 2012, 35(1): 309-320.
[21] Davies R J, Clark I R. Submarine slope failure primed and triggered by silica and its diagenesis[J]. Basin Research, 2006, 18(3): 339-350.
[22] Macquaker J H S, Bentley S J, Bohacs K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
[23] Kranck K, Smith P C, Milligan T G. Grain-size characteristics of fine-grained unflocculated sediments II: ‘multi-round’ distributions[J]. Sedimentology, 1996, 43(3): 597-606.
[24] van Leussen W. Macroflocs, fine-grained sediment transports, and their longitudinal variations in the Ems Estuary[J]. Ocean Dynamics, 2011, 61(2/3): 387-401.
[25] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, Western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822.
[26] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
[27] Schieber J, Southard J B. Bedload transport of mud by floccule ripples-direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[28] Piper D J W. Turbidite muds and silts on deep sea fans and abyssal plains[M]//Stanley D J, Kelling G. Sedimentation in submarine Canyons, Fans, and Trenches. Stroudsburg, PA: Dowden, Hutchinson & Ross, 1978: 163-176.
[29] 秦建華. 南盤江印支期前陸盆地泥質(zhì)濁積巖沉積特征及其環(huán)境意義[J]. 巖相古地理,1991(5):11-18. [Qin Jianhua. Sedimentary characteristics and environmental significance of the muddy turbidites in the Indosinian Nanpanjiang Foreland Basin[J]. Lithofacies Palaeogeography, 1991(5): 11-18.]
[30] 龐雄,朱明,柳保軍,等. 南海北部珠江口盆地白云凹陷深水區(qū)重力流沉積機理[J]. 石油學報,2014,35(4):646-653. [Pang Xiong, Zhu Ming, Liu Baojun, et al. The mechanism of gravity flow deposition in Baiyun sag deepwater area of the northern South China Sea[J]. Acta Petrolei Sinica, 2014, 35(4): 646-653.]
[31] Amendola U, Perri F, Critelli S, et al. Composition and provenance of the Macigno Formation (Late Oligocene-Early Miocene) in the Trasimeno Lake area (northern Apennines)[J]. Marine and Petroleum Geology, 2016, 69: 146-167.
[32] Kirby R, Parker W R. Distribution and behavior of fine sediment in the Severn Estuary and inner Bristol Channel, U.K.[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(S1): S83-S95.
[33] MacKay D A, Dalrymple R W. Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada[J]. Journal of Sedimentary Research, 2011, 81(12): 901-920.
[34] Ogston A S, Cacchione D A, Sternberg R W, et al. Observations of storm and river flood-driven sediment transport on the northern California continental shelf[J]. Continental Shelf Research, 2000, 20(16): 2141-2162.
[35] Traykovski P, Geyer W R, Irish J D, et al. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf[J]. Continental Shelf Research, 2000, 20(16): 2113-2140.
[36] Traykovski P, Wiberg P L, Geyer W R. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf[J]. Continental Shelf Research, 2007, 27(3/4): 375-399.
[37] Bhattacharya J P, MacEachern J A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America[J]. Journal of Sedimentary Research, 2009, 79(4): 184-209.
[38] Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70.
[39] Schieber J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
[40] 袁選俊,林森虎,劉群,等. 湖盆細粒沉積特征與富有機質(zhì)頁巖分布模式——以鄂爾多斯盆地延長組長7油層組為例[J]. 石油勘探與開發(fā),2015,42(1):34-43. [Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.]
[41] 蒲秀剛,周立宏,韓文中,等. 細粒相沉積地質(zhì)特征與致密油勘探——以渤海灣盆地滄東凹陷孔店組二段為例[J]. 石油勘探與開發(fā),2016,43(1):1-10. [Pu Xiugang, Zhou Lihong, Han Wenzhong, et al. Geologic features of fine-grained facies sedimentation and tight oil exploration: A case from the second Member of Paleogene Kongdian Formation of Cangdong sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(1): 1-10.]
[42] Hansen L, L’Heureux J S, Longva O. Turbiditic, clay-rich event beds in fjord-marine deposits caused by landslides in emerging clay deposits-palaeoenvironmental interpretation and role for submarine mass-wasting[J]. Sedimentology, 2011, 58(4): 890-915.
[43] Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
[44] Talling P J, Wynn R B, Masson D G, et al. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 2007, 450(7169): 541-544.
[45] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
[46] Addington L D, Kuehl S A, McNinch J E. Contrasting modes of shelf sediment dispersal off a high-yield river: Waiapu River, New Zealand[J]. Marine Geology, 2007, 243(1/2/3/4): 18-30.
