王金峰,閆東偉,鞠金艷,王金武
(1. 東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030;2. 黑龍江科技大學(xué)機(jī)械工程學(xué)院,哈爾濱 150022)
基于經(jīng)驗(yàn)?zāi)B(tài)分解與BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力增長預(yù)測
王金峰1,閆東偉1,鞠金艷2,王金武1
(1. 東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030;2. 黑龍江科技大學(xué)機(jī)械工程學(xué)院,哈爾濱 150022)
為提高農(nóng)機(jī)總動力增長變化預(yù)測結(jié)果的準(zhǔn)確性和可靠性,根據(jù)農(nóng)機(jī)總動力增長變化與其影響因素之間具有在各時間尺度明顯的非線性波動特征,提出以1986—2013年農(nóng)機(jī)總動力增長為研究對象,分別對農(nóng)機(jī)總動力增長及其影響因素時間序列數(shù)據(jù)進(jìn)行經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition,EMD),對得到的各時間尺度下的波動分量分別建立BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型。將EMD-BP網(wǎng)絡(luò)預(yù)測結(jié)果與多元線性回歸、支持向量機(jī)、BP神經(jīng)網(wǎng)絡(luò)進(jìn)行對比分析,結(jié)果表明:基于EMD-BP網(wǎng)絡(luò)建立的農(nóng)機(jī)總動力增長預(yù)測模型,擬合和預(yù)測平均相對誤差分別為0.99%和1.29%,相關(guān)決定系數(shù)約為0.999,均方根誤差為316.35 MW,模型評價等級為“好”,各項(xiàng)精度評價指標(biāo)都優(yōu)于其他方法,因此該預(yù)測模型精度高、可靠性強(qiáng)。研究成果為農(nóng)業(yè)機(jī)械化發(fā)展規(guī)劃的制定和出臺相關(guān)政策提供有效參考。
農(nóng)業(yè)機(jī)械;模型;支持向量機(jī);經(jīng)驗(yàn)?zāi)B(tài)分解;BP 神經(jīng)網(wǎng)絡(luò);農(nóng)機(jī)總動力;預(yù)測
王金峰,閆東偉,鞠金艷,王金武. 基于經(jīng)驗(yàn)?zāi)B(tài)分解與BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力增長預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):116-122. doi:10.11975/j.issn.1002-6819.2017.10.015 http://www.tcsae.org
Wang Jinfeng, Yan Dongwei, Ju Jinyan, Wang Jinwu. Prediction of total power growth of agricultural machinery based on empirical mode decomposition and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(10): 116-122. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.10.015 http://www.tcsae.org
