朱新夢,董雯怡,王洪媛,嚴(yán)昌榮,劉宏斌,劉恩科※
(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所/農(nóng)業(yè)部旱作節(jié)水農(nóng)業(yè)重點(diǎn)開放實(shí)驗(yàn)室,北京 100081;2. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)部面源污染控制重點(diǎn)實(shí)驗(yàn)室,北京 100081)
牛糞堆肥方式對溫室氣體和氨氣排放的影響
朱新夢1,董雯怡1,王洪媛2,嚴(yán)昌榮1,劉宏斌2,劉恩科1※
(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所/農(nóng)業(yè)部旱作節(jié)水農(nóng)業(yè)重點(diǎn)開放實(shí)驗(yàn)室,北京 100081;2. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)部面源污染控制重點(diǎn)實(shí)驗(yàn)室,北京 100081)
為明確堆肥過程中溫室氣體和氨氣排放規(guī)律以及產(chǎn)生的總溫室效應(yīng),在云南省大理州開展堆肥試驗(yàn),并以奶牛糞便為試驗(yàn)材料,研究了農(nóng)民堆肥(FC)、覆蓋堆肥(CC)、覆蓋-翻堆堆肥(CTC)和覆蓋通風(fēng)-翻堆堆肥(CATC)4種堆肥方式對溫室氣體和氨氣排放的影響。結(jié)果表明:覆蓋通風(fēng)-翻堆堆肥(CATC)可提高堆肥腐熟度,有效降低 CH4和N2O排放,但并沒降低CO2和NH3排放;與農(nóng)民堆肥(FC)相比,覆蓋堆肥(CC)的CH4排放量增加了48.7%,而N2O和 NH3排放量與農(nóng)民堆肥(FC)基本一致;覆蓋-翻堆堆肥(CTC)雖然提高了腐熟度,但 CH4、CO2和 NH3排放量較大;堆肥結(jié)束時(shí),4個(gè)處理的總溫室效應(yīng)分別為25.6、32.9、38.1及18.0 kg/t;溫度與CH4、CO2、N2O和NH3排放速率均極顯著相關(guān),pH值顯著影響N2O和NH3的排放。因此,覆蓋通風(fēng)-翻堆堆肥(CATC)不僅能夠滿足堆肥產(chǎn)品的腐熟度要求,而且能夠減少總溫室效應(yīng),再加上其操作簡便,能夠在生產(chǎn)中推廣應(yīng)用。
堆肥;糞便;溫室氣體;氨氣;腐熟度
朱新夢,董雯怡,王洪媛,嚴(yán)昌榮,劉宏斌,劉恩科. 牛糞堆肥方式對溫室氣體和氨氣排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):258-264. doi:10.11975/j.issn.1002-6819.2017.10.034 http://www.tcsae.org
Zhu Xinmeng, Dong Wenyi, Wang Hongyuan, Yan Changrong, Liu Hongbin, Liu Enke. Effects of cattle manure composting methods on greenhouse gas and ammonia emissions[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(10): 258-264. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.10.034 http://www.tcsae.org
隨著人們對畜禽產(chǎn)品需求量的不斷增加,養(yǎng)殖規(guī)模持續(xù)擴(kuò)大,大量排放的畜禽糞便造成的環(huán)境污染日益嚴(yán)重。據(jù)估算,2013年全國畜禽糞便總量為15.1億t[1],如果不能及時(shí)有效地處理這些畜禽糞便,將會對環(huán)境生態(tài)系統(tǒng)產(chǎn)生危害,制約經(jīng)濟(jì)發(fā)展,影響人類生活。奶牛業(yè)在中國畜禽養(yǎng)殖業(yè)中占有舉足輕重的地位,2013年全國奶牛存欄量為1 441.0萬頭[2],而奶牛的糞便排泄系數(shù)為19.4 t/a[3],規(guī)?;B(yǎng)殖(100頭奶牛以上)占全國奶牛數(shù)量的37%左右[4]。因此,有效地將奶牛糞便進(jìn)行無害化、資源化和綜合化利用非常重要。
堆肥是一種環(huán)境友好型回收和處理畜禽糞便的方法,能夠?qū)⑿笄菁S便轉(zhuǎn)變?yōu)榉€(wěn)定的、富含腐殖質(zhì)的有機(jī)肥[5-6]。但是堆肥管理措施不當(dāng)將會排放大量的溫室氣體和氨氣。CH4和N2O具有較強(qiáng)的全球變暖潛力,在不同堆肥條件下的排放量分別占碳素?fù)p失和氮素?fù)p失量的0.01%~8%和 0.1%~5%[6]。NH3揮發(fā)不僅會降低堆肥產(chǎn)品的肥力,并且屬于有毒氣體,被列入首要惡臭污染物[7]。堆肥過程中9.6%~46%的氮以NH3的形式損失,占氮素總損失量的79%~94%[8]。因此,如何減少堆肥過程中溫室氣體和氨氣排放成為當(dāng)前亟待解決的問題。