[47] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478.
[48] Yoshida M, Yoshiuchi Y, Hoyanagi K. Occurrence conditions of hyperpycnal flows, and their significance for organic-matter sedimentation in a Holocene estuary, Niigata Plain, Central Japan[J]. Island Arc, 2009, 18(2): 320-332.
[49] Migeon S, Mulder T, Savoye B, et al. Hydrodynamic processes, velocity structure and stratification in natural turbidity currents: results inferred from field data in the Var Turbidite System[J]. Sedimentary Geology, 2012, 245-246: 48-62.
[50] Turowski J M, Hilton R G, Sparkes R. Decadal carbon discharge by a mountain stream is dominated by coarse organic matter[J]. Geology, 2016, 44(1): 27-30.
[51] 楊仁超,金之鈞,孫冬勝,等. 鄂爾多斯晚三疊世湖盆異重流沉積新發(fā)現(xiàn)[J]. 沉積學報,2015,33(1):10-20. [Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.]
[52] 孫福寧,楊仁超,李冬月. 異重流沉積研究進展[J]. 沉積學報,2016,34(3):452-462. [Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.]
[53] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
[54] Mulder T, Migeon S, Savoye B, et al. Twentieth century floods recorded in the deep Mediterranean sediments[J]. Geology, 2001, 29(11): 1011-1014.
[55] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
[56] Lamb M P, Mohrig D. Do hyperpycnal-flow deposits record river-flood dynamics[J]. Geology, 2009, 37(12): 1067-1070.
[57] Bourget J, Zaragosi S, Mulder T, et al. Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes: a case study from the Al Batha turbidite system, Oman margin[J]. Sedimentary Geology, 2010, 229(3): 144-159.
[58] Pouderoux H, Proust J N, Lamarche G, et al. Postglacial (after 18 ka) deep-sea sedimentation along the Hikurangi subduction margin (New Zealand): characterisation, timing and origin of turbidites[J]. Marine Geology, 2012, 295-298: 51-76.
[59] Khripounoff A, Vangriesheim A, Crassous P, et al. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea)[J]. Marine Geology, 2009, 263(1/2/3/4): 1-6.
[60] Yao Y, Flemings P, Mohrig D. Dynamics of dilative slope failure[J]. Geology, 2012, 40(7): 663-666.
[61] Clare M A, Talling P J, Challenor P, et al. Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence[J]. Geology, 2014, 42(3): 263-266.
[62] 何起祥. 沉積動力學若干問題的討論[J]. 海洋地質(zhì)與第四紀地質(zhì),2010,30(4):1-10. [He Qixiang. A discussion on sediment dynamics[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10.]
[63] Soyinka O A, Slatt R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55(5): 1117-1133.
[64] Brunner C A, Normark W R, Zuffa G G, et al. Deep-sea sedimentary record of the late Wisconsin cataclysmic floods from the Columbia River[J]. Geology, 1999, 27(5): 463-466.
[65] Kane I A, Pontén A S M. Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
[66] 王陸新,吳朝東,莫午零,等. 松遼盆地嫩江組泥質(zhì)三角洲沉積特征及沉積機理[J]. 北京大學學報:自然科學版,2014,50(3):497-506. [Wang Luxin, Wu Chaodong, Mo Wuling, et al. Sedimentary characteristics and identification of muddy deltaic in Nenjiang Formation of Songliao Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 497-506.]
[67] Sumner E J, Talling P J, Amy L A. Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37(11): 991-994.
[68] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[69] Sumner E J, Talling P J, Amy L A, et al. Facies architecture of individual basin-plain turbidites: comparison with existing models and implications for flow processes[J]. Sedimentology, 2012, 59(6): 1850-1887.
[70] Sumner E J, Siti M I, McNeill L C, et al. Can turbidites be used to reconstruct a paleoearthquake record for the central Sumatran margin[J]. Geology, 2013, 41(7): 763-766.
[71] Sawyer D E, Flemings P B, Nikolinakou M. Continuous deep-seated slope failure recycles sediments and limits levee height in submarine channels[J]. Geology, 2014, 42(1): 15-18.
[72] Baas J H, Manica R, Puhl E, et al. Processes and products of turbidity currents entering soft muddy substrates[J]. Geology, 2014, 42(5): 371-374.
