李曉潤,宋 波,陳水榮
(1. 北京科技大學土木與資源工程學院,北京 100083;2. 中冶建筑研究總院有限公司,北京 100088)
·農(nóng)業(yè)生物環(huán)境與能源工程·
觀光溫室結(jié)構(gòu)楔形箱型矩管柱梁連接節(jié)點抗震性能
李曉潤1,2,宋 波1,陳水榮2
(1. 北京科技大學土木與資源工程學院,北京 100083;2. 中冶建筑研究總院有限公司,北京 100088)
為了滿足溫室結(jié)構(gòu)的建設(shè)需要,提出了一種楔形箱型矩管柱與H形鋼梁連接節(jié)點構(gòu)造型式,并對該種節(jié)點的抗震性能進行研究。利用 ANSYS對該節(jié)點進行了往復(fù)荷載作用下的有限元模擬分析,討論了鋼梁翼緣、腹板厚度及矩管柱壁厚對鋼節(jié)點抗震性能的影響。結(jié)果表明,楔形箱型節(jié)點在往復(fù)荷載作用下梁端塑性鉸位置向跨中偏移,保證了“強柱弱梁、強節(jié)點弱構(gòu)件”設(shè)計理念的實現(xiàn)。累積耗能比傳統(tǒng)的外聯(lián)板式節(jié)點高出25.40%,比內(nèi)隔板式節(jié)點減少20.46%,滯回曲線相對飽滿,體現(xiàn)了良好的抗震性能。同時,梁翼緣和腹板的厚度及楔形箱形截面寬度變化率對于節(jié)點的抗震性能有較大的影響,建議實際工程中截面寬度變化率取1:4。計算結(jié)果表明該節(jié)點具有良好的抗震性能。
溫室;有限元分析,模型;剛性;梁柱節(jié)點;滯回曲線;抗震性能;非線性分析
李曉潤,宋 波,陳水榮. 觀光溫室結(jié)構(gòu)楔形箱型矩管柱梁連接節(jié)點抗震性能[J]. 農(nóng)業(yè)工程學報,2017,33(10):252-257.
doi:10.11975/j.issn.1002-6819.2017.10.033 http://www.tcsae.org
Li Xiaorun, Song Bo, Chen Shuirong. Seismic performance of wedge-shaped box joint of beam and box column in tourism greenhouse structures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(10): 252-257. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.033 http://www.tcsae.org
隨著農(nóng)業(yè)設(shè)施的迅速發(fā)展,溫室結(jié)構(gòu)也向大跨度、大開間發(fā)展。并且現(xiàn)有溫室中常有展示功能,會在溫室兩側(cè)增加夾層作為封閉的參觀走道。由于需要考慮參觀人員較為集中的因素,故溫室夾層做法不同于常規(guī)溫室結(jié)構(gòu),其截面和連接節(jié)點都比常規(guī)溫室復(fù)雜,常常采用民用建筑中的傳統(tǒng)連接節(jié)點,主要是內(nèi)隔板式節(jié)點和外環(huán)板式節(jié)點。內(nèi)隔板式節(jié)點內(nèi)部施焊困難,制作加工不便;外環(huán)板式節(jié)點外環(huán)尺寸較大,美觀性較差。
而溫室結(jié)構(gòu)中因載荷較小,箱型矩管柱截面長度和寬度一般會小于300 mm,此時溫室結(jié)構(gòu)中采用的剛接節(jié)點通常采用外環(huán)板形式,環(huán)板外露較大,導(dǎo)致美觀性較差。