堆肥方式對堆肥過程中溫室氣體和氨氣排放有很大的影響。農(nóng)民堆肥(FC)、覆蓋堆肥(CC)、覆蓋-翻堆堆肥(CTC)和覆蓋通風(fēng)-翻堆堆肥(CATC)是現(xiàn)階段普遍采用的4種堆肥方式[9-10]。Tao等[11]研究發(fā)現(xiàn),與農(nóng)民堆肥(FC)相比,覆蓋堆肥(CC)CH4排放量增加了33%~45%,NH3排放量減少了4%~34%。Szanto等[12]在豬糞堆肥中發(fā)現(xiàn),和不翻堆堆肥相比,覆蓋-翻堆堆肥(CTC)增加了NH3揮發(fā)量,減少了CH4和N2O排放量。Ahn等[6]報(bào)道了奶牛糞便堆肥過程中覆蓋-翻堆堆肥(CTC)產(chǎn)生的CH4、CO2和N2O分別是不翻堆堆體的1.4、1.1和3.5倍。前人研究主要針對某一種或幾種堆肥方式對溫室氣體和氨氣排放的影響[5-6,11-13],但關(guān)于不同堆肥方式對溫室氣體和氨氣排放以及對總溫室效應(yīng)影響的系統(tǒng)研究仍然不十分明確。因此,本研究分析了農(nóng)民堆肥(FC)、覆蓋堆肥(CC)、覆蓋-翻堆堆肥(CTC)和覆蓋通風(fēng)-翻堆堆肥(CATC)4種堆肥方式下溫室氣體和氨氣的排放特征及環(huán)境影響因子,結(jié)合堆肥產(chǎn)品的發(fā)芽指數(shù),綜合得到最佳的堆肥方式,為優(yōu)化牛糞無害化堆肥工藝和減輕堆肥過程中的二次污染提供理論支持依據(jù)。
1.1 試驗(yàn)材料
試驗(yàn)地點(diǎn)設(shè)在云南省大理州下關(guān)鎮(zhèn)葭蓬村(100°13¢N、25°34¢E),試驗(yàn)所用奶牛糞便來自云南省大理州感通奶牛場。新鮮牛糞的含水率為77.2%,全氮質(zhì)量分?jǐn)?shù)為 23.2 g/kg,風(fēng)干的水稻秸稈用機(jī)械粉碎機(jī)粉碎成5~10 cm的小段,全氮質(zhì)量分?jǐn)?shù)為4.8 g/kg。
1.2 試驗(yàn)設(shè)計(jì)
堆肥在圓柱型鐵制反應(yīng)槽中進(jìn)行,其規(guī)格為:內(nèi)徑1.8 m,高0.4 m,壁厚0.5 cm,體積1.1 m3(圖1)。每個(gè)鐵槽用鐵板隔成4個(gè)體積相同的部分。試驗(yàn)設(shè)置4個(gè)處理,每個(gè)處理 4次重復(fù),每個(gè)處理使用一個(gè)反應(yīng)槽,具體試驗(yàn)設(shè)計(jì)見表1。每個(gè)處理牛糞165.0 kg,風(fēng)干的水稻秸稈6.5 kg,將二者混合均勻后裝入反應(yīng)槽中。堆肥時(shí)間從2015-12-24到2016-02-25,整個(gè)試驗(yàn)持續(xù)64 d。
圖1 堆肥反應(yīng)裝置Fig.1 Composting reactors
表1 試驗(yàn)設(shè)計(jì)Table 1 Design of experiment
1.3 測定和分析方法
1.3.1 堆肥溫度的測定
在試驗(yàn)過程中,將溫度探頭(HIOKI)放在堆肥的中央位置,每天監(jiān)測堆肥在09:00、12:00和23:00 3個(gè)時(shí)間點(diǎn)的溫度,取其平均值代表當(dāng)天的堆肥溫度,同時(shí)監(jiān)測環(huán)境溫度。
1.3.2 牛糞樣品的采集與測定
分別在堆肥的上、中、下位置取樣,混合均勻,并按照四分法進(jìn)行采集。于堆肥的第1、4、7、15、25、37、49和64 d采集樣品。稱取10 g新鮮牛糞樣品,按1:10(質(zhì)量體積比)的比例加入去離子水進(jìn)行浸提,振蕩30 min,離心5 min,取上清液測定pH值和EC值。將20粒水稻種子均勻地播種到培養(yǎng)皿中,然后加入 8 mL上清液,在25 ℃培養(yǎng)箱黑暗條件下培養(yǎng)48 h,并以去離子水作為空白對照。發(fā)芽指數(shù)計(jì)算公式為:
1.3.3 溫室氣體的采集與測定
溫室氣體樣品在堆肥的第1、2、4、7、11、15、21、25、29、33、37、41、45、49、54、59 和 64 天采集。CH4、CO2和N2O采用靜態(tài)箱法采集[6],采集時(shí)間在上午的09:00—11:00,其濃度用安裝有火焰電離檢測器(flame ionization detector,F(xiàn)ID)和電子捕獲檢測器(electron capture detector,ECD)的氣相色譜測定。溫室氣體排放通量計(jì)算公式為:
