羅洪斌,劉翔宇,牟南樵,陳 瑋,樊莎莎,謝文執(zhí),商 楠,楊晨宇,謝楓楓,諶 勤,魏 征
(生物資源保護(hù)與利用湖北省重點實驗室,湖北民族學(xué)院醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)教研室,湖北民族學(xué)院神經(jīng)精神共患病研究所,湖北 恩施 445000)
◇論 著◇
板橋黨參對激活GSK-3β誘導(dǎo)的AD模型大鼠認(rèn)知功能障礙的保護(hù)作用及其機制
羅洪斌,劉翔宇,牟南樵,陳 瑋,樊莎莎,謝文執(zhí),商 楠,楊晨宇,謝楓楓,諶 勤,魏 征
(生物資源保護(hù)與利用湖北省重點實驗室,湖北民族學(xué)院醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)教研室,湖北民族學(xué)院神經(jīng)精神共患病研究所,湖北 恩施 445000)
目的 探索板橋黨參(BCP)水煎液對激活糖原合成酶激酶-3β(GSK-3β)誘導(dǎo)的阿爾茲海默病(AD)模型大鼠認(rèn)知功能障礙的保護(hù)作用及其可能機制。方法 將50只4月齡♂SD大鼠隨機分為假手術(shù)組、AD模型組、低劑量板橋黨參組、中劑量板橋黨參組、高劑量板橋黨參組。前2組飲用水灌胃14 d,后3組灌服板橋黨參水煎液14 d。灌胃同時進(jìn)行自主行為測試,d 8開始進(jìn)行水迷宮訓(xùn)練。訓(xùn)練5 d后,選擇能在15 s內(nèi)找到隱藏平臺的治療組和模型組大鼠進(jìn)行側(cè)腦室注射渥曼青霉素(Wortmannin,PI3K特異性抑制劑)和GF-109203X(GFX,PKC特異性抑制劑)(濃度均為100 μmol·L-1)各5 μL;假手術(shù)組注射2% DMSO 10 μL。24 h后進(jìn)行水迷宮測試。觀察各組大鼠側(cè)腦室注射前、后空間學(xué)習(xí)記憶力是否改變。Western blot和免疫組化檢測大鼠腦海馬組織Tau磷酸化水平及其相關(guān)蛋白激酶GSK-3β表達(dá)情況及活性變化。尼氏染色觀察神經(jīng)元尼氏小體變化情況。結(jié)果 自主行為活動檢測結(jié)果發(fā)現(xiàn)板橋黨參能明顯減少大鼠活動次數(shù);水迷宮檢測結(jié)果發(fā)現(xiàn)板橋黨參能明顯改善模型大鼠認(rèn)知功能障礙;Western blot和免疫組化結(jié)果顯示模型組海馬組織GSK-3β活性升高,并導(dǎo)致Tau蛋白多個位點發(fā)生過度磷酸化,而用藥后GSK-3β活性降低,Tau蛋白多個位點磷酸化水平下調(diào);尼氏染色結(jié)果提示模型組海馬神經(jīng)元內(nèi)尼氏小體數(shù)量減少,而治療后尼氏小體增多,且呈劑量依賴性。結(jié)論 板橋黨參可有效改善GSK-3β活性升高所誘導(dǎo)的大鼠認(rèn)知功能障礙,其可能機制與下調(diào)GSK-3β活性,進(jìn)而抑制Tau蛋白過度磷酸化、促進(jìn)神經(jīng)元發(fā)育有關(guān)。
阿爾茲海默??;板橋黨參;GSK-3β;Tau磷酸化;學(xué)習(xí)記憶能力;水迷宮
阿爾茲海默病(Alzheimer′s disease, AD)是一種多發(fā)于老年人的神經(jīng)退行性疾病,是老年癡呆最常見類型,主要臨床特征為逆行性遺忘,對患者及其家庭造成嚴(yán)重影響[1]。該疾病主要病理特征為神經(jīng)元外的老年斑(amyloid-β protein, SP)[2]和神經(jīng)元內(nèi)的神經(jīng)纖維纏結(jié)(neurofibrillary tangles, NFTs)[3]。老年斑主要由β淀粉樣蛋白組成[2],NFTs主要由過度磷酸化的Tau蛋白組成[3-4]。Tau蛋白是一種微管相關(guān)蛋白(MAPs),與微管組裝及微管穩(wěn)定性有關(guān)[3-4],還參與細(xì)胞信號轉(zhuǎn)導(dǎo)及物質(zhì)交換[5]。Tau蛋白異常過度磷酸化將導(dǎo)致自身聚集且拮抗泛素-蛋白酶系統(tǒng)降解,從而形成NFT[5];還可破壞微管穩(wěn)定性、損傷神經(jīng)元并引起物質(zhì)運輸障礙,最后導(dǎo)致AD發(fā)生[6];同時,Tau蛋白過度磷酸化也是AD早期病理變化,所形成的NFT數(shù)量與患者癡呆程度呈正相關(guān)[6-7]。因此,抑制Tau蛋白過度磷酸化是治療AD關(guān)鍵。糖原合成酶激酶-3β(GSK-3β)在導(dǎo)致AD樣Tau蛋白異常過度磷酸化中起著重要作用。細(xì)胞水平研究證實,GSK-3β可催化Tau蛋白多個位點發(fā)生過度磷酸化[7-8]。在整體水平,利用磷脂酰肌醇3-激酶(phosphatidylinositol 3 kinase, PI3K)的特異性阻斷劑Wortmannin和蛋白激酶C(PKC)特異性抑制劑(GF-109203X, GFX)進(jìn)行側(cè)腦室注射,可激活GSK-3β,引起Tau蛋白異常過度磷酸化,同時可導(dǎo)致實驗動物學(xué)習(xí)記憶障礙[9]。因此,尋找針對GSK-3β進(jìn)行靶向治療AD的有效藥物是治療AD的有效途徑,但到目前為止尚無特效藥物。