農(nóng)業(yè)機(jī)械化是提高農(nóng)業(yè)生產(chǎn)率、優(yōu)化農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)、促進(jìn)農(nóng)村勞動力轉(zhuǎn)移、增強(qiáng)農(nóng)村土地的效能和降低農(nóng)民勞動強(qiáng)度的主要手段。伴隨著中國經(jīng)濟(jì)發(fā)展進(jìn)入新常態(tài),黨中央、國務(wù)院高度重視發(fā)展農(nóng)業(yè)機(jī)械化,各種農(nóng)機(jī)社會化服務(wù)體系日漸成熟,政策和法制環(huán)境更加優(yōu)化,經(jīng)濟(jì)基礎(chǔ)更加堅(jiān)實(shí),農(nóng)業(yè)機(jī)械化發(fā)展面臨新的機(jī)遇和挑戰(zhàn)。農(nóng)機(jī)總動力是衡量農(nóng)業(yè)機(jī)械化發(fā)展水平的主要指標(biāo),反映農(nóng)機(jī)裝備的總體發(fā)展水平,是農(nóng)業(yè)機(jī)械化系統(tǒng)各種影響因素作用效果的體現(xiàn),為農(nóng)業(yè)機(jī)械化的發(fā)展提供保障[1-3]。因此,農(nóng)機(jī)總動力的準(zhǔn)確預(yù)測和分析為制定農(nóng)業(yè)機(jī)械化發(fā)展規(guī)劃,合理安排政府財(cái)政投入等提供重要理論依據(jù)和數(shù)據(jù)參考,確保政府制訂相關(guān)政策的科學(xué)性、準(zhǔn)確性和有效性[4-6]
目前,農(nóng)機(jī)總動力預(yù)測方法研究已取得一定的成果,主要分為兩類:一類是建立農(nóng)機(jī)總動力的時間序列預(yù)測模型,采用的方法主要有灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、ARMA、趨勢包絡(luò)、模糊神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)和組合預(yù)測模型等[6-15],這類建模方法主要是根據(jù)時間序列的發(fā)展規(guī)律對未來趨勢進(jìn)行預(yù)測,建模簡單,易于理解,但沒有充分考慮到各種影響因素對農(nóng)機(jī)總動力增長影響的后效性,對高度非線性多因素影響的系統(tǒng)具有擬合精度不高的缺點(diǎn);二類是確定影響農(nóng)機(jī)總動力增長的因素,采用回歸模型建立農(nóng)機(jī)總動力與影響因素的關(guān)系模型,進(jìn)而對農(nóng)機(jī)總動力進(jìn)行預(yù)測[16-18],可以提高預(yù)測結(jié)果的準(zhǔn)確性,但回歸模型不能有效的建立影響因素與農(nóng)機(jī)總動力之間的非線性映射關(guān)系模型,并且某年的農(nóng)機(jī)總動力是由前一年的農(nóng)機(jī)總動力與當(dāng)年的農(nóng)機(jī)總動力增長之和構(gòu)成,因此采用非線性關(guān)系模型對農(nóng)機(jī)總動力增長進(jìn)行預(yù)測,更能準(zhǔn)確的反映出各種影響因素對當(dāng)年農(nóng)機(jī)總動力作用的效果,保證預(yù)測結(jié)果的準(zhǔn)確性。
農(nóng)機(jī)總動力增長及其影響因素各時間序列的變化具有明顯的非線性波動特征,并且各影響因素對農(nóng)機(jī)總動力增長的影響呈非線性關(guān)系,因此可對農(nóng)機(jī)總動力增長及其影響因素各時間序列進(jìn)行多時間尺度分解,然后利用預(yù)測模型對農(nóng)機(jī)總動力增長不同時間尺度下的波動分量分別進(jìn)行預(yù)測,并對預(yù)測結(jié)果進(jìn)行重構(gòu),實(shí)現(xiàn)農(nóng)機(jī)總動力增長的準(zhǔn)確預(yù)測。