式中F為氣體排放通量,mg/(m2·h),正值為排放,負(fù)值為吸收;A為采樣箱的底面積,m2;V為采樣箱體積,m3;m1、m2為采樣箱閉合前和開啟前箱內(nèi)氣體的質(zhì)量,g;t1、t2為采樣箱閉合前和開啟前的時(shí)刻;T1、T2為采樣箱閉合前和開啟前箱內(nèi)溫度,℃;C1、C2為采樣箱關(guān)閉前和開啟前溫室氣體的體積分?jǐn)?shù);M0為氣體的摩爾質(zhì)量,g/mol;22.4為101.325 kPa、273 K時(shí)的氣體摩爾體積,L/mol。
1.3.4 NH3的采集與測定
堆肥過程中 NH3的采集采用通氣法[14-15]。樣品帶回實(shí)驗(yàn)室后,加入250 mL KCl(1 mol/L)溶液,經(jīng)振蕩1 h后過濾,過濾液中的 NH4+用流動注射分析儀(SYSTEA EasyChem,Italy)進(jìn)行測定。NH3的采集頻率以及采集時(shí)間與溫室氣體相同。NH3揮發(fā)計(jì)算公式為:
式中f為氨氣排放通量,mg/(m2·h);C為浸提液中氨氮的質(zhì)量濃度,mg/L;Vl為浸提液的體積,mL;S為吸收氨氣的海綿的有效面積,m2;t為采樣時(shí)長,h。
1.4 數(shù)據(jù)處理
本研究的數(shù)據(jù)處理采用Microsoft Excel 2010軟件,并用 origin 8.0軟件作圖。用 SPSS 19.0軟件進(jìn)行單因素方差分析(ANOVA)、多重比較(LSD-t)以及相關(guān)性分析。
2.1 堆肥過程中堆肥溫度、pH值和EC值變化
本研究中環(huán)境溫度和 4個(gè)處理的堆肥溫度隨堆肥進(jìn)程變化情況如圖2a所示。4個(gè)處理的堆肥溫度在第2 天均開始升高,F(xiàn)C的堆肥溫度在整個(gè)堆肥過程中始終低于35 ℃,CC、CTC、CATC分別在堆肥第4、13、8 天達(dá)到最高溫度 56.5、55.0、63.9 ℃,其高溫(>50 ℃)持續(xù)時(shí)間分別為11、14、18 d。4個(gè)處理在堆肥第45天均出現(xiàn)二次升溫現(xiàn)象,堆肥結(jié)束時(shí) 4個(gè)處理的堆肥溫度均接近環(huán)境溫度。
圖2 堆肥過程中溫度、pH值、電導(dǎo)率和發(fā)芽指數(shù)(GI)變化Fig.2 Changes of temperature, pH value, EC value and germination index (GI) in composting process
4個(gè)處理pH值的變化如圖2b所示,在堆肥過程中pH值總體上升,且在7.8~8.5之間變化。在堆肥第5天后,CATC的pH值始終大于其他處理。第50天后,所有處理的pH值趨于平穩(wěn)。堆肥結(jié)束時(shí),CATC的pH值為8.5,極顯著大于其他處理(P<0.01);CC的pH值最小,僅為8.2,且FC和CC之間無顯著性差異;CTC的pH值為8.3。
堆肥過程中EC值的變化趨勢如圖2c所示。堆肥前4天,4個(gè)處理的電導(dǎo)率都在一定程度上有所提高,堆肥第4~25天EC值又有所下降。堆肥結(jié)束時(shí),CATC的電導(dǎo)率趨于穩(wěn)定,并且最低,僅為4.8 mS/cm。而CTC的電導(dǎo)率最大,為5.6 mS/cm。
2.2 堆肥過程中發(fā)芽指數(shù)(GI)變化
由圖2d可以明顯地看出,堆肥初期,4個(gè)處理的發(fā)芽指數(shù)均略有下降。堆肥結(jié)束時(shí),F(xiàn)C和CC的發(fā)芽指數(shù)(GI)偏低,僅為65.9%和84.8%,CTC和CATC的發(fā)芽指數(shù)分別為110.4%和117.9%,且CTC和CATC與FC和CC之間均具有顯著性差異(P<0.05)。
2.3 堆肥過程中溫室氣體和 NH3排放動態(tài)變化及累計(jì)排放量
2.3.1 堆肥過程中溫室氣體排放動態(tài)變化及累計(jì)排放量
如圖3a,F(xiàn)C、CC、CTC及CATC在堆肥第7、4、25及 21天出現(xiàn)排放峰值,分別為 59.3、32.8、70.7及27.3 g/(t·d)。除個(gè)別取樣時(shí)間外,CTC的CH4排放速率始終大于CATC,CC的CH4排放速率始終大于FC,并且CC及CTC的CH4排放持續(xù)時(shí)間較長。
圖3 堆肥過程中溫室氣體和NH3排放動態(tài)變化Fig.3 Dynamics of greenhouse gas and NH3emissions in composting process
FC、CC、CTC及CATC 64 d的CH4累計(jì)排放量分別為0.6、0.9、1.3及0.5 kg/t(圖4a)。與FC相比,CC的CH4累計(jì)排放量增加了48.7%,而CATC的CH4累計(jì)排放量分別是FC、CC和CTC的80.0%、53.4%和37.0%。