板橋黨參(BanqiaoCodonopisisPilosula, BCP)在治療AD方面具有一定療效[10]。板橋黨參屬川黨(CodonopsistangshenOijv. )中小條黨參,位列四大黨參之首,為恩施州道地藥材,具有補氣、補血、生津之功效[11]?,F(xiàn)代藥理研究證明板橋黨參具有活血、鎮(zhèn)靜安神、增強免疫功能、抗氧自由基損傷、延緩衰老、抗缺氧等藥理作用[11]。已有研究證實,板橋黨參提取物對注射氟哌啶醇建立的AD模型大鼠具有改善學(xué)習(xí)記憶能力及抗氧化作用[10]。本研究擬通過建立GSK-3β過度激活導(dǎo)致Tau過度磷酸化的AD大鼠模型,初步探討不同劑量板橋黨參提取物能否通過抑制GSK-3β活性達(dá)到防治AD的目的及可能機制。
1.1 藥物與試劑 板橋黨參購自湖北恩施板橋黨參加工廠,并經(jīng)文德鑒副教授鑒定。根據(jù)臨床用藥量按人(60 kg)為標(biāo)準(zhǔn),板橋黨參給藥低、中、高劑量分別為15、30、60 g·kg-1·d-1,換算成大鼠(250 g為標(biāo)準(zhǔn))的低、中、高劑量分別為0.54、1.08、2.16 g·kg-1·d-1。換算方法根據(jù)《藥理實驗中動物間和動物和人體間的等效劑量換算》計算獲得。水煎液制備方法:稱量108 g板橋黨參,加適量水煎煮1 h,煎煮2次,合并藥液,紗布過濾,再濃縮定量至0.54 kg·L-1備用。Wortmannin、GF-109203X、DMSO、三羥甲基氨基甲烷(Tris)、丙烯酰胺(Arc)、亞甲基雙丙烯酰(Bis)、甘氨酸(glycine)、十二烷基硫酸鈉(SDS)、TEMED等:美國Sigma公司;硝酸纖維素膜:英國Hybond公司;多聚甲醛、MSF等:天津市福晨化學(xué)試劑廠;BCA蛋白濃度測定試劑盒:北京康為世紀(jì)生物科技有限公司;PV-9001超敏二步法免疫組化檢測試劑盒:北京中杉金橋生物技術(shù)有限公司;Tau-5抗體:美國Abcam公司;GSK-3β抗體:美國Cell Signaling Technology公司;pT231、pS262、pS396、pS404抗體:美國SAB公司;β-actin抗體:美國Proteintech公司。
1.2 儀器 YLS-1B大鼠自主行為測試儀 (山東省醫(yī)學(xué)科學(xué)院),DMS-2型Morris水迷宮系統(tǒng)(中國醫(yī)學(xué)科學(xué)院藥物研究所),099C K5424勻漿機(美國Glas-Col公司),1658001電泳儀、1703930轉(zhuǎn)膜儀、1645050基礎(chǔ)電泳儀電源(美國Bio-Rad公司),Odyssey雙色紅外激光成像系統(tǒng)(美國基因公司),VT1200S振蕩切片機(德國Leica公司),三目數(shù)字?jǐn)z影顯微鏡(日本Nikon公司)。
1.3 實驗動物與分組 ♂ SD大鼠,購自湖北省實驗動物研究中心,許可證號SCK(鄂)2015-0018,合格證號42000600003985,體質(zhì)量(250±30)g,50只(另有50只備用)。自由進(jìn)食飲水1周后,隨機分為5組:假手術(shù)組,AD模型組,高、中、低3個治療組,每組10只。
1.4 AD模型建立及給藥、自主行為測試和水迷宮訓(xùn)練 給藥組按每只大鼠體質(zhì)量給予足量板橋黨參水煎液灌胃14 d,AD模型組和假手術(shù)組飲用水灌胃14 d。每組d 1灌胃后立即放入小動物自主活動檢測儀,測定30 min內(nèi)大鼠自主活動,每5 min記錄1次。在灌胃d 8進(jìn)行水迷宮訓(xùn)練。訓(xùn)練5 d后,選擇能在15 s內(nèi)找到隱藏平臺大鼠(其搜索軌跡筆直簡單)用于后續(xù)實驗[12]。訓(xùn)練d 6行側(cè)腦室注射,模型組和治療組均注射WT+GFX各5 μL(濃度均為100 μmol·L-1),假手術(shù)組注射2% DMSO 10 μL。24 h后進(jìn)行水迷宮測試。水迷宮訓(xùn)練和測試方法參照文獻(xiàn)[13]并做適當(dāng)修改。記錄大鼠尋找平臺的潛伏期及游泳軌跡等。