并且,在最近的幾次地震中,傳統(tǒng)的鋼框架梁柱連接節(jié)點發(fā)生了大量脆性破壞,沒有表現(xiàn)出延性性能[1]-[3]。國內(nèi)外學者大量研究表明:鋼框架抗震設(shè)計應(yīng)以“強柱弱梁,強節(jié)點弱構(gòu)件”為原則[4]。Popov和 Pinkney[11]對24個節(jié)點試件進行了 1:3的擬靜力試驗,試驗中,鋼梁連接于兩端固定的短柱上,分別采用焊接和蓋板連接。結(jié)果表明,梁柱節(jié)點能夠承受多次循環(huán)荷載,破壞時,裂紋通常發(fā)生在焊縫附近。宋振森[12]對6個大尺寸T型強軸連接剛性節(jié)點進行了循環(huán)加載試驗,結(jié)果表明,節(jié)點板強弱、梁翼緣塑性抵抗矩與全截面塑性抵抗矩的比值以及焊縫的質(zhì)量對梁柱節(jié)點的性能影響較大。王新武[13]對 3個狗骨式剛性節(jié)點進行了試驗,結(jié)果表明,梁上翼緣與柱連接處對接焊縫的撕裂是破壞的主要原因,節(jié)點破壞時的抗彎承載力遠沒有達到梁全截面塑性彎矩抵抗矩,滯回曲線穩(wěn)定飽滿,延性系數(shù)超過 3.0,節(jié)點轉(zhuǎn)角達到0.03。然而,目前的研究主要針對民建常規(guī)節(jié)點的抗震性能,對適用于溫室結(jié)構(gòu)梁柱連接節(jié)點的研究還沒有開展[14]。
考慮到溫室行業(yè)柱截面小,加內(nèi)隔板施工空間小,質(zhì)量難保證。且溫室柱多為熱鍍鋅柱,基本在工廠加工完成,現(xiàn)場組裝,很少焊接。開發(fā)一種取消內(nèi)隔板、施工方便的梁柱連接節(jié)點用于溫室結(jié)構(gòu)是亟待解決的問題。本文提出了H型鋼梁與楔形矩管柱連接節(jié)點,該節(jié)點取消了矩管柱內(nèi)的隔板,減小了內(nèi)隔板的焊接。并且無需在矩管柱外增加環(huán)板,因而較為美觀。文中通過有限元數(shù)值模擬,對所提出的H型鋼梁與楔形矩管柱連接節(jié)點的抗震性能進行研究,以期獲得該節(jié)點的滯回耗能能力和應(yīng)力分布,為此節(jié)點的應(yīng)用提供了一定的研究基礎(chǔ)。節(jié)點相比常規(guī)節(jié)點避免了矩管柱內(nèi)橫隔板的施焊制作困難,相比外環(huán)板節(jié)點簡潔美觀,具有較好的實用價值。
H型鋼梁與楔形箱型矩管柱連接節(jié)點的楔形箱形部分與牛腿的作用相當。該節(jié)點的楔形箱型部分與柱的連接采用全焊縫連接,在工廠加工完成,運至現(xiàn)場再與梁進行拼接(見圖 1)。此外,相對于外聯(lián)式節(jié)點而言,即使采用截面比較小的矩管混凝土柱,也不存在外環(huán)加強板與柱之間尺寸相差過大的問題[20],便于建筑專業(yè)對建筑物的處理和對建筑內(nèi)部的裝飾等。
圖1 楔形箱型節(jié)點構(gòu)造圖Fig.1 Configuration diagram of wedge box joint
1.1 模型的建立
大型公共溫室屋面跨度多在15 m左右,常設(shè)夾層作為參觀平臺,夾層載荷相比屋面較大,因此有必要對用于溫室夾層的節(jié)點進行研究。平臺結(jié)構(gòu)中梁的跨度多在6~8 m,在模擬時,多取梁的反彎點位置施加位移荷載,反彎點位置約在在梁跨 1/4~1/3位置,故柱一端梁取1.6 m長,柱兩側(cè)梁長共3.2 m。采用1:1的比例來建立模型,節(jié)點原型的幾何尺寸如下所示:柱截面為箱型B350 mm(高)×350 mm(寬)×12 mm(腹板壁厚)×12 mm(翼緣壁厚),梁截面為 H300 mm(高)×150 mm(寬)×6.5 mm(腹板壁厚)×9 mm(翼緣壁厚),節(jié)點區(qū)楔形箱型鋼牛腿長度為400 mm,楔形箱型牛腿處焊接豎向肋板,且牛腿處的翼緣板和豎向肋板厚度均為12 mm,牛腿腹板厚度為8 mm。節(jié)點的有限元分析模型如圖2所示。
圖2 楔形箱型節(jié)點分析模型Fig.2 Analysis model of wedge box joint
本文同時對內(nèi)隔板式和外聯(lián)板式 2種傳統(tǒng)的節(jié)點形式也進行了研究(見圖3所示),其中柱和梁的截面尺寸與楔形箱形節(jié)點一致。內(nèi)隔板式節(jié)點中內(nèi)隔板的厚度與翼緣板一致,取12 mm;外聯(lián)板式節(jié)點,外聯(lián)板的厚度與翼緣板一致,也為12 mm,方管柱角點到外聯(lián)板斜邊的距離為110 mm,斜邊為45度角。