圖4 堆肥過程中溫室氣體和NH3累計(jì)排放量動態(tài)變化Fig.4 Dynamics of accumulative emissions of greenhouse gas and NH3in composting process
從圖3b可以看出,堆肥初始階段各處理的CO2排放速率迅速增加,之后呈鋸齒狀波動,并出現(xiàn)多次峰值。FC和CC分別在堆肥第7天和第21天出現(xiàn)最大峰值2.2和2.5 kg/(t·d),CTC和CATC均在堆肥第25天出現(xiàn)最大峰值,分別為3.2和4.0 kg/(t·d)。堆肥第45天后,4個(gè)處理的CO2排放速率又明顯增加,第54天后CO2排放速率逐漸降低。
FC、CC、CTC及CATC的 CO2累計(jì)排放量分別為43.2、80.5、108.2及114.1 kg/t(圖4b)。數(shù)據(jù)分析結(jié)果表明,與FC相比,CATC能夠極顯著增加CO2的排放量(P<0.01),CTC與CATC之間無顯著性差異。
由圖3c可以看出,F(xiàn)C、CC及CATC在堆肥前11 天N2O排放不明顯,第12天后其N2O排放速率均開始急劇增加,而CTC在第25天后才有明顯的N2O排放。FC和CC的N2O排放較為相似,均在堆肥第15天達(dá)到峰值,分別為1.6和1.4 g/(t·d),堆肥結(jié)束時(shí)仍有N2O排放。CTC在第49 天達(dá)到排放峰值1.7 g/(t·d),第54天后沒有明顯的N2O排放。CATC在第21天的峰值為2.9 g/(t·d),隨后其N2O排放速率急劇下降,堆肥第30天后N2O排放已基本停止。
由N2O的累計(jì)排放量來看(圖4c),F(xiàn)C、CC、CTC和CATC分別為36.3、37.0、21.6和21.1 g/t,CATC的N2O累計(jì)排放量最少,僅是FC及CC的58.3%及57.6%。CATC與FC及CC之間均為極顯著差異(P<0.01),CATC和CTC之間無顯著性差異。
2.3.2 堆肥過程中NH3排放動態(tài)變化及累計(jì)排放量
由圖3d可以看出,F(xiàn)C和CC的NH3揮發(fā)均在堆肥第11天達(dá)到峰值,分別為151.1和228.4 g/(t·d);CTC的NH3揮發(fā)在第15天達(dá)到峰值275.5 g/(t·d);而CATC在第7和第15天出現(xiàn)峰值,分別為412.3和574.8 g/(t·d)。FC、CC及CTC的NH3揮發(fā)分別在堆肥第25、30、38天后基本停止。CATC的NH3揮發(fā)時(shí)間較短,堆肥第15天后迅速下降,到堆肥第20天時(shí),已經(jīng)沒有明顯的NH3揮發(fā)。
堆肥結(jié)束時(shí),F(xiàn)C、CC、CTC及CATC的NH3累計(jì)排放量分別為2.2、2.0、4.4及6.0 kg/t(圖4d)。CC的NH3排放量最少,CATC的NH3累計(jì)排放量最大,分別是FC、CC及CTC的2.8、3.0及1.4倍。
2.3.3 不同堆肥方式總溫室效應(yīng)分析
有機(jī)質(zhì)分解過程中 CO2排放的絕對量較大,但由于其來源于生物,因此在廢棄物管理過程中并不考慮 CO2對全球增溫潛勢的影響[16-17]。如表2所示,F(xiàn)C、CC、CTC及CATC的總溫室效應(yīng)分別為25.6、32.9、38.1、18.1 kg/t。在64 d的堆肥過程中,F(xiàn)C和CC排放的N2O產(chǎn)生的溫室效應(yīng)分別為 10.8和 11.0 kg/t,分別占其總溫室效應(yīng)的42.4%和33.5%;CTC和CATC排放的N2O產(chǎn)生的溫室效應(yīng)分別為6.4和6.3 kg/t,分別占其總溫室效應(yīng)的16.9%和 34.9%。各處理 CH4產(chǎn)生的溫室效應(yīng)分別占其總溫室效應(yīng)的百分比為:FC,57.6%;CC,66.5%;CTC,83.1%;CATC,65.1%。
2.3.4 溫室氣體和NH3排放速率與溫度、pH值和EC值的相關(guān)性分析
對溫室氣體和氨氣排放速率與溫度、pH值及EC值作相關(guān)性分析,如表3所示。溫度與N2O排放速率呈極顯著負(fù)相關(guān),相關(guān)系數(shù)為–0.356。而溫度與CH4、CO2和NH3排放速率均呈極顯著正相關(guān),相關(guān)系數(shù)分別為0.370、0.492和0.378。pH值與N2O排放速率呈極顯著正相關(guān),相關(guān)系數(shù)為0.302,與NH3排放速率呈顯著負(fù)相關(guān),相關(guān)系數(shù)為–0.255,pH值與CH4和CO2排放速率無顯著相關(guān)性。EC值僅與CO2排放速率呈顯著負(fù)相關(guān),相關(guān)系數(shù)為–0.260,而與其他氣體無顯著相關(guān)性。