經(jīng)驗(yàn)?zāi)B(tài)分解、奇異譜分解和小波分解等方法均可對時間序列進(jìn)行多尺度分解,提取出代表原時間序列不同成分的信號,但奇異譜分解和小波分解均需預(yù)先給定基函數(shù),無法根據(jù)數(shù)據(jù)自身的時間尺度特征進(jìn)行分解,可能會分解出無效的波動分量[19-20]。Huang等提出的經(jīng)驗(yàn)?zāi)B(tài)分解法(empirical mode decomposition,EMD)無需預(yù)先設(shè)定任何基函數(shù),利用高斯白噪聲具有頻率均勻分布的統(tǒng)計(jì)特性,自適應(yīng)地將數(shù)據(jù)序列分解為包含了原始數(shù)據(jù)的不同時間尺度局部特征信號的有限個本征模態(tài)函數(shù)(intrinsic mode function,IMF)和表示信號發(fā)展趨勢的趨勢量,對信號的分解具有客觀性和穩(wěn)定性的特點(diǎn)[21-22]。BP神經(jīng)網(wǎng)絡(luò)具有較強(qiáng)的非線性映射能力,在農(nóng)機(jī)總動力預(yù)測領(lǐng)域得到較好的預(yù)測效果[5-8]。因此,本文采用EMD法對1986—2013年農(nóng)機(jī)總動力增長及其影響因素時間序列進(jìn)行分解,然后分別對分解后的相同時間尺度下的時間序列建立非線性BP神經(jīng)網(wǎng)絡(luò)模型,并對各預(yù)測結(jié)果進(jìn)行重構(gòu)得到農(nóng)機(jī)總動力增長預(yù)測值,建立基于 EMD-BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力增長預(yù)測模型,為農(nóng)機(jī)總動力的準(zhǔn)確預(yù)測提供新方法,預(yù)測結(jié)果為農(nóng)機(jī)總動力快速發(fā)展,農(nóng)機(jī)管理部門根據(jù)農(nóng)業(yè)機(jī)械化發(fā)展情況制定農(nóng)業(yè)機(jī)械化發(fā)展規(guī)劃提供有效參考依據(jù)。
農(nóng)機(jī)總動力增長受多方面因素影響,增長的需求動因主要包括政府宏觀政策、農(nóng)民收入增長、擴(kuò)大生產(chǎn)規(guī)模、提高生產(chǎn)能力、提高糧食數(shù)量和質(zhì)量、降低農(nóng)業(yè)生產(chǎn)成本、改善農(nóng)民生活和勞動條件等。因此,通過調(diào)研分析和征詢專家意見,在充分考慮需求動因和指標(biāo)的可獲得性的基礎(chǔ)上,提煉出影響農(nóng)機(jī)總動力增長的因素,影響因素選取過程在文獻(xiàn)[22]的研究中有詳細(xì)說明,在此不再贅述。選取的影響因素有:政府財(cái)政投入、農(nóng)民人均純收入、第一產(chǎn)業(yè)從業(yè)人員數(shù)和勞均(每個勞動力)播種面積、農(nóng)業(yè)勞均產(chǎn)值、糧食單產(chǎn)、機(jī)械化農(nóng)具價格指數(shù)、燃料價格指數(shù)、非農(nóng)產(chǎn)業(yè)的發(fā)展和初中文化以上農(nóng)村勞動力比例。其中,價格指數(shù)是以1985年為基期進(jìn)行計(jì)算得到的定基價格指數(shù),以研究價格變動長期趨勢及其發(fā)展規(guī)律;非農(nóng)產(chǎn)業(yè)的發(fā)展用第二、三產(chǎn)業(yè)總產(chǎn)值占地區(qū)生產(chǎn)總值的比例來表示。
農(nóng)機(jī)總動力增長主要影響因素的選取是分析農(nóng)機(jī)總動力增長變化和合理預(yù)測的基礎(chǔ)。目前,選取的方法主要有主成分分析法、相關(guān)分析法和灰色關(guān)聯(lián)分析法等[23-28]。本文運(yùn)用統(tǒng)計(jì)分析軟件SPSS 18.0,采用主成分分析法對影響因素進(jìn)行分析,得到第一和第二個成分的特征值均大于1,分別為8.252和1.326,其他成分的特征值均小于1,且這2個成分的累積貢獻(xiàn)率已達(dá)到95.782%,遠(yuǎn)大于根據(jù)累計(jì)貢獻(xiàn)率選取主成分的臨界值 80%,說明這 2個成分可以較好的解釋原始變量數(shù)據(jù)的信息。因此,提取這 2個成分作為主成分,各主成分與原始變量之間的因子載荷矩陣見表1。