圖3 傳統(tǒng)節(jié)點分析模型Fig.3 Analysis model of traditional joints
1.2 材料本構(gòu)關(guān)系及強化模型
在荷載作用下,物體內(nèi)某一點存在的應(yīng)力狀態(tài)和應(yīng)變狀態(tài)的關(guān)系成為本構(gòu)關(guān)系,是材料本身固有的特征。節(jié)點模型均采用Q345鋼材,屈服強度為345 MPa[30],材料本構(gòu)為雙線性模型,如圖4所示。
圖4 Q345鋼材本構(gòu)關(guān)系Fig.4 Q345 constitutive relations
1.3 約束條件和加載制度
參考《建筑抗震試驗規(guī)程》(JGJ/T 101-2015)[31]中的擬靜力試驗方法,對節(jié)點的抗震性能進行低周反復(fù)荷載作用下的抗震性能模擬。通過對結(jié)構(gòu)施加約束來模擬實際的情況——在柱底部截面施行固結(jié),將所有的自由度均予以限制;為了保證節(jié)點在受力計算時為穩(wěn)定結(jié)構(gòu),不形成可變結(jié)構(gòu)體系,對柱頂截面的X、Y兩個方向的自由度進行了限制,對考察梁端彎矩沒有影響;通過對梁端部施加往復(fù)的Z方向位移荷載,荷載步為10步,以此來進行非線性分析。經(jīng)過大量試算,發(fā)現(xiàn)位移達到40 mm后,節(jié)點已經(jīng)進入非線性狀態(tài)。故位移的最大值設(shè)置為40 mm。約束條件見圖5所示。加載制度見圖6所示,加載時每級循環(huán)2次,直至結(jié)構(gòu)破壞。
圖5 模型約束示意圖Fig.5 Applied constrain in model
圖6 節(jié)點加載制度Fig.6 Loading rules of joint
同時,柱軸壓力主要作用是對柱兩端進行固定,對于考察梁端彎矩及節(jié)點滯回性能影響較小,考慮到溫室結(jié)構(gòu)中有部分平臺荷載可能較大,故此處按軸壓比 0.46計算柱子軸力,取1 200 kN。
2.1 節(jié)點性能對比
經(jīng)過計算,得到的楔形箱型節(jié)點和內(nèi)隔板節(jié)點及外聯(lián)板節(jié)點的應(yīng)力分布云圖(見圖 7)。圖中紅色集中區(qū)域代表了節(jié)點進入塑性狀態(tài),形成塑性鉸。從圖中可以看出,內(nèi)隔板式節(jié)點塑性鉸出現(xiàn)在柱邊外約200 mm處,楔形箱型節(jié)點和外環(huán)板節(jié)點的塑性鉸則出現(xiàn)在柱邊外側(cè)約450和500 mm處,但楔形箱型節(jié)點相比外環(huán)板節(jié)點塑性鉸形成區(qū)域較小,可以較好的滿足“強節(jié)點弱構(gòu)件”的要求。
圖7 3種節(jié)點應(yīng)力分布云圖Fig.7 Stress contours of 3 joints
節(jié)點的 P-Δ滯回曲線是由節(jié)點梁端的豎向位移和對應(yīng)的柱端剪力組成的關(guān)系曲線,其所包圍的面積可以反映結(jié)構(gòu)吸收能量的大小,圖8a對比了3種節(jié)點的滯回耗能能力。由表 1可以看出,楔形箱型節(jié)點累積耗能較傳統(tǒng)的外聯(lián)板式節(jié)點超出 25.40%,比內(nèi)隔板式節(jié)點減少20.46%,利用R表示楔形箱型節(jié)點與其他2種節(jié)點耗能能力的差值。由節(jié)點在各級加載滯回曲線峰值所連成的骨架曲線(反映了構(gòu)件在各個不同階段的受力與變形特性)上可以看出,楔形箱型節(jié)點剛度要大于外聯(lián)板式節(jié)點(見圖8b)。由于溫室結(jié)構(gòu)中需要采用的矩管柱截面往往較小,無法實現(xiàn)內(nèi)隔板式節(jié)點,常用外聯(lián)板式節(jié)點,而楔形箱型節(jié)點抗震性能要優(yōu)于外聯(lián)板式節(jié)點,同時該節(jié)點僅為增加豎板形成的局部箱型截面,可在加工廠與柱整體制作,現(xiàn)場與梁拼接,施工安裝便捷,故可以替代常規(guī)外聯(lián)板式節(jié)點應(yīng)用于實際工程。