表2 不同堆肥方式總溫室效應(yīng)分析Table 2 Total GHG emissions in composting process for different composting methods kg·t–1(干基)
表3 堆肥過程中CH4、CO2、N2O和NH3排放速率與溫度、pH值和EC值相關(guān)分析Table 3 Correlation analysis between emission rate of CH4, CO2,N2O and NH3and temperature, pH value and EC value
3.1 不同堆肥方式對溫度、pH值、EC值及發(fā)芽指數(shù)的影響
堆肥溫度與微生物活動緊密相關(guān),微生物分解有機(jī)物是一個(gè)放熱反應(yīng),表現(xiàn)為堆體溫度的升高。堆肥第2 天所有處理的堆肥溫度均有所提高,這主要是由于易降解有機(jī)物的劇烈分解引起的[19]。隨著易降解有機(jī)物的逐漸耗盡,4個(gè)處理的堆肥溫度先后下降。堆肥后期,堆肥的二次發(fā)酵引起了堆肥的二次升溫。在堆肥過程中,CATC的通風(fēng)量大,分解強(qiáng)度大,因而高溫時(shí)間較其他處理長[19]。
pH值是影響堆肥過程中微生物活動、溫室氣體及氨氣排放的關(guān)鍵參數(shù)。堆肥前期,pH值的增大是由于有機(jī)物質(zhì)的劇烈分解引起的[20]。堆肥結(jié)束時(shí),CATC的pH值最大,這主要是由于 CATC產(chǎn)生的有機(jī)酸較少,NH3揮發(fā)量最大,這一結(jié)果與Shen等[8]在雞糞堆肥中的研究結(jié)果相同。而CC的pH值最低,主要是由于在厭氧環(huán)境下產(chǎn)生了較多的有機(jī)酸,此外CC的NH3揮發(fā)量最少。
電導(dǎo)率(EC)的大小能夠衡量堆肥中可溶性鹽的含量。當(dāng)堆肥產(chǎn)品用作肥料時(shí),其電導(dǎo)率能夠指示堆肥還田后對作物可能產(chǎn)生的毒害效應(yīng)[13]。堆肥前期,堆體溫度升高,微生物代謝活動劇烈,有機(jī)物質(zhì)分解產(chǎn)生大量的礦質(zhì)鹽分,例如磷酸鹽、銨離子等導(dǎo)致電導(dǎo)率升高[21]。堆肥第4~25天,NH3的揮發(fā)使EC值在一定程度上下降。堆肥后期,堆肥物料礦化產(chǎn)生大量的NO3–使EC值有所回升[22]。堆肥結(jié)束后,CATC的 EC值最低,這也意味著CATC能夠降低堆肥還田對作物可能產(chǎn)生的毒害作用。
發(fā)芽指數(shù)(GI)是評價(jià)堆肥植物毒性和腐熟度的重要生物學(xué)指標(biāo)[23]。研究表明,發(fā)芽指數(shù)大于 80%時(shí),可以認(rèn)為其對作物沒有毒性,并且已經(jīng)達(dá)到腐熟[24]。堆肥反應(yīng)剛開始時(shí),有機(jī)物的快速分解生成了大量的有毒物質(zhì),4個(gè)處理的發(fā)芽指數(shù)有所下降。堆肥結(jié)束時(shí),F(xiàn)C的發(fā)芽指數(shù)僅為65.9%,這主要與堆肥過程中產(chǎn)生的短鏈脂肪酸和NH3揮發(fā)有關(guān)[25],也與EC值較大有關(guān)[13]。CC、CTC和CATC的堆肥產(chǎn)品發(fā)芽指數(shù)均大于80%,表明其對作物已經(jīng)沒有毒性。
3.2 不同堆肥方式對CH4與CO2排放的影響
FC、CC、CTC和CATC的CH4平均排放速率分別為9.2、13.7、19.8和 7.3 g/(t·d)。與 FC相比,CC和 CTC的 CH4平均排放速率較大,這主要是由于覆蓋于堆肥上的塑料膜不僅阻礙了堆肥中氧氣的流通,而且抑制了堆肥中水分的蒸發(fā)。Whalen等[26]研究表明,CH4氧化的最佳濕度為10%~20%,濕度過高,CH4的氧化速率將受到抑制。CATC的CH4平均排放速率最小,這主要是由于其通風(fēng)狀況良好,堆肥中氧氣含量較高,CH4的產(chǎn)生受到抑制[27]。
本研究表明,堆肥開始階段,4個(gè)處理的CO2排放速率迅速增加,并在堆肥第7 天達(dá)到第1個(gè)峰值。這是由于試驗(yàn)初始階段營養(yǎng)物質(zhì)充足,微生物代謝過程中產(chǎn)生了較多的CO2[28]。堆肥第45 d后CO2排放速率又開始明顯增加,這與堆肥后期堆肥溫度升高有關(guān)[29]。堆肥第54天后,4個(gè)處理的CO2排放速率在一定程度上有所下降,原因是該階段的碳源主要是較難降解的有機(jī)物。FC、CC、CTC和CATC的CO2平均排放速率分別為0.7、1.3、1.7和 1.8 kg/(t·d),CATC的 CO2平均排放速率最大,這與CATC通風(fēng)性能強(qiáng),進(jìn)而加快微生物分解有機(jī)物的速率有關(guān)[29-31]。