表1 主成分因子載荷矩陣Table 1 Factor loading matrix of principal component
由表1可知,主成分1在農(nóng)民人均純收入、政府財(cái)政投入、勞均播種面積和燃料價格指數(shù) 4個指標(biāo)上的載荷值較大,其貢獻(xiàn)率高達(dá)82.521%,說明主成分1與這4個指標(biāo)的相關(guān)性較高,并且農(nóng)機(jī)投入能力及播種面積增大狀況對農(nóng)機(jī)總動力增長有重要影響,是保障農(nóng)機(jī)總動力持續(xù)增產(chǎn)的推動力;主成分 2在第一產(chǎn)業(yè)從業(yè)人員數(shù)和機(jī)械化農(nóng)具價格指數(shù) 2個指標(biāo)上的載荷值較大,其貢獻(xiàn)率為13.261%,說明農(nóng)業(yè)從業(yè)人員的減少和農(nóng)具價格的降低對農(nóng)機(jī)總動力增長起積極引導(dǎo)作用。進(jìn)一步對農(nóng)機(jī)總動力增長各影響因素進(jìn)行相關(guān)性分析,得出農(nóng)民人均純收入與糧食單產(chǎn)和農(nóng)業(yè)勞均產(chǎn)值相關(guān)性極顯著,燃料價格指數(shù)與機(jī)械化農(nóng)具價格指數(shù)、初中文化以上農(nóng)村勞動力比例和非農(nóng)產(chǎn)業(yè)的發(fā)展相關(guān)性極顯著,相關(guān)系數(shù)均在0.85以上。為簡化模型,最終選取影響因素中勞均播種面積、政府財(cái)政投入、農(nóng)民人均純收入、燃料價格指數(shù)和第一產(chǎn)業(yè)從業(yè)人員數(shù)作為模型輸入因子,對農(nóng)機(jī)總動力增長進(jìn)行預(yù)測。
1986—2013年農(nóng)機(jī)總動力增長及其主要影響因素的相關(guān)數(shù)據(jù),通過查閱資料并計(jì)算得到,見表2。
表2 1986—2013年農(nóng)機(jī)總動力增長及其主要影響因素?cái)?shù)據(jù)Table 2 Data of growth of agricultural machinery total power and its main influencing factors from 1986 to 2013
其中,農(nóng)機(jī)總動力增長和第一產(chǎn)業(yè)從業(yè)人員數(shù)據(jù)來源于《中國統(tǒng)計(jì)年鑒》,本年度的農(nóng)機(jī)總動力增長值等于本年的農(nóng)機(jī)總動力值減去上一年的農(nóng)機(jī)總動力值,政府財(cái)政投入來源于《中國農(nóng)業(yè)發(fā)展報(bào)告》和《中國農(nóng)業(yè)機(jī)械工業(yè)年鑒》,農(nóng)民人均純收入和燃料價格指數(shù)來源于《中國農(nóng)村統(tǒng)計(jì)年鑒》。
2.1 EMD分解法
EMD分解法的本質(zhì)是對非線性、非平穩(wěn)波動的數(shù)據(jù)信號不斷的分離出高頻分量,得到滿足條件的本征模態(tài)函數(shù)(IMF),直到所有頻率成分都被分離出來,得到有限個IMF,每個IMF包含原始數(shù)據(jù)信號不同時間尺度的局部特征信號,并且滿足2個條件:1)在整個時間序列數(shù)據(jù)范圍內(nèi),過局部極值點(diǎn)的數(shù)目和過零點(diǎn)的數(shù)目相等或最多相差1個;2)在任意時間點(diǎn),由局部最大值擬合的上包絡(luò)線和局部最小值擬合的下包絡(luò)線的平均值必須為零。EMD分解后用原始數(shù)據(jù)減去各IMF得到的殘余數(shù)值稱為趨勢量,趨勢量能反映數(shù)據(jù)信號的發(fā)展趨勢。EMD分解法的基本原理和計(jì)算過程在文獻(xiàn)[21,22]中有詳細(xì)介紹,本文不再贅述。
2.2 BP神經(jīng)網(wǎng)絡(luò)預(yù)測法