因此,楔形箱型節(jié)點應(yīng)力分布更為合理,在解決了內(nèi)隔板式節(jié)點施工及澆筑混凝土不便的缺陷后,承載力沒有明顯的下降,剛度還略有提升,有利于結(jié)構(gòu)的抗震。
2.2 節(jié)點參數(shù)分析
為了更多了解楔形箱型節(jié)點受力特點,在數(shù)值模擬中進行參數(shù)化分析,討論了梁柱壁厚對節(jié)點性能的影響。各模型構(gòu)件型號見表2所示。
圖8 3種節(jié)點的滯回曲線和骨架曲線Fig.8 Hysteretic curves and skeleton curves of 3 joints
表1 3種節(jié)點累積耗散能量Table 1 Cumulative dissipated energy of 3 joints
表2 不同分析模型構(gòu)件的型號Table 2 Type of components in analysis models
不同梁、柱尺寸模型的滯回曲線如圖 9所示。通常柱壁厚大于梁翼緣板厚,在梁截面不變的情況下,柱壁厚分別為12、14、16 mm,即對模型1、2、3進行對比,3個模型的滯回曲線基本重合,可以看出在梁翼緣厚度小于柱壁厚的情形下,柱壁厚的變化對于節(jié)點的滯回曲線影響較小。但梁的翼緣和腹板的厚度對于節(jié)點的承載力和抗震性能有較大的影響,隨著梁翼緣和腹板壁厚的增加,節(jié)點的初始剛度、屈服荷載和極限承載力具有明顯的增大,抗震性能具有顯著的提高。
圖9 梁柱截面厚度對節(jié)點耗能能力的影響Fig.9 Effect of different section thickness on energy dissipation capacity
通常由于柱截面比梁寬,為了傳力平滑過渡,梁柱連接采用逐步擴展的形式,利用a表示節(jié)點的截面寬度變化率,如圖10所示。隨著截面寬度變化率由1:2減小到1:5,節(jié)點滯回曲線更為飽滿(見圖11a),意味著節(jié)點的耗能能力在不斷增強;同時節(jié)點的屈服后剛度隨之提高(見圖 11b)。上述分析表明,對于楔形箱形節(jié)點截面寬度變化率對節(jié)點的耗能能力有一定的影響。且隨著截面寬度變化率的減小,節(jié)點的耗能能力越大??紤]到截面寬度變化率過小時,楔形箱形節(jié)點過長增加了加工廠焊接切割的制作工作量,且增加了運輸?shù)牟槐悖虼私ㄗh實際工程中截面寬度變化率取1:4。
圖10 截面寬度變化率aFig.10 Change rate of cross section width a
圖11 截面寬度變化率對節(jié)點耗能能力的影響Fig.11 Effect of change rate of cross section width on energy dissipation capacity
針對傳統(tǒng)H型鋼梁與箱型鋼柱剛性節(jié)點施工不便、抗震性能較差的問題,開發(fā)出楔形箱型節(jié)點。對節(jié)點進行了抗震性能研究,得出以下主要結(jié)論:
1)楔形箱型節(jié)點抗震性能要優(yōu)于外聯(lián)板式節(jié)點,故可以替代常規(guī)外聯(lián)板式節(jié)點應(yīng)用于實際工程。與傳統(tǒng)節(jié)點形式相比,楔形箱型節(jié)點的耗能能力有一定的提高,累積耗能比傳統(tǒng)的外聯(lián)板式節(jié)點高出25.40%。滯回曲線相對飽滿,體現(xiàn)了良好的抗震性能。
2)楔形箱型節(jié)點在往復(fù)荷載作用下,梁端塑性鉸位置向跨中偏移,保證了“強柱弱梁、強節(jié)點弱構(gòu)件”設(shè)計理念的實現(xiàn)。
3)楔形箱型節(jié)點中,梁翼緣和腹板的厚度對于節(jié)點的抗震性能有較大的影響,在梁翼緣和腹板厚度不超過柱壁厚的情況下,增加梁的翼緣和腹板的厚度可以顯著提高節(jié)點的抗震性能,同時不會產(chǎn)生“強梁”的抗震不利后果。