3.3 不同堆肥方式對N2O和NH3排放的影響
FC、CC、CTC和CATC的N2O平均排放速率分別為0.6、0.6、0.3和0.3 g/(t·d)。與FC和CC相比,CTC和CATC的N2O平均排放速率較小,這是由于CTC和CATC在堆肥初期氨化反應(yīng)產(chǎn)生的NH4+較對照和CC少,進(jìn)而抑制了其硝化反應(yīng)的進(jìn)行。而反硝化反應(yīng)也會隨著硝化反應(yīng)的減弱而受到抑制,最終導(dǎo)致硝化和反硝化反應(yīng)產(chǎn)生的N2O減少[20]。此外,與FC和CC相比,CTC和 CATC的通風(fēng)情況較好,而硝化細(xì)菌在通風(fēng)率較小的情況下能夠促進(jìn)N2O的產(chǎn)生[31-32],這進(jìn)一步減少了CTC和CATC中N2O的排放。
FC、CC、CTC和CATC的NH3平均排放速率分別為 34.1、31.4、69.5和94.5 g/(t·d),CATC 的平均排放速率最大,這與 CATC的堆體溫度較高和 pH值較大有關(guān)[19,27]。另外,CATC供氧條件較好,微生物的氨化反應(yīng)加強(qiáng),氨氣作為微生物的反應(yīng)產(chǎn)物排放量增加[15]。CC的NH3累計(jì)排放量最少,僅為2.0 kg/t,這是由于CC的覆蓋材料表面能夠產(chǎn)生1層高含水率的膜,其對NH3的揮發(fā)能夠產(chǎn)生一定的阻礙作用[11]。
3.4 不同堆肥方式對總溫室效應(yīng)的影響
本試驗(yàn)結(jié)合CH4和N2O的增溫潛勢,分析不同堆肥方式下CH4和N2O分別對總溫室效應(yīng)的貢獻(xiàn)。4個(gè)處理CH4的溫室效應(yīng)貢獻(xiàn)率較大,為57.6%~83.1%。而羅一鳴等[33]在豬糞堆肥中得出N2O的溫室效應(yīng)貢獻(xiàn)率較大,達(dá)到56%~69%,這與堆肥原料的種類及理化性狀等條件有關(guān)。CTC的總溫室效應(yīng)最大,為38.1 kg/t,其次為CC的總溫室效應(yīng),為32.9 kg/t,CATC的總溫室效應(yīng)最小,為 18.0 kg/t。
3.5 溫室氣體和NH3排放速率與溫度、pH值和EC值的相關(guān)性分析
相關(guān)性分析結(jié)果表明,CH4、CO2、N2O和NH3排放速率不僅與堆肥方式有關(guān),還與相應(yīng)的溫度、pH值和EC值有關(guān)。本研究中,CH4排放速率主要受堆肥溫度變化的影響,CO2排放速率主要受溫度和EC值變化的影響,N2O和 NH3的排放速率主要與堆肥溫度和 pH值相關(guān)。Chowdhury等[29]在奶牛糞便和蛋雞雞糞堆肥中也發(fā)現(xiàn)CH4和CO2的排放速率均與堆肥溫度顯著相關(guān)。
1)與農(nóng)民堆肥相比,覆蓋堆肥的CH4排放量增加了48.7%,而N2O和NH3排放量與農(nóng)民堆肥基本一致,覆蓋-翻堆堆肥的CH4、CO2和NH3排放量較大;覆蓋通風(fēng)-翻堆堆肥能夠有效降低 CH4和 N2O排放,但其 CO2和NH3排放量最大;
2)堆肥結(jié)束時(shí),農(nóng)民堆肥發(fā)芽指數(shù)小于80%,不能滿足堆肥產(chǎn)品的腐熟度要求,覆蓋堆肥、覆蓋-翻堆堆肥和覆蓋通風(fēng)-翻堆堆肥的發(fā)芽指數(shù)分別為 84.8%、110.4%和117.9%,可滿足堆肥產(chǎn)品的腐熟度要求,而覆蓋通風(fēng)-翻堆堆肥總溫室效應(yīng)最低(18.0 kg/t),其次為覆蓋堆肥(32.9 kg/t)和覆蓋-翻堆堆肥(38.1 kg/t);
3)不同堆肥方式對堆肥中溫度、pH值和EC值的影響不同,進(jìn)而影響CH4、CO2、N2O和NH3排放。溫度與CH4、CO2、N2O和NH3排放速率均極顯著相關(guān),pH值顯著影響N2O和NH3排放,而EC值僅與CO2排放速率顯著相關(guān);
4)覆蓋通風(fēng)-翻堆堆肥不僅滿足堆肥的腐熟度要求,而且能夠減少總溫室效應(yīng),并且其操作方式簡單,成本較低,可以在實(shí)際生產(chǎn)中推廣。
[1]左旭. 我國農(nóng)業(yè)廢棄物新型能源化開發(fā)利用研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2015.Zuo Xu. A Research on the Development and Utilization of the Agricultural Residues as New Sources Energy in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[2]中國畜牧業(yè)年鑒編輯委員會. 中國畜牧獸醫(yī)年鑒[M]. 北京:中國農(nóng)業(yè)出版社,2015.