BP神經(jīng)網(wǎng)絡(luò)是對人腦活動的抽象、簡化和模擬,能學(xué)習(xí)和存貯輸入信號與輸出信號之間的非線性映射關(guān)系,而無需預(yù)先描述出數(shù)學(xué)方程,因此在預(yù)測領(lǐng)域得到廣泛應(yīng)用,并取得較好的預(yù)期效果[29-30]。BP神經(jīng)網(wǎng)絡(luò)由輸入層、若干個隱含層和輸出層構(gòu)成,每一層由一定數(shù)量的神經(jīng)元組成。圖1是含有一個隱含層的BP網(wǎng)絡(luò),輸入層、隱含層和輸出層的神經(jīng)元數(shù)個數(shù)分別為M、I和N,其中各層的任一神經(jīng)元分別用m、i和n表示,輸入層與隱含層的突觸權(quán)值用wmi表示,隱含層與輸出層的突觸權(quán)值用win表示,各層神經(jīng)元利用突觸權(quán)值來存儲獲取的知識信息。研究表明含有一個隱含層的BP神經(jīng)網(wǎng)絡(luò)在具有足夠隱含層神經(jīng)元數(shù)目情況下,具有較好的逼近非線性函數(shù)的能力,隱含層神經(jīng)元數(shù)越多,則逼近復(fù)雜函數(shù)的精度就越高,但也會出現(xiàn)“過度擬合”的問題,目前多根據(jù)經(jīng)驗(yàn)確定合適的隱含層神經(jīng)元數(shù)目[31-32]。
圖1 三層BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖Fig.1 Structure of BP neural network with three layers
BP網(wǎng)絡(luò)的基本思想是當(dāng)輸入信號X從輸入層輸入網(wǎng)絡(luò)后,信號經(jīng)過隱含層,通過輸出層輸出網(wǎng)絡(luò),得到輸出信號Y,若輸出信號滿足給定的要求,則計(jì)算終止,反之,則將輸出信號與目標(biāo)輸出之間的誤差信號進(jìn)行反向傳播,將誤差信號從輸出層沿原來的連接通路逐層向前傳播,通過誤差反饋修正各神經(jīng)元的連接權(quán)值和閾值,隨著誤差修正周而復(fù)始地進(jìn)行,使誤差信號逐步減小,網(wǎng)絡(luò)對輸入信號擬合精度不斷提高,最終達(dá)到精度要求,確定網(wǎng)絡(luò)的結(jié)構(gòu)、權(quán)值和閾值等來存儲獲取的知識信息,這就是網(wǎng)絡(luò)的學(xué)習(xí)訓(xùn)練過程[8,32]。本文采用3層BP神經(jīng)網(wǎng)絡(luò)對農(nóng)機(jī)總動力增長經(jīng)EMD分解后得到的各IMF和趨勢量分別進(jìn)行預(yù)測。
3.1 農(nóng)機(jī)總動力增長及其影響因素的EMD分解
采用EMD分解法對1986—2013年農(nóng)機(jī)總動力增長進(jìn)行分解,得到2個本征模態(tài)函數(shù)IMF1、IMF2及1個趨勢量。IMF1、IMF2的波動時間尺度分別為4~6 a和10 a左右,波峰波谷均勻出現(xiàn);趨勢量反應(yīng)了農(nóng)機(jī)總動力增長的長期變化趨勢,如圖2所示。
圖2 農(nóng)機(jī)總動力增長及其經(jīng)驗(yàn)?zāi)B(tài)分解結(jié)果Fig.2 Growth of agricultural machinery total power and its empirical mode decomposition
1986—2013年農(nóng)機(jī)總動力增長各影響因素的 EMD分解結(jié)果如圖3所示,由圖3可知,政府財(cái)政投入和第一產(chǎn)業(yè)從業(yè)人員數(shù)分解后分別得到波動時間尺度為 10 a左右的本征模態(tài)函數(shù)和趨勢量;勞均播種面積和燃料價格指數(shù)分解后均得到波動時間尺度約為4~6 a和10 a左右的 2個本征模態(tài)函數(shù)及趨勢量;農(nóng)民人均純收入無明顯波動現(xiàn)象,分解后不產(chǎn)生本征模態(tài)函數(shù),只有趨勢量。由EMD分解結(jié)果可知,各影響因素分解得到的波動時間尺度為 4~6 a的本征模態(tài)函數(shù)與農(nóng)機(jī)總動力增長IMF1的波動時間尺度相同,可認(rèn)為是影響農(nóng)機(jī)總動力增長波動周期為4~6 a的主要因素,因此可利用各影響因素波動尺度4~6 a的時間序列對農(nóng)機(jī)總動力增長IMF1進(jìn)行預(yù)測,同理可利用各影響因素波動尺度10 a左右的時間序列和趨勢量分別對農(nóng)機(jī)總動力增長 IMF2和趨勢量進(jìn)行預(yù)測。
