霍英杰, 喬曉玲, 邵燕靈
(中北大學(xué) 理學(xué)院, 山西 太原 030051)
一類含有3n個(gè)非零元的譜任意ray模式
霍英杰, 喬曉玲, 邵燕靈
(中北大學(xué) 理學(xué)院, 山西 太原 030051)
利用矩陣特征值理論, 研究了一類含有3n個(gè)非零元的n階ray模式矩陣. 在該ray模式矩陣的定性矩陣類中任取一個(gè)n階復(fù)矩陣, 求出該復(fù)矩陣的特征多項(xiàng)式, 利用數(shù)學(xué)分析的方法, 找到該復(fù)矩陣為冪零矩陣的條件, 再運(yùn)用冪零-雅可比方法, 證明了該類ray模式矩陣及其任意母模式都是譜任意的.
冪零-雅可比; ray模式; 譜任意; 蘊(yùn)含冪零
符號(hào)模式矩陣是指元素取自集合{+,-,0}的矩陣, 簡(jiǎn)稱符號(hào)模式. 對(duì)于給定的實(shí)矩陣A=[aij], 由A中的每個(gè)元素aij的符號(hào)所確定的矩陣稱為A的符號(hào)模式, 記為sgn(A). 對(duì)一個(gè)n階符號(hào)模式A, 其定性矩陣類表示為
Q(A)={B|B為n階實(shí)矩陣, 且sgn(B)=A}.
設(shè)A=(aij)和B=(bij)是兩個(gè)n階符號(hào)模式矩陣, 如果當(dāng)bij≠0時(shí)aij=bij, 則稱A=(aij)是B=(bij) 的母模式,B=(bij)是A=(aij)的子模式. 如果B≠A, 則稱B是A的真子模式.
對(duì)n階符號(hào)模式矩陣A, 如果存在B∈Q(A)和正整數(shù)k, 滿足Bk=0且Bk-1≠0, 則稱A蘊(yùn)含冪零, 其中B為冪零矩陣,k為冪零矩陣B的指數(shù), 并稱B為A的一個(gè)冪零實(shí)現(xiàn).
ray模式矩陣是指元素取自集合{eiθ∶0≤θ<2π}∪{0}的矩陣. 設(shè)P=(pij)是一個(gè)n階ray模式,P的定性矩陣類表示為
Q(P)={A=[aij]∈Mn(C)∶aij=rijpij,
rij∈R+,1≤i,j≤n}.
若對(duì)任意的n次首1復(fù)系數(shù)多項(xiàng)式f(λ), 都存在復(fù)矩陣B∈Q(P), 使得B的特征多項(xiàng)式為f(λ), 則稱ray模式矩陣P為譜任意的.
最早由文獻(xiàn)[1]給出了譜任意符號(hào)模式矩陣的概念, 冪零-雅可比方法也是在該文獻(xiàn)中提出的. 文獻(xiàn)[2-11]對(duì)符號(hào)模式矩陣的譜任意性進(jìn)行了深入的研究. 文獻(xiàn)[12-15]將冪零-雅可比方法推廣到復(fù)符號(hào)模式, 并對(duì)ray模式的譜任意性進(jìn)行了研究.
引理 1[12](ray模式的冪零-雅可比方法)
1) 在ray模式P的定性矩陣類Q(P)中找到冪零矩陣B.
2) 用變量t1,t2,…,t2n替換B中的2n個(gè)eiθij的正系數(shù)(設(shè)為r1,r2,…,r2n).
3) 將替換后矩陣的特征多項(xiàng)式表示如下
λn+(f1(t1,…,t2n)+ig1(t1,…,t2n))λn-1+
…+(fn-1(t1,…,t2n)+ign-1(t1,…,t2n))λ+
(fn(t1,…,t2n)+ign(t1,…,t2n)).
5) 當(dāng)(t1,t2,…,t2n)=(r1,r2,…,r2n)時(shí), 若J的行列式不等于零, 則ray模式P及其任意母模式都是譜任意的.
本文研究如下含有3n個(gè)非零元的n階(n≥6)ray模式矩陣
將證明An及其任意母模式都是譜任意的.
任取復(fù)矩陣B∈Q(An),
|λI-B|=λn+α1λn-1+α2λn-2+…+αn-1λ+αn
其中,αk=fk+igk,k=1,2,…,n.
定理 1 矩陣B的特征多項(xiàng)式的系數(shù)為
證明
-bn-1(λ-a1i)+(λ2-a1iλ-a2i)[-bn(λ-b1)-bn-2]+(λ3-a1iλ2-a2iλ-a3i)(-bn-3)+
…+(λn-3-a1iλn-4-…-an-3i)(-b3)+(λn-2-a1iλn-3-…-an-2i)[λ2-(p+b1)λ+
(pb1-b2)]+[-an-ii(λ-b1)-an].