[3]王方浩,馬文奇,竇爭霞,等. 中國畜禽糞便產(chǎn)生量估算及環(huán)境效應(yīng)[J]. 中國環(huán)境科學(xué),2006,26(5):614-617.Wang Fanghao, Ma Wenqi, Dou Zhengxia, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China EnvironmentalScience, 2006, 26(5): 614-617. (in Chinese with English abstract)
[4]中國奶業(yè)協(xié)會. 中國奶業(yè)年鑒[M]. 北京:中國農(nóng)業(yè)出版社,2014.
[5]Rui G, Li G, Tao J, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology, 2012, 112(58): 171-8.
[6]Ahn H K, Mulbry W, White J W, et al. Pile mixing increases greenhouse gas emissions during composting of dairy manure[J]. Bioresource Technology, 2011, 102(3): 2904-2909.
[7]GB93-1993,惡臭污染物排放標(biāo)準(zhǔn)[S].
[8]Shen Y, Ren L, Li G, et al. Influence of aeration on CH4,N2O and NH3, emissions during aerobic composting of a chicken manure and high C/N waste mixture[J]. Waste Management, 2011, 31(1): 33-38.
[9]Witter E, Lopez-Real J. Nitrogen losses during composting of sewage sludge, and the effectiveness of clay oil, zeolite, and compost in adsorbing the volatilized ammonia[J]. Biological Wastes, 1988, 23(4): 279-294.
[10]Mahimairaja S, Bolan N S, Hedley M J, et al. Losses and transformation of nitrogen during composting of poultry manure with different amendments: An incubation experiment[J].Bioresource Technology, 1994, 47(3): 265-273.
[11]Tao J, Schuchardt F, Guo X L, et al. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system[J]. Chemosphere, 2013, 90(4): 1545-1551.
[12]Szanto G L, Hamelers H V M, Rulkens W H, et al. NH3, N2O and CH4, emissions during passively aerated composting of straw-rich pig manure[J]. Bioresource Technology, 2007,98(14): 2659-70.
[13]Yang F, Li G, Shi H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management,2015, 36: 70-76.
[14]王朝輝,劉學(xué)軍,巨曉棠,等. 田間土壤氨揮發(fā)的原位測定--通氣法[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2002,8(2):205-209.Wang Zhaohui, Liu Xuejun, Ju Xiaotang, et al. Field in situ determination of ammonia volatilization from Soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2):205-209. (in Chinese with English abstract)
[15]趙晨陽,李洪枚,魏源送,等. 翻堆頻率對豬糞條垛堆肥過程溫室氣體和氨氣排放的影響[J]. 環(huán)境科學(xué),2014,35(2):533-540.Zhao Chenyang, Li Hongmei, Wei Yuansong, et al. Effects of turning frequency on emission of greenhouse gas and ammonia during swine manure windrow composting[J].Environmental Science, 2014, 35(2): 533-540. (in Chinese with English abstract)
[16]Rabl A, Benoist A, Dron D, et al. How to account for CO2emissions from biomass in an LCA[J]. The International Journal of Life Cycle Assessment, 2007, 12(5): 281-281.
[17]IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Intergovernmental Panel on Climate Change,2006.
[18]IPCC. Climate Change 2007: impacts, adaptation, and vulnerability[C]// Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press, 2007.
[19]Awasthi M K, Quan W, Hui H, et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology, 2016, 216: 172-181.
[20]Sánchez-Monedero M A, Serramiá N, Fernández-Hernández A, et al. Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products[J]. Chemosphere, 2010, 81(1): 18-25.
[21]和苗苗. 有機(jī)固體廢棄物土地利用的生態(tài)風(fēng)險(xiǎn)機(jī)制及控制研究[D]. 杭州:浙江大學(xué),2009.He Miaomiao. The Mechanism and Control of Ecological Risks on Land Applications of Organic Solid Wastes[D].Hangzhou: Zhejiang University, 2009. (in Chinese with English abstract)
[22]Li R, Wang J J, Zhang Z, et al. Nutrient transformations during composting of pig manure with bentonite[J].Bioresource Technology, 2012, 121: 362-8.
[23]李季,彭生平. 堆肥工程實(shí)用手冊[M]. 北京:化學(xué)工業(yè)出版社,2011.
[24]Zucconi F, Pera A, Forte M, et al. Evaluating toxicity of immature compost[J]. BioCycle(USA), 1981, 22 (2) :54-57.
[25]Ramirez-Perez J C, Strom P F, Krogmann U. Horse manure and cranberry fruit composting kinetics and measures of stability[J]. Compost Science & Utilization, 2007, 15(3): 200-214.
[26]Whalen S C, Reeburgh W S, Sandbeck K A. Rapid Methane Oxidation in a Landfill Cover Soil[J]. Applied &Environmental Microbiology, 1990, 56(11): 3405-11.
[27]Luo W H, Yuan J, Luo Y M, et al. Effects of mixing and covering with mature compost on gaseous emissions during composting[J]. Chemosphere, 2014, 117: 14-19.