3.2 農(nóng)機(jī)總動力增長預(yù)測與分析
農(nóng)機(jī)總動力增長時間序列經(jīng)EMD分解后,得到本征模態(tài)函數(shù)IMF1、IMF2和趨勢量,因此需建立3個BP神經(jīng)網(wǎng)絡(luò)模型分別對各波動分量進(jìn)行預(yù)測,最后重構(gòu)得到農(nóng)機(jī)總動力增長預(yù)測值。具體建模步驟如下:
圖3 主要影響因素經(jīng)驗(yàn)?zāi)B(tài)分解結(jié)果Fig.3 Empirical mode decomposition results of main influence factors
1)將農(nóng)機(jī)總動力增長及各影響因素分解后得到的波動時間尺度相同的時間序列列為一組,因此得到趨勢量和波動時間尺度為10 a、4~6 a的3組數(shù)據(jù)。
2)采用BP神經(jīng)網(wǎng)絡(luò)建立農(nóng)機(jī)總動力增長趨勢量的預(yù)測模型。
① 確定模型輸入、輸出因子
將勞均播種面積、政府財(cái)政投入、農(nóng)民人均純收入、第一產(chǎn)業(yè)從業(yè)人員數(shù)和燃料價格指數(shù)經(jīng) EMD分解后得到的趨勢量作為BP神經(jīng)網(wǎng)絡(luò)的輸入因子,因此輸入層的節(jié)點(diǎn)數(shù)為5;輸出層的輸出因子為農(nóng)機(jī)總動力增長的趨勢量,節(jié)點(diǎn)數(shù)為1。
② 樣本數(shù)據(jù)的預(yù)處理
BP網(wǎng)絡(luò)訓(xùn)練樣本集為 1986—2009年數(shù)據(jù),驗(yàn)證集為2010—2013年數(shù)據(jù)。為消除量綱的影響及避免神經(jīng)元過飽和,對輸入數(shù)據(jù)和輸出數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,將各數(shù)值換算至[0,1]內(nèi),以提高網(wǎng)絡(luò)的收斂性能和泛化能力,應(yīng)用Matlab軟件編程實(shí)現(xiàn),再將輸出層得到的農(nóng)機(jī)總動力增長趨勢量預(yù)測結(jié)果進(jìn)行反歸一化。
③ 模型結(jié)構(gòu)設(shè)計(jì)和函數(shù)選擇
本文采用含有一個隱含層的BP網(wǎng)絡(luò),誤差精度的提高通過增加隱含層神經(jīng)元數(shù)目來獲得。根據(jù)隱含層節(jié)點(diǎn)數(shù)的確定公式式中,i、m和n分別表示隱含層、輸入層和輸出層的節(jié)點(diǎn)數(shù),δ表示0~10之間的常數(shù),計(jì)算得到隱含層節(jié)點(diǎn)數(shù)的初始值為 3,采用試湊法進(jìn)行訓(xùn)練對比得到最佳節(jié)點(diǎn)數(shù)為6。網(wǎng)絡(luò)訓(xùn)練函數(shù)為Trainlm,隱含層和輸出層分別采用Sigmoid和Pureline傳遞函數(shù)。
④ 設(shè)定網(wǎng)絡(luò)訓(xùn)練參數(shù)
設(shè)定BP網(wǎng)絡(luò)的相關(guān)參數(shù),如學(xué)習(xí)精度為10-5,迭代步數(shù)為 1 500,學(xué)習(xí)速率為 0.01,利用初始化函數(shù) net=init(net)來初始化網(wǎng)絡(luò)的權(quán)值和閾值,然后對BP網(wǎng)絡(luò)模型進(jìn)行訓(xùn)練。