1.5 海馬勻漿蛋白Western blot分析 水迷宮測試完后斷頭取腦,冰上快速分離海馬,勻漿后進(jìn)行Western blot,實驗方法按本課題組前期建立方法進(jìn)行[5,13]。一抗抗體分別為p-Tau(pT231、pS262、pS396、pS404)(1 ∶1 000)。相應(yīng)熒光二抗孵育1 h后TBST洗滌3次,每次10 min。Odyssey掃描成像顯色分析,Odyssey軟件分析灰度值。
1.6 腦片免疫組織化學(xué)法染色 多聚甲醛內(nèi)固定:大鼠水迷宮測試完后7%水合氯醛麻醉,固定四肢、頭部,并按參考文獻(xiàn)方法[5,13]進(jìn)行多聚甲醛灌流內(nèi)固定。灌流完畢后取腦,4%多聚甲醛繼續(xù)后固定。振蕩切片機切腦片,并保存在含0.02%疊氮鈉PBS溶液中備用。取海馬完整清晰腦片進(jìn)行免疫組化染色,具體方法詳見文獻(xiàn)[5,13]。一抗抗體為p-Tau(pS404)(1 ∶100)。實驗結(jié)束后中性樹膠封片,顯微鏡下觀察拍照。
1.7 腦片尼氏染色 取腦片置于16孔板中。PBS洗3次,每次5 min。加入1%甲苯胺藍(lán)水溶液染色,37℃孵育20 min,蒸餾水洗凈,酒精脫水,二甲苯透明,中性樹膠封片,顯微鏡下觀察尼氏小體變化。
2.1 BCP單次給藥對SD大鼠自主行為的影響 SD大鼠給藥后未發(fā)生震顫等不適現(xiàn)象。與未給藥組相比,給藥組自主活動次數(shù)減少,低、中劑量組在5、10 min時間點處差異具有統(tǒng)計學(xué)意義(低、中劑量組P<0.05,5 min時中劑量組P<0.01),但抑制作用持續(xù)時間短,30 min時間點處BCP雖使自主活動有降低趨勢,但各給藥組間自主活動差異無統(tǒng)計學(xué)意義(Fig 1A)。統(tǒng)計各組30 min內(nèi)總自主活動次數(shù)發(fā)現(xiàn),0.54、1.08、2.16 g· kg-1明顯抑制SD大鼠自主活動,且差異具有顯著性(P<0.01),說明該藥能作用于大腦發(fā)揮作用(Fig 1B)。
2.2 BCP對AD模型大鼠空間認(rèn)知功能的影響 水迷宮實驗結(jié)果發(fā)現(xiàn),隨訓(xùn)練天數(shù)延長,逃避潛伏期逐漸縮短,說明大鼠空間記憶力訓(xùn)練有效。測試結(jié)果顯示,注射WT+GFX激活GSK-3β活性造模后,大鼠尋找平臺的潛伏期無論是與注射前比較,還是與對照組比較,均明顯延長(P<0.01),見Fig 2A,且游泳軌跡雜亂無章(Fig 2B),明顯引起大鼠空間學(xué)習(xí)記憶障礙。預(yù)先給予低、中、高劑量BCP可明顯改善大鼠空間學(xué)習(xí)記憶障礙(P<0.05),逃避潛伏期明顯縮短,且呈劑量依賴性,見Fig 2A。與模型組相比,各劑量BCP還能明顯改善大鼠搜尋策略,游泳運行軌跡接近正常的直線型(Fig 2B)。上述結(jié)果發(fā)現(xiàn),低、中、高劑量BCP能有效改善WT+GFX激活GSK-3β活性引起的大鼠空間學(xué)習(xí)記憶障礙。
Fig 1 BCP inhibits independent behavior activities of SD rats(±s,n=10)
A:After intragastric administration of BCP, the rat autonomous behavior activities in each group all showed a declining trend and the differences in low-dose and middle-dose groups had statistical significance compared with blank group in 30 minutes; B: BCP significantly inhibited the total number of rat autonomic behavior activities in 30 minutes.*P<0.05,**P<0.01vscontrol