4)楔形箱型截面寬度變化率對節(jié)點的耗能能力也有較大影響。隨著寬度變化率由1:2減小到1:5,節(jié)點的耗能能力在不斷增強。但箱型楔形截面寬度變化率過小會導(dǎo)致節(jié)點制作安裝較為困難,因此建議實際工程中寬度變化率取1:4。
[參 考 文 獻]
[1]聶建國,王宇航,陶慕軒,等. 鋼管混凝土疊合柱-鋼筋混凝土梁外加強環(huán)節(jié)點抗震性能試驗研究[J]. 建筑結(jié)構(gòu)學報,2012,33(7):88-97.Nie Jianguo, Wang Yuhang, Tao Muxuan, et al.Experimental study on seismic behavior of laminated steel tube column-concrete beam joint with outer stiffening ring[J].Journal of Building Structures, 2012, 33(7): 88-97. (in Chinese with English abstract)
[2]張艷霞,葉吉健,趙微,等. 自復(fù)位平面鋼框架推覆分析[J]. 地震研究,2014,37(3):477-484.Zhang Yanxia, Ye Jijian, Zhao Wei, et al. Pushover analysis of self-centering steel moment-resisting plane frame[J].Journal of seismological research, 2014, 37(3): 477-484. (in Chinese with English abstract)
[3]薛建陽,劉祖強,彭修寧. 鋼結(jié)構(gòu)異型節(jié)點受力性能及非線性有限元分析[J]. 西安建筑科技大學學報,2010,42(5):609-613.Xue Jianyang, Liu Zuqiang, Peng Xiuning. Mechanical properties and non-linear finite element analysis of steel abnormal joints[J]. Journal Xi`an university of architecture and technology (Natural Science Edition), 2010, 42(5): 609-613. (in Chinese with English abstract)
[4]李兆凡,石永久,陳宏. 改進型鋼結(jié)構(gòu)梁柱節(jié)點非線性有限元分析[J]. 建筑結(jié)構(gòu),2002,32(9):15-17.
[5]陸新征,葉列平,繆志偉,等. 建筑抗震彈塑性力學分析[M]. 中國建筑工業(yè)出版社,2011.Lu Xinzheng, Ye Lieping, Miao Zhiwei, et al. Elasto-plastic analysis of buildings against earthquake[M]. China Architecture & Building Press, 2011. (in Chinese with English abstract)
[6]徐偉良,方壘. 半剛性端板連接節(jié)點性能的非線性有限元分析[J]. 四川建筑科學研究, 2011,37(5):4-7.Xu Weiliang, Fang Lei, Nonlinear finite element analysis for the behavior of semirigid end-plate connection[J]. Sichuan Building Science, 2011, 37(5): 4-7. (in Chinese with English abstract)
[7]Andre Plumier. General report on local ductility[J]. J. of Constructional Steel Research, 2000, 55(1): 91-107.