3)根據(jù)第二步的原理,對農(nóng)機(jī)總動力增長的 IMF1和IMF2分別進(jìn)行預(yù)測。預(yù)測農(nóng)機(jī)總動力增長的IMF1,BP神經(jīng)網(wǎng)絡(luò)的輸入為勞均播種面積和燃料價格指數(shù)經(jīng)EMD分解后得到的波動時間尺度為4~6 a的分量,因此輸入層的節(jié)點(diǎn)數(shù)為2,輸出層為農(nóng)機(jī)總動力增長的IMF1,節(jié)點(diǎn)數(shù)為1,隱含層節(jié)點(diǎn)數(shù)確定為7。預(yù)測農(nóng)機(jī)總動力增長的 IMF2,BP神經(jīng)網(wǎng)絡(luò)的輸入為勞均播種面積、政府財(cái)政投入、第一產(chǎn)業(yè)從業(yè)人員數(shù)和燃料價格指數(shù)的波動時間尺度為10 a的波動分量,因此輸入層的節(jié)點(diǎn)數(shù)為4,輸出層為農(nóng)機(jī)總動力增長的IMF2,節(jié)點(diǎn)數(shù)為1,隱含層節(jié)點(diǎn)數(shù)確定為6。
4)將各 BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測得到的 IMF1、IMF2和趨勢量結(jié)果進(jìn)行重構(gòu),即相加求和得到農(nóng)機(jī)總動力增長的最終預(yù)測值。BP神經(jīng)網(wǎng)絡(luò)預(yù)測農(nóng)機(jī)總動力增長IMF1、IMF2和趨勢量的結(jié)果見表3,由表3可知,IMF1、IMF2和趨勢量的預(yù)測值與目標(biāo)值之間的相關(guān)決定系數(shù)分別約為0.997、0.999和0.999,平均相對誤差分別為7.90%、1.96%和0.09%,趨勢量和IMF2的預(yù)測值與實(shí)際值的擬合效果均表現(xiàn)出極強(qiáng)的相關(guān)性,平均相對誤差較低;IMF1的預(yù)測模型的相關(guān)決定系數(shù)較高,但平均相對誤差較大,主要是因?yàn)镮MF1的原始數(shù)據(jù)序列較小,對于變量的波動情況表達(dá)明顯,因此平均相對誤差較大。
表3 農(nóng)機(jī)總動力增長各波動分量預(yù)測結(jié)果統(tǒng)計(jì)Table 3 Prediction results summary of each fluctuation item of growth of agricultural machinery total power
將農(nóng)機(jī)總動力增長 IMF1、IMF2和趨勢量的預(yù)測結(jié)果進(jìn)行求和重構(gòu)得到最終的預(yù)測值,訓(xùn)練樣本和檢驗(yàn)樣本的預(yù)測結(jié)果見表4。由表4可知,EMD-BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測得到的農(nóng)機(jī)總動力增長預(yù)測值與實(shí)際值具有極高的相關(guān)水平,1986—2009年訓(xùn)練樣本的平均相對誤差為0.99%,最大相對誤差為3.75%,最小相對誤差為0.05%,2010-2013年檢驗(yàn)樣本的平均相對誤差為1.29%,最大相對誤差為2.60%,最小相對誤差為0.17%,均在誤差的允許范圍內(nèi),可見EMD-BP預(yù)測模型具有較好的擬合和預(yù)測能力,可以滿足農(nóng)機(jī)總動力增長預(yù)測的精度要求。
3.3 模型精度評價方法
3.3.1 對比模型的建立
為科學(xué)、合理的評價EMD-BP模型的預(yù)測精度,分別選取多元線性回歸模型(multivariate linear regression,MLR)、支持向量機(jī)模型(support vector machine model,SVM)和BP神經(jīng)網(wǎng)絡(luò)模型對農(nóng)機(jī)總動力增長進(jìn)行預(yù)測,并對預(yù)測模型進(jìn)行對比分析。