2.3 BCP對AD模型大鼠腦海馬GSK-3β活性的影響 與對照組相比,AD模型大鼠腦海馬總GSK-3β表達(dá)量升高,同時表現(xiàn)非活性GSK-3β的S9-GSK-3β(即GSK-3β第9位絲氨酸被磷酸化)表達(dá)量與總GSK-3β表達(dá)量之間的比值下降,且差異有顯著性(P<0.05),表現(xiàn)其活性的T216-GSK-3β(即GSK-3β第216位蘇氨酸被磷酸化)表達(dá)量與總GSK-3β表達(dá)量之間的比值上調(diào),差異也具有顯著性(P<0.05),表明造模成功。而與模型組相比,BCP低、中、高治療組其S9-GSK-3β表達(dá)量比值升高,差異有顯著性(P<0.05),而T216-GSK-3β表達(dá)量比值下調(diào),差異有顯著性(P<0.05),二者均呈劑量依賴性(Fig 3A、3B)。結(jié)果表明,低、中、高不同劑量BCP均能下調(diào)GSK-3β活性并具劑量依賴性。
Fig 2 BCP prevents rats from WT+GFX induced spatial memory retention dysfunction(±s,n=8)
A:BCP shortened the escape latency of WT+GFX injected rats and the therapeutic effect of BCP was dose-dependent; B: BCP improved the swimming pathway which was recorded 24 h after the injection of WT+GFX (after). The results showed that WT+GFX injected rats lost their directional bearings and thus employed random search strategy rather than straight search strategy. Control rats did not change much in their pathway to find the hidden platform. BCP significantly inhibited WT+GFX induced impairment of spatial memory retention.**P<0.01vscontrol;##P<0.01vsbefore WT+GFX injection;ΔP<0.05vsafter WT+GFX injection
Fig 3 Effects of BCP on WT+GFX induced overactivation of GSK-3β(±s, n=6)
A: Western blot results showed the activity of GSK-3β in AD model group was up-regulated compared with the blank group and BCP inhibited the high activity of GSK-3β induced by WT+GFX; B: BCP decreased the level of T216 GSK-3β phosphorylation and increased the level of S9 GSK-3β phosphorylation and the results had statistical significance.*P<0.05vscontrol (DMSO);#P<0.05vsWT+GFX injection
2.4 BCP對AD模型大鼠腦海馬Tau蛋白磷酸化的影響 運用Western blot檢測模型大鼠腦海馬組織Tau蛋白磷酸化水平并進(jìn)行分析。結(jié)果發(fā)現(xiàn),Tau蛋白pT231、pS262、pS396、pS404等4個位點磷酸化水平在AD模型大鼠腦海馬中明顯高于對照組,且差異具有顯著性(P<0.05),而BCP低、中、高治療組Tau蛋白4個位點的磷酸化水平低于模型組(P<0.05),且呈劑量依賴性,見Fig 4A、4B。同時應(yīng)用免疫組化實驗檢測腦海馬CA3區(qū)Tau蛋白磷酸化水平,發(fā)現(xiàn)AD模型大鼠CA3區(qū)Tau蛋白磷酸化水平明顯高于對照組,差異有顯著性(P<0.05)。給予BCP低、中、高劑量后,其CA3區(qū)磷酸化水平均明顯低于模型組,差異具有顯著性(P<0.05),且呈劑量依賴性(Fig 4C、4D)。
2.5 尼氏染色結(jié)果 對照組可見腦海馬CA1、CA3區(qū)神經(jīng)元排列整齊密集,胞體飽滿,著色較深,核大而圓,可見較多尼氏小體。而模型大鼠腦海馬CA1、CA3區(qū)神經(jīng)元數(shù)量稀少,著色淺,胞體萎縮呈空泡狀,尼氏小體少見。而BCP低、中、高劑量組腦海馬CA1、CA3區(qū)神經(jīng)元恢復(fù)較好,數(shù)量多,胞體較為飽滿,著色較深,核較大而圓,可見較多尼氏小體,特別是高劑量BCP更能明顯恢復(fù)尼氏小體(Fig 5A、5B)。