[8]Kawano A, Matsui C. New connections using vertical stiffeners between H-shaped beam and hollow or concrete-filled square tubular columns[C]. composite construction in steel and concrete Ⅲ: Proceedings of an engineering foundation conference, Irsee, Germany, July 9-14,
[9]陳志華,苗紀奎,趙莉華,等. 方鋼管混凝土柱-H 鋼梁節(jié)點研究[J]. 建筑結(jié)構(gòu),2007,37(1):50-56.Chen Zhihua, Miao Jikui, Zhao Lihua, et al. Study on joint of concrete-filled rectangular tublar column and H-shaped steel beam[J]. Building structure, 2007, 37(1): 50-56. (in Chinese with English abstract)
[10]苗紀奎,陳志華. 方鋼管混凝土柱與鋼梁的外肋環(huán)板節(jié)點抗震性能試驗研究[J].地震工程與工程振動,2007,27(2):85-90.Miao Jikui, Chen Zhihua. Experimental study on seismic performance of vertical stiffener joints between concrete filled square steel tubular column and steel beam[J]. Journal of earthquake engineering and engineering vibration, 2007,27(2): 85-90. (in Chinese with English abstract)
[11]Popov E P, Pinkey R B. Cyclic yield reversal in steel building connection[J]. Journal of the Structural Division,American Society of Civil Engineers, 1969, 95(3): 327-353.
[12]宋振森. 剛性鋼框架梁柱節(jié)點在地震作用下的累積損傷破壞機理及抗震設(shè)計對策[D]. 西安:西安建筑科技大學,2001.Song Zhensen. Damage Accumulation Collapse Mechanism and Design Criteria of Welded Steel Beam-to-column Connections Under Seismic Load[D]. Xi`an: Xi`an University of Architecture and Technology, 2001. (in Chinese with English abstract)
[13]王新武. 鋼框架梁柱連接研究[D]. 武漢:武漢理工大學,2003.Wang Xinwu. Research on Beam-to-column Connections of Steel Frame[D]. Wuhan: Wuhan University of Technology,2003. (in Chinese with English abstract)
[14]賈金青,孫洪梅. 一種新型牛腿的設(shè)計與應(yīng)用[J]. 建筑結(jié)構(gòu),2002,32(3):29-30.
[15]王來,王鐵成,鄧芄. 方鋼管混凝土框架內(nèi)隔板節(jié)點抗震性能的試驗研究[J]. 地震工程與工程振動,2005,25(1):76-80.Wang Lai, Wang Tiecheng, Deng Peng. Experimental research on seismic performances of joint reinforced with innerring stiffener of concrete filled square tubular frame[J].Earthquake engineering and engineering vibration, 2005,25(1): 76-80. (in Chinese with English abstract)
[16]宗周紅,葛繼平,楊強躍. 反復(fù)荷載作用下方鋼管混凝土柱與鋼梁連接節(jié)點非線性有限元分析[J]. 建筑結(jié)構(gòu)學報,2006,27(2):75-81.Zong Zhouhong, Ge Jiping, Yang Qiangyao. Nonlinear finite element analysis of the concrete filled square steel tubular column to steel beam connections under low-cycle reversed loading[J]. Journal of building structures. 2006, 27(2): 75-81. (in Chinese with English abstract)
[17]李黎明,陳志華,李寧. 隔板貫通式梁柱節(jié)點抗震性能試驗研究[J]. 地震工程與工程振動,2007,27(1):46-53.Li Liming, Chen Zhihua, Li Ning. Experimental study on seismic capability of disphragm-through style beam-column joint[J]. Journal of earthquake engineering and engineering vibration, 2007, 27(1): 46-53. (in Chinese with English abstract)
[18]Kuramoto H, Nishiyama I. Seismic performance and stress transferring mechanism of through-column-type joints for composite reinforced concrete and steel frames[J]. Journal of Structural Engineering, 2004, 130(2): 352-360.
[19]Nishiyama I, Fujimoto T, Fukumoto T, et al. Inelastic force-deformation response of joint shear panels in beam-column moment connections to concrete-filled tubes[J].Journal of Structural Engineering, 2004, 130(2): 244-252.
[20]韓林海. 鋼管混凝土結(jié)構(gòu)-理論與實踐[M]. 北京:科學出版社,2004.