[28]李文圣. 不同組群奶牛糞便堆積過程中溫室氣體排放及碳氮轉(zhuǎn)化規(guī)律[D]. 楊凌:西北農(nóng)林科技大學(xué),2015.Li Wensheng. Emissions of Greenhouse Gas and Transformations of Substance During Dairy Manure Composting[D].Yangling: Northwest A&F University, 2015. (in Chinese with English abstract)
[29]Chowdhury M A, Neergaard A D, Jensen L S. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting[J].Chemosphere, 2014, 97(1): 16-25.
[30]Awasthi M K, Wang Q, Ren X, et al. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting[J]. Bioresource Technology, 2016, 219: 270-280.
[31]Beck-Friis B, Pell M, Sonesson U, et al. Formation and Emission of N2O and CH4from Compost Heaps of Organic Household Waster[J]. Environmental Monitoring &Assessment, 2000, 62: 317-331.
[32]Béline F, Martinez J, Chadwick D, et al. Factors affecting nitrogen transformations and related nitrous oxide emissions from aerobically treated piggery slurry[J]. Journal of Agricultural Engineering Research, 1999, 73(3): 235-243.
[33]羅一鳴,李國學(xué),F(xiàn)rank,等. 過磷酸鈣添加劑對豬糞堆肥溫室氣體和氨氣減排的作用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):235-242.Luo Yiming, Li Guoxue, Frank, et al. Effects of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(22): 235-242. (in Chinese with English abstract)
Effects of cattle manure composting methods on greenhouse gas and ammonia emissions
Zhu Xinmeng1, Dong Wenyi1, Wang Hongyuan2, Yan Changrong1, Liu Hongbin2, Liu Enke1※
(1.Institute of Environment and Sustainable Development in Agriculture, CAAS/Key Laboratory of Dry Land Agriculture,MOA, Beijing100081,China; 2.Institute of Agricultural Resources and Regional Planning in Agriculture,CAAS/Key Laboratory of Nonpoint Source Pollution Control, MOA, Beijing100081,China)
Composting is an environmentally friendly technology for treating livestock manure by transforming organic matter into more stable and nutritional fertilizer. However, composting is also a significant source of CH4, CO2, N2O and NH3gases if proper composting methods are not used. The production of these gases not only reduces the agricultural value of the final compost but also aggravates some environmental problems such as global warming, which reduces the environmental benefits of composting. Four types of composting methods are used extensively, namely farmer compost (FC), covering compost (CC),covering-turning compost (CTC) and covering and aeration-turning compost (CATC). Concerns about climate change have increased the demand for strategies to minimize greenhouse gas and ammonia emissions. However, the greenhouse gas and ammonia emissions from the 4 composting methods during composting have
little attention. The purpose of this study was to analyze the greenhouse gas and ammonia emissions from the composting of dairy manure with these 4 types of composting methods. These results will assist the identification of better composting methods with the potential to mitigate greenhouse gas and ammonia emissions. The evolution of CH4, CO2, N2O and NH3and maturity index were monitored in 4 composting mixtures in Dali Prefecture, Yunnan Province. Gas samples were taken at various stages of composting from December 2015 to February 2016, and the period was over 64 days. The results showed that the CATC resulted in the most desirable maturity, and effectively reduced CH4and N2O emissions. However, this composting method did not reduce CO2and NH3emissions from the cumulative gaseous emissions. Under the CC conditions, CH4emissions increased by 48.7%compared with the FC; however, N2O and NH3emissions from the CC were similar to the FC, which resulted from covering with a plastic film. Although the CTC improved the maturity of the final compost, this method was also featured with the increased emissions of CH4, CO2, and NH3. Throughout the study period, the CATC released the lowest amount of total greenhouse gas (CH4and N2O) (18.0 kg/t), followed by the FC (25.6 kg/t), CC (32.9 kg/t), and CTC (38.1 kg/t). The total greenhouse gas (CH4and N2O) emissions of the CC and CTC were 1.8 and 2.1 times as high as that of CATC at the time of maturity, respectively. The greenhouse gas and ammonia emissions varied substantially with time and were significantly correlated with temperature. The pH values of the compost could significantly affect the emissions of N2O and NH3, which indicated a potential way to mitigate greenhouse gas and ammonia emissions through proper compost management. Compared with other composting methods, the CATC showed the greatest potential to mitigate the overall greenhouse effect, and a greater maturity than the other 3 composting methods. Moreover, the lower cost and operational convenience of CATC could allow this method to be easily put into practice. Among the 4 composting methods, covering and aeration-turning compost(CATC) is considered to be a superior composting method, which should be promoted among farmers.
composting; manures; greenhouse gases; ammonia; maturity
10.11975/j.issn.1002-6819.2017.10.034
S141.4
A
1002-6819(2017)-10-0258-07
2016-11-15
2017-03-07
“十二五”國家水體污染控制與治理科技重大專項(xiàng)(2014ZX07105-001)
朱新夢,女,河南新鄉(xiāng)人,主要從事農(nóng)業(yè)廢棄物處理與資源化研究。北京 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,100081。
Email:zhuxinmeng123@126.com
※通信作者:劉恩科,男,山東煙臺人,研究員,博士后,主要從事旱作農(nóng)田碳氮循環(huán)機(jī)理研究。北京 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,100081。Email:liuenke@caas.cn