AD是世界各國最為常見老年癡呆癥,對社會及家庭危害極大,目前尚無根治辦法[1]。較多文獻(xiàn)[14]證明GSK-3β活性升高是導(dǎo)致SP和NFT產(chǎn)生的重要因素,因此,下調(diào)GSK-3β活性成為治療AD的關(guān)鍵所在[15]。
研究發(fā)現(xiàn),包括BCP在內(nèi)的很多中藥具有防治AD的作用[16-17]。因此,我們先用過度激活GSK-3β活性模擬AD大鼠模型,然后嘗試運用BCP來治療該類型AD。首先,我們檢測了BCP對大鼠自主活動的影響,結(jié)果表明BCP可能透過血腦屏障作用于中樞神經(jīng)而起到抑制中樞神經(jīng)作用,但由于黨參主要成分為多糖,代謝較快,因此認(rèn)為該抑制作用較短暫,不會影響后續(xù)行為學(xué)實驗。應(yīng)用BCP時,同步進(jìn)行水迷宮實驗以檢測大鼠空間學(xué)習(xí)記憶能力,結(jié)果顯示模型大鼠空間認(rèn)知功能下降,記憶力減退。注射WT+GFX的大鼠運用低、中、高劑量BCP后可明顯改善這種空間認(rèn)知功能障礙,并呈劑量依賴性。行為學(xué)實驗結(jié)果說明BCP可透過血腦屏障作用于大腦,可在一定程度上改善AD認(rèn)知功能障礙。文獻(xiàn)報道海馬與短期記憶能力密切相關(guān),而海馬CA1、CA3區(qū)是其關(guān)鍵部位,對學(xué)習(xí)記憶信息儲存尤為關(guān)鍵,其GSK-3β活性升高所導(dǎo)致Tau蛋白過度磷酸化水平又與癡呆程度密切相關(guān)[16,18-20]。因此,我們首先應(yīng)用Western blot技術(shù)檢測了模型大鼠腦海馬組織內(nèi)GSK-3β表達(dá)情況,同時還檢測了GSK-3β特異位點磷酸化情況,結(jié)果發(fā)現(xiàn)GSK-3β活性升高,表明造模成功。同樣的方法又檢測了灌服BCP的模型大鼠腦海馬組織內(nèi)GSK-3β活性情況,結(jié)果發(fā)現(xiàn)該激酶活性明顯下降,這一結(jié)果表明,BCP具有降低GSK-3β活性的作用。
A: Western blot results showed the level of multiple phosphorylation sites of Tau in AD model group rat hippocampus was increased than that in the blank group. Compared with AD model group, BCP decreased the level of multiple phosphorylation sites of Tau; B: Western blot results of multiple phosphorylation sites of Tau had statistical significance; C: Immunohistochemistry results showed the level of Tau S404 phosphorylation in AD model group was increased than that in blank group in the area of CA3. Compared with AD model group, BCP decreased the level of Tau phosphorylation; D: The immunohistochemistry results of Tau S404 phosphorylation had statistical significance.*P<0.05vscontrol;#P<0.05vsWT+GFX injection
A: Nissl′s staining results showed the number of Nissl′s bodies in neuron cells of hippocampus in hippocampal CA3 was obviously less than that in blank group, and BCP markedly increased the number of Nissl′s bodies in neuron cells; B: Nissl′s staining results of the number of Nissl′s bodies had statistical significance.**P<0.01vscontrol;#P<0.05,##P<0.01vsWT+GFX injection