[21]周天華,何???,陳國津,等. 方鋼管混凝土柱與鋼梁框架節(jié)點的抗震性能試驗研究[J]. 建筑結(jié)構(gòu)學報,2004,25(1):9-16.Zhou Tianhua, He Baokang, Chen Guojin, et al.Experimental studies on seismic behavior of concrete-filled steel square tubular column and steel beam joints under cyclic loading[J]. Journal of building structures, 2004, 25(1):9-16. (in Chinese with English abstract)
[22]周天華, 郭彥利,盧林楓,等. 方鋼管混凝土柱-鋼梁節(jié)點的非線性有限元分析[J]. 西安科技大學學報,2005,25(3):283-287.Zhou Tianhua, Guo Yanli, Lu Linlan, et al. Nonlinear FEM analysis of bearing capacity behavior of concrete-filled square tubular column and steel beam joints[J]. Journal of earthquake engineering and engineering vibration, 2005,25(3): 283-287. (in Chinese with English abstract)
[23]周天華,聶少鋒,盧林楓,等. 帶內(nèi)隔板的方鋼管混凝土柱-鋼梁節(jié)點設(shè)計研究[J]. 建筑結(jié)構(gòu)學報,2005,25(5):23-29.Zhou Tianhua, Nie Shaofeng, Lu Linfeng, et al. Design of concrete-filled square tube column and steel beam joint with internal diagrams[J]. Journal of building structures, 2005,25(5): 23-29. (in Chinese with English abstract)
[24]金剛,丁潔民,陳建斌. 方鋼管混凝土結(jié)構(gòu)內(nèi)隔板式節(jié)點試驗研究[J]. 結(jié)構(gòu)工程師,2005,21(4):75-80.Jin Gang, Ding Jiemin, Chen Jianbin. Experimental study on connections with steel diaphragm between CFRT column andsteel beam[J]. Structural Engineers. 2005, 21(4): 75-80. (in Chinese with English abstract)
[25]金剛,丁潔民,陳建斌. 矩形鋼管混凝土柱-鋼梁節(jié)點抗震性能試驗研究與分析[J]. 建筑結(jié)構(gòu),2007,37(2):88-93.Jin Gang, Ding Jiemin, Chen Jianbin. Experimental studies and FEM analysis of seismic behavior of connection between concrete-filled rectangular tubular column and steel beam. [J].Building structures, 2007, 37(2): 88-93. (in Chinese with English abstract)
[26]聶建國,秦凱,張桂標. 方鋼管混凝土柱內(nèi)隔板式節(jié)點的抗彎承載力研究[J]. 建筑科學與工程學報,2005,22(1):42-49.Nie Jianguo, Qin Kai, Zhang Guibiao. Experimental research and theoretical analysis on flexural capacity of connections for concrete- filled steel square tubular columns with inner diaphragms[J]. Journal of Architecture and Civil Engineering.2005, 22(1): 42-49. (in Chinese with English abstract)
[27]聶建國,秦凱,肖巖等. 方鋼管混凝土柱節(jié)點的試驗研究及非線性有限元分析[J]. 工程力學,2006,23(11):99-109.Nie Jianguo, Qinkai, Xiao Jian, et al. Experimental investigation and nonlinear finite element analysis on the behavior of concrete-filled square steel tubular column connections[J]. Engineering mechanics, 2006, 23(11): 99-109. (in Chinese with English abstract)
[28]聶建國,秦凱,劉嶸. 方鋼管還挺難柱與鋼-混凝土組合梁連接的內(nèi)隔板式節(jié)點的抗震性能試驗研究[J]. 建筑結(jié)構(gòu)學報,2006,27(4):1-9.Nie Jianguo, Qin Kai, Liu Rong. Experimental study on seismic behavior of connections composed of concrete-filled square steel tubular columns and steel-concrete composite beams with interior diaphragms[J]. Journal of building structures, 2006, 27(4): 1-9. (in Chinese with English abstract)
[29]王靜峰,韓林海,江瑩. 方鋼管混凝土柱-鋼梁外加強環(huán)節(jié)點的非線性有限元分析[J]. 沈陽建筑大學學報,2007,23(2):177-181.Wang Jingfeng, Han Linhai, Jiang Ying. Nonlinear fem analysis of steel beam-to-concrete filled steel square tube column connections with external stiffening rings[J]. Journal of Shenyang Jianzhu university, 2007, 23(2): 177-181. (in Chinese with English abstract)
[30]GB50017-2003,鋼結(jié)構(gòu)設(shè)計規(guī)范[S]. 中國計劃出版社,2003.GB50017-2003, Code for design of steel structures[S]. China Planning Press, 2003. (in Chinese with English abstract)
[31]JGJ/T 101-2015,建筑抗震試驗規(guī)程[S]. 中國建筑工業(yè)出版社,2015.JGJ/T 101-2015, Specification for seismic test of buildings[S]. China Architectures and Building Press, 2015. (in Chinese with English abstract)
Seismic performance of wedge-shaped box joint of beam and box column in tourism greenhouse structures
Li Xiaorun1,2, Song Bo1, Chen Shuirong2
(1.School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing100083,China;2.Central Research Institute of Building and Construction, MCC group Co., LTD, Beijing100088,China)