[73] 李丕龍,姜在興,馬在平. 東營凹陷儲集體與油氣分布[M]. 北京:石油工業(yè)出版社,2000:47-80. [Li Peilong, Jiang Zaixing, Ma Zaiping. Reservoir and distribution of oil and gas in Dongying sag[M]. Beijing: Petroleum Industry Press, 2000: 47-80.]
[74] 劉軍鍔,簡曉玲,康波,等. 東營凹陷東營三角洲沙三段中亞段古地貌特征及其對沉積的控制[J]. 油氣地質(zhì)與采收率,2014,21(1):20-23. [Liu Jun’e, Jian Xiaoling, Kang Bo, et al. Paleogeomorphology of the middle part of 3rdmember of Shahejie Formation and their effects on depositional systems, Dongying delta, Dongying depression[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(1): 20-23.]
[75] 孔凡仙. 東營凹陷北帶砂礫巖扇體勘探技術(shù)與實踐[J]. 石油學報,2000,21(5):27-31. [Kong Fanxian. Exploration technique and practice of sandy-conglomeratic fans in the northern part of Dongying depression[J]. Acta Petrolei Sinica, 2000, 21(5): 27-31.]
[76] 陳杰,劉傳虎,譚明友,等. 進積型三角洲交匯區(qū)沉積模式——以東營凹陷沙三中亞段為例[J]. 沉積學報,2016,34(6):1187-1197. [Chen Jie, Liu Chuanhu, Tan Mingyou, et al. Depositional model of prograding delta confluences: A case from Es3mmembers in the Paleogene Dongying sag[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1187-1197.]
[77] Yang Renchao, van Loon A J, Yin Wei, et al. Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China)[J]. Geologos, 2016, 22(3): 201-211.
[78] Yang Renchao, Jin Zhijun, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[79] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
Research Progresses on Muddy Gravity Flow Deposits and Their Significances on Shale Oil and Gas: A case study from the 3rdoil-member of the Paleogene Shahejie Formation in the Dongying Sag
SONG MingShui1, XIANG Kui1, ZHANG Yu1, CAI Pan1, LIU JianLei1, YANG RenChao2
1. Exploration Management Center, Shengli Oilfield Company, SINOPEC, Dongying, Shandong 257017, China 2. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
With promotion of shale oil and gas development on intensive studies on depositional mechanisms of mudstone and shales, transportation and deposition of fine-grained sediment have currently become hot topics in both sedimentoligical studies and petroleum industries. However, muddy gravity flow deposits in the Cenozoic lacustrine environment have not yet arisen attentions of geologists, although literatures of gravity flow-generated muddy deposits in marine environments extensively existed. Based on extensive literature researches, detailed core examinations and thin section observations, this paper analyzes characteristics of gravity flow-generated fine-grained deposits in the 3rdoil-member of the Paleogene Shahejie Formation (E2s3), Dongying Sag, Bohai Bay Basin. Discussions on their forming mechanisms have theoretical significances on lacustrine sedimentary environment study and have practical meanings on developments of shale oil and gas. Results: 1) there are various gravity flow deposits, including muddy mass flows, muddy debris flows, muddy turbidity currents and muddy hyperpycnal flows exist in E2s3in the Dongying Sag; 2) muddy slumps, muddy debrites, muddy turbidites and muddy hyperpycnites co-generate and co-exist in spatio-temporal extents. Conclusions: 1) muddy sediments can deposit in turbulent waterbody and high hydrodynamic conditions; 2) muddy gravity flow deposits play an important role in deep water sedimentary regions; 3) muddy gravity flows are of great importance to transportation and deposition of coarse grains and organic matters, and so to preservation of organic matters; 4) muddy gravity flow deposits have important geological significances on unconventional oil and gas.
gravity flow-generated fine-grained deposits; muddy debrites; muddy turbidites; muddy hyperpycnites; unconventional oil and gas; Dongying Sag; Paleogene
1000-0550(2017)04-0740-12
10.14027/j.cnki.cjxb.2017.04.008
2016-11-07; 收修改稿日期: 2017-01-12
山東省重大科技創(chuàng)新工程項目(2017CXGC1608);國家自然科學基金項目(41372135,41672120);山東科技大學科研團隊計劃(2015TDJH101)[Foundation: Major Scientific and Technological Innovation Project of Shandong Province, No.2017CXGC1608; National Natural Science Foundation of China, No.41372135, 41672120; SDUST Research Fund, No. 2015TDJH101]
宋明水,男,1964年生,博士,教授級高工,油田勘探與管理,E-mail: songmingshui.slof@sinopec.com
楊仁超,男,副教授,E-mail: yang100808@126.com
P618.13 TE121.1
A