由于GSK-3β是導(dǎo)致Tau蛋白過度磷酸化的關(guān)鍵激酶之一,因此有必要檢測Tau蛋白磷酸化水平以驗證BCP是否對AD大鼠具有防治作用。Western blot結(jié)果發(fā)現(xiàn),BCP低、中、高劑量組大鼠腦海馬區(qū)Tau蛋白pS262、pS356、pS396、pS404等4個位點的磷酸化水平明顯低于模型組,表明BCP確能通過降低GSK-3β進(jìn)而下調(diào)Tau蛋白多個位點的磷酸化水平。該結(jié)果與其它中藥作用結(jié)果類似[21]。近年來,對Tau蛋白磷酸化位點的研究發(fā)現(xiàn),Tau蛋白第Ser404位點是GSK-3β活化后誘導(dǎo)的AD中一個特異性修飾位點,其磷酸化(pS404)具有使Tau變成毒性分子,從而拮抗微管相關(guān)蛋白正常生理功能并導(dǎo)致AD發(fā)生[3,8,22]。因此,我們應(yīng)用了免疫組化實驗來檢測各組大鼠腦海馬CA1和CA3區(qū)Tau蛋白pS404位點磷酸化水平,結(jié)果表明BCP仍然可降低AD模型大鼠CA1、CA3區(qū)Tau蛋白pS404位點磷酸化水平,特別是CA3區(qū)尤為明顯(P<0.05)且呈劑量依賴性。該結(jié)果與Western blot結(jié)果一致。因此,我們有理由相信BCP確能降低Tau蛋白磷酸化水平,進(jìn)而改善AD模型大鼠認(rèn)知功能障礙。而尼氏染色結(jié)果表明,BCP具有促進(jìn)AD模型大鼠腦海馬神經(jīng)元內(nèi)已溶解的尼氏小體重現(xiàn),進(jìn)而恢復(fù)其合成蛋白質(zhì)的功能,達(dá)到保護(hù)海馬神經(jīng)元、促進(jìn)神經(jīng)發(fā)育的作用。
上述實驗結(jié)果表明,BCP可改善AD大鼠的空間認(rèn)知功能障礙,其機制可能是通過下調(diào)GSK-3β活性,進(jìn)而降低海馬神經(jīng)元內(nèi)Tau的過度磷酸化,同時促進(jìn)海馬神經(jīng)元的發(fā)育和保護(hù)作用。查閱文獻(xiàn),尚未發(fā)現(xiàn)BCP對GSK-3β的活性具有調(diào)節(jié)功能并通過這種調(diào)節(jié)功能達(dá)到預(yù)防性治療AD的目的,此為本實驗新發(fā)現(xiàn)。該發(fā)現(xiàn)表明,具有“補中益氣補血”功效之中藥BCP對AD具有一定防治或延緩作用,值得臨床推廣應(yīng)用。但由于其成分較為復(fù)雜,有賴于在后續(xù)研究中進(jìn)一步明確其防治AD的有效成分。
(致謝: 本文實驗在湖北民族學(xué)院醫(yī)學(xué)院神經(jīng)精神共患病研究所實驗室和生物資源保護(hù)與利用湖北省重點實驗室完成,在此,對兩個實驗室的各位老師及同學(xué)表示衷心感謝!)
[1] Querfurth H W, LaFerla F M. Alzheimer′s disease[J].NEnglJMed, 2010, 362(4): 329-44.
[2] Sagare A P, Bell R D, Zlokovic B V. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer′s disease[J].JAlzheimersDis, 2013, 33(Suppl 1): S87-100.
[3] Wang J Z, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons[J].ProgNeurobiol, 2008, 85(2): 148-75.
[4] Mandelkow E M, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration[J].ColdSpringHarbPerspectMed, 2012, 2(7): a006247.
[5] Luo H B, Xia Y Y, Shu X J, et al. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination[J].ProcNatlAcadSciUSA, 2014, 111(46): 16586-91.
[6] Bukar M M, Al-Hilaly Y K, Serpell L C. Nuclear tau and its potential role in Alzheimer′s disease[J].Biomolecules, 2016,6(1): 9.