In order to meet the requirement of the greenhouse structure construction, a wedge-shaped box joint connecting box column and H-shaped beam was proposed to overcome the inconvenient construction and poor seismic performance of the conventional joint in the H-shaped beam and box section column, such as the conventional outboard plate joint and the internal baffles joint. The finite element simulation analysis of the joints under cyclic loading was carried out by the finite element analysis software ANSYS. The seismic performance of the joint was analyzed and compared with the conventional outboard plate joint and the internal baffles joint. The influences of the flange and web thickness of the beam, and the thickness of the rectangular tube column on the seismic performance of the joint were discussed. The seismic performance of the wedge-shaped box joint was better than that of the outboard plate joint, so it could be applied to the actual engineering instead of the conventional outboard plate joint. The cumulative energy consumption was 25.40% higher than that of the outboard plate joint,and 20.46% lower than that of the internal baffles joint. The stiffness of the wedge-shaped box joint was larger than that of the outboard plate joint. The hysteretic curve of the joint was relatively full, which embodied the good seismic performance. The plastic hinge of the internal baffles joint appeared at about 200 mm outside the column edge. The plastic hinge of the wedge-shaped box joint and the outboard plate joint was about 450 and 500 mm outside the column edge, respectively.However, the region area in the wedge-shaped box joint was smaller than the other joints. The plastic hinge position of the wedge-shaped box joint moved to the middle of the span under cyclic loadings, which ensured the design concept of "strong column with weak beam, strong node with weak component". The thickness of the flange and web of the wedge-shaped box joint had a great influence on the seismic performance. In the case of no exceeding the thickness of the column, the initial stiffness, the yield load and the ultimate bearing capacity of the joint were obviously increased with the increasing of the thickness of the flange and web of the beam, which meant that the seismic performance of the joint was improved. At the same time the adverse consequence of strong beam would not be produced. The change rate of cross section width of wedge-shaped box had a great influence on the energy dissipating capacity of the joint. As the change rate of cross section width decreased from 1:2 to 1:5, the energy dissipating capacity of the joint and the stiffness after yielding increased. However, it was difficult to make the production and installation of the joint. In practical engineering, it was suggested the change rate of cross section width should equal 1:4. Therefore, the distribution of the stress in the wedge-shaped box joint was more reasonable. After solving the defects of the internal baffles joint, such as the inconvenience of the construction and pouring concrete, the bearing capacity and stiffness of the wedge-shaped box joint were improved, which were beneficial to the seismic resistance of a structure. The above results show that the wedge-shaped box joint has a good seismic performance and is more suitable for tourism greenhouse structures.
greenhouse; finite element method; models; rigidity; beam-column joint; hysteresis curve; seismic behavior;non-linear analysis
10.11975/j.issn.1002-6819.2017.10.033
S625
A
1002-6819(2017)-10-0252-06
2016-08-25
2017-03-29
國家“863”項目(2009AA0323);國家科技支撐計劃課題(2012BAJ13B01)
李曉潤,男,山東曹縣人,教授級高工,博士研究生,主要從事結(jié)構(gòu)工程、 鋼結(jié)構(gòu)與組合結(jié)構(gòu)等的研究。北京 北京科技大學土木與資源工程學院, 100083。lixiaorun2000@sina.com