整理以上式子可得
證畢.
定理 2 ray模式矩陣An是蘊(yùn)含冪零的.
證明
|λI-B|=
λn+α1λn-1+α2λn-2+…+αn-1λ+αn=
λn+(f1+ig1)λn-1+(f2+ig2)λn-2+…+
(fn-1+ign-1)λ+(fn+ign).
令fk=0,gk=0(1≤k≤n), 由定理1可得
lj的最低次數(shù)項(xiàng)
因此, 當(dāng)0 由上易得 和 所以可得 當(dāng)0 所以ray符號(hào)模式矩陣An蘊(yùn)含冪零. 證畢. 定理 3 ray符號(hào)模式矩陣An及其任意母模式都是譜任意的. 此時(shí),tj(1≤j≤2n)均大于0, 易知: det(C)=(-1)n+2det(C[{1,…,2n-7}])det(C[{2n-7,…,2n}])= 所以由引理1知, ray模式矩陣An及其任意母模式都是譜任意的. 證畢. [1]Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2000, 308(1): 121-137. [2]Britz T, Mcdonald J J, Olesky D D, et al. Minimally spectrally arbitrary sign patterns[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26(1): 257-271. [3]Cavers M S, Vander Meulen K N. Spectrally and inertially arbitrary sign patterns[J]. Linear Algebra and its Applications, 2005, 394(1): 53-72. [4]Gao Y B, Shao Y L. A spectrally arbitrary pattern[J]. Advances in Mathematics, 2006, 35(5): 551-555. [5]Arav M, Hall F, Li Z, et al. Spectrally arbitrary tree sign patterns of order 4[J]. Electronic Journal of Linear Algebra, 2010, 20(2): 180-197. [6]Gao Y B, Shao Y L. Inertially arbitrary tree sign patterns of order 4[J]. Electronic Journal of Linear Algebra, 2011, 22(1): 1148-1155. [7]Behn A, Driessel K R, Hentzel I R, et al. Some nilpotent, tridiagonal matrices with a special sign patterns[J]. Linear Algebra and its Applications, 2012, 436(12): 4446-4450. [8]Garnett Colin, Shader B L. The Nilpotent-Centralizer method for spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2013, 438(10): 3836-3850. [9]Cavers M S, Fallat S M. Allow problems concerning spectral properties of patterns[J]. Electronic Journal of Linear Algebra, 2012, 23(1): 731-754. [10]Cavers M S, Garnett C, Kim I J, et al. Techniques for identifying inertially arbitrary patterns[J]. Electronic Journal of Linear Algebra, 2013, 26(1): 71-89. [11]Gao Y B, Shao Y L. The Nilpotent-Centralizer methods[J].Journal of Mathematical Research with Applications, 2014, 34(5): 597-607. [12]Mcdonald J J, Stuart J. Spectrally arbitrary ray patterns[J]. Linear Algebra and its Applications, 2008, 429(4): 727-734. [13]Gao Y B, Shao Y L. New classes of spectrally arbitrary ray patterns[J]. Linear Algebra and its Applications, 2011, 434(10): 2140-2148. [14]Mei Y Z, Gao Y B, Shao Y L, et al. The minimum number of nonzeros in a spectrally arbitrary ray pattern[J]. Linear Algebra and its Applications, 2014, 453(8): 99-109. [15]Zhang L, Huang T Z, Li Z S, et al. Several spectrally arbitrary ray patterns[J]. Linear and Multilinear Algebra, 2013, 61(4): 543-564. A Class of Spectrally Arbitrary Ray Patterns with 3nNonzero Entries HUO Ying-jie, QIAO Xiao-ling, SHAO Yan-ling (School of Science, North University of China, Taiyuan 030051, China) Using matrix eigenvalue theory, a class ofn×nray pattern matrices with 3nnonzero entries was studied. Take anyn×ncomplex matrix belonged to the qualitative matrix class of the above ray pattern. The characteristic polynomial of this complex matrix was obtained. By the method of mathematical analysis, we found the condition that this complex matrix is nilpotent. Finally, we verify that the ray patterns and all superpatterns are spectrally arbitrary by Nilpotent-Jacobian method. Nilpotent-Jacobian method; ray pattern; spectrally arbitrary pattern; potentially nilpotent 2016-08-23 國(guó)家自然科學(xué)基金資助項(xiàng)目(11071227); 山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(12-070) 霍英杰(1991-), 男, 碩士生, 主要從事組合數(shù)學(xué)的研究. 邵燕靈(1963-), 女, 教授, 博士, 博士生導(dǎo)師, 主要從事組合數(shù)學(xué)的研究. 1673-3193(2017)02-0114-05 O157.5 A 10.3969/j.issn.1673-3193.2017.02.0040,b1<0,bj>0(2≤j≤n-4),bn-3<0,bn-2<0,bn-1>0,bn>0.