[7] Khan S S, Bloom G S. Tau: the center of a signaling nexus in Alzheimer′s disease[J].FrontNeurosci, 2016, 10(1): 31.
[8] Wang J, Wang X, Liu R, et al.Invitroanalysis of tau phosphorylation sites and its biological activity[J].ChinMedSciJ, 2002, 17(1):13-6.
[9] Liu S J, Zhang A H, Li H L, et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory[J].JNeurochem, 2003, 87(6): 1333-44.
[10]黃麗亞, 葉嗣穎. 黨參注射液上調(diào)抗氧化酶表達(dá)作用的實驗研究[J]. 中國老年學(xué)雜志,2006,26(1):70-1.
[10]Huang L Y, Ye S Y. Study on the effect of Codonopsis pilosula injection increase the expression of antioxidant enzymes[J].ChinJGerontol, 2006, 26(1): 70-1.
[11]朱永紅, 呂 盼, 歐曉群. 板橋黨參的研究現(xiàn)狀[J]. 亞太傳統(tǒng)醫(yī)藥,2012,8(3):189-90.
[11]Zhu Y H, Lyu P, Ou X Q. Research status of BanqiaoCodonopisisPilosula[J].Asia-PacTraditMed, 2012, 8(3):189-90.
[12]姜 霞. L-肉毒堿在Alzheimer樣Tau蛋白過度磷酸化和空間記憶障礙中的保護(hù)作用[D].武漢:華中科技大學(xué), 2008.
[12]Jiang X. Effect of L-Carnitine on Alzheimer-like tau hyperphosphorylation and spatial memory retention deficits[D]. Wuhan: Huazhong University of Science and Technology, 2008.
[13]姜 霞. 空間學(xué)習(xí)對AD模型鼠海馬突觸可塑性及神經(jīng)發(fā)生的影響[D].武漢:華中科技大學(xué),2012.
[13]Jiang X. Roles of spatial learning in synaptic plasticity and neurogenesis in Alzheimer′s disease models[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[14]Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer′s disease[J].EurJMedChem, 2016, 107(7): 63-81.
[15]Shim S S, Stutzmann G E.Inhibition of glycogen synthase kinase-3: an emerging target in the treatment of traumatic brain injury[J].JNeurotrauma, 2016, 33(23): 2065-76.
[16]陳地靈,陳 鵬,林 勵,等. 巴戟天低聚糖對Aβ25-35致擬癡呆模型大鼠學(xué)習(xí)記憶障礙的影響[J]. 中國藥理學(xué)通報,2013,29(2):271-6.
[16]Chen D L, Chen P, Lin L, et al. Effect of oligosaccharides fromMorindaOfficinalison β-amyloid-induced learning and memory dysfunction in rats[J].ChinPharmacolBull, 2013, 29(2): 271-6.
[17]李 林,張 蘭. 中藥治療阿爾茨海默病的作用特點[J]. 生物化學(xué)與生物物理進(jìn)展,2012,39(8):816-28.
[17]Li L, Zhang L. Action characteristics of traditional Chinese medicine in treatment of Alzheimer′s disease[J].ProgBiochemBiophys, 2012, 39(8): 816-28.
[18]Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer′s disease[J].ExpertOpinTherTargets, 2014, 18(1): 69-77.
[19]Ma T. GSK3 in Alzheimer′s disease: mind the isoforms[J].JAlzheimersDis, 2014, 39(4): 707-10.
[20]King M K, Pardo M, Cheng Y, et al. Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments[J].PharmacolTher, 2014, 141(1): 1-12.
[21]張 雄,李 昱. 姜黃素通過抑制GSK-3β的活性防治AD的體外研究[J]. 中國藥理學(xué)通報,2009,25(11):1507-12.
[21]Zhang X, Li Y. Curcum in inhibits the activity of GSK-3β to prevent ADinvitro[J].ChinPharmacolBull, 2009, 25(11): 1507-12.
[22]Alonso Adel C, Mederlyova A, Novak M, et al. Promotion of hyperphosphorylation by frontotemporal dementia Tau mutation[J].JBiolChem, 2004, 279(33): 34878-81.
BanqiaoCodonopisisPilosulaimproves cognitive dysfunction induced by high GSK-3β activity and its possible mechanism
LUO Hong-bin, LIU Xiang-yu, MOU Nan-qiao, CHEN Wei, FAN Sha-sha, XIE Wen-zhi, SHANG Nan, YANG Chen-yu, XIE Feng-feng, CHEN Qin, WEI Zheng
(KeyLabofBiologicResourcesProtectionandUtilizationofHubeiProvince;DeptofBiochemistryandMolecularBiology,MedicalCollege;InstituteofNeurologicalandPsychiatricComorbidity,HubeiUniversityforNationalities,EnshiHubei445000,China)
Aim To assess the effects of BanqiaoCodonopisisPilosula(BCP) decoction on learning and memory dysfunction in AD model rats induced by high activity GSK-3β and its possible mechanism.Methods The SD rats(4 months old, ♂) were divided into five groups, namely, sham-operated group(blank group), AD model group, BCP high-dose(2.16 g·kg-1·d-1) group, BCP medium-dose(1.08 g·kg-1·d-1) group, and BCP lower-dose(0.54 g·kg-1·d-1) group. Treatment group
BCP decoction by gavage once a day for 14 days, while other groups were offered drinking water by gavage once a day for 14 days. The autonomous behavior activities of all rats were observed and recorded after gavage. In the last seven days by gavage, Morris water maze test was used to test the spatial learning and memory ability of the five groups. After five days training, treatment groups and AD model group were injected wortmannin(WT, PI3K specific inhibitor) and GF-109203X(GFX, PKC specific inhibitor)(100 μmol·L-1of each, total volume of 10 μL) into the right lateral ventricle of the rats. The blank group was only injected 2% DMSO. The spatial memory retention was detected by water maze 24 hours after lateral ventricle injection. Then, changes in the spatial learning memory of rats were observed. The level of Tau phosphorylation in SD rat hippocampus and the expression and activity changes of related protein kinase GSK-3β were detected by Western blot and immunohistochemistry. The changes of Nissl bodies in SD rat hippocampus were observed by Nissl′s staining.Results After intragastric administration of BCP, the rat autonomous behavior activities in each group all showed a declining trend, and the differences in low-dose and middle-dose groups had statistical significance compared with blank group. The Morris water maze tests showed that the latency navigation of model group was significantly longer than that of blank group(P<0.01), while that of the BCP three doses groups was shorter than that of model group(P<0.05).Compared with the same group, the latency navigation of the three groups after gavage BCP low, middle and high dose was significant shorter than that without gavage(P<0.05). Western blot results showed that the activity of GSK-3β in AD model group was up-regulated compared with the blank group. However, BCP inhibited activity of GSK-3β. Western blot and immunohistochemistry results showed the level of Tau phosphorylation in AD model group was increased compared with the blank group in the area of CA3(P<0.05). Compared with AD model group, the level of Tau phosphorylation was decreased in treatment group. Nissl′s staining results showed that dendritic spines in AD model group was significantly attenuated compared with the blank group(P<0.05). Far more dendritic spines were observed in treatment group than in AD model group. The number of Nissl′s bodies in neuron cells of hippocampus in hippocampal CA3 was obviously larger in treatment groups than in AD model group. These effect of BCP was dose-dependent.Conclusions BCP can prevent the learning and memory dysfunction in AD model rats induced by high activity of GSK-3β. The mechanism may be related to inhibiting GSK-3β activity and then reducing the level of phosphorylation of Tau and improving neural development.
Alzheimer′s disease; BanqiaoCodonopisisPilosula(BCP); GSK-3β; Tau phosphorylation; learning and memory ability; water maze test
2017-05-18,
2017-06-20
國家自然科學(xué)基金資助項目(No 81260172,81660223);湖北民族學(xué)院科技創(chuàng)新團(tuán)隊項目(No MY2011T005);湖北民族學(xué)院博士基金啟動項目(No MY2012B015);生物資源保護(hù)與利用湖北省重點實驗室開放基金項目(No PKLHB1318)
羅洪斌(1968-),男,博士,副教授,碩士生導(dǎo)師,研究方向:神經(jīng)退行性疾病的發(fā)病分子機制,通訊作者,E-mail:luohongbin6809@126.com; 劉翔宇(1990-),男,碩士生,研究方向:中醫(yī)藥對神經(jīng)退行性疾病的防治,并列第一作者,E-mail:1013972335@qq.com
時間:2017-7-7 11:04 網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/34.1086.R.20170707.1104.012.html
10.3969/j.issn.1001-1978.2017.08.006
A
1001-1978(2017)08-1060-08
R-332;R282.71;R322.81;R338.64; R745.702.2;R977.3