多元線性回歸模型、SVM模型和BP神經(jīng)網(wǎng)絡(luò)模型的輸入為影響農(nóng)機(jī)總動力增長變化的 5種主要因素的時間序列,輸出為農(nóng)機(jī)總動力增長時間序列。SVM模型參數(shù)的選取對預(yù)測精度影響較大[33-34],因此為提高預(yù)測精度,利用遺傳算法(genetic algorithm,GA)對SVM模型進(jìn)行優(yōu)化,選擇徑向基函數(shù)(radical basis function,RBF)作為算法核函數(shù),通過多次優(yōu)化,確定SVM模型的最佳參數(shù)c=47.427 6、g=5.887 8、p=0.0463 18。BP神經(jīng)網(wǎng)絡(luò)模型隱含層為1個,隱含層神經(jīng)元為6個,訓(xùn)練函數(shù)為Trainlm,傳遞函數(shù)分別為Sigmoid和Pureline,設(shè)定網(wǎng)絡(luò)的學(xué)習(xí)精度為10-5,迭代步數(shù)為2 000,學(xué)習(xí)速率為0.01等。
表4 不同預(yù)測方法的農(nóng)機(jī)總動力增長預(yù)測值與誤差Table 4 Predicted results and errors of growth of agricultural machinery total power using different models
3.3.2 模型精度評價
應(yīng)用多元線性回歸模型、基于遺傳算法優(yōu)化的支持向量機(jī)模型(GA-SVM)和BP神經(jīng)網(wǎng)絡(luò)對農(nóng)機(jī)總動力增長進(jìn)行預(yù)測。采用決定系數(shù)R2、均方根誤差(root mean square error,RMSE)、平均相對誤差(mean relative error,MRE)、后驗(yàn)差比和小誤差概率等指標(biāo)分別對各預(yù)測模型進(jìn)行效果評價,評價結(jié)果見表5。由表5可知,多元線性回歸模型的平均相對誤差較大,模型等級評價為“合格”,預(yù)測效果最差;BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測誤差、決定系數(shù)和模型等級評價效果都優(yōu)于GA-SVM模型,可見BP神經(jīng)網(wǎng)絡(luò)對非線性函數(shù)的擬合能力優(yōu)于 SVM 模型。EMD-BP神經(jīng)網(wǎng)絡(luò)模型的決定系數(shù)約為0.999,RMSE為316.35 MW,擬合和預(yù)測平均相對誤差分別為 0.99%和1.29%,后驗(yàn)差比為0.02,模型的各項(xiàng)評價指標(biāo)都較好,模型等級評價為“好”,結(jié)果表明EMD-BP神經(jīng)網(wǎng)絡(luò)輸出值與目標(biāo)值偏差較小,是十分有效的預(yù)測方法。
表5 不同預(yù)測方法的農(nóng)機(jī)總動力增長預(yù)測結(jié)果評價Table 5 Prediction results evaluation of growth of agricultural machinery total power using different models
本文在對農(nóng)機(jī)總動力增長變化規(guī)律和現(xiàn)有預(yù)測模型進(jìn)行分析研究的基礎(chǔ)上,針對基于農(nóng)機(jī)總動力的時間序列預(yù)測模型和多因素線性回歸預(yù)測模型很難滿足實(shí)際分析與預(yù)測要求,提出基于EMD-BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力增長預(yù)測模型,得出以下主要結(jié)論:
1)采用主成分分析和相關(guān)性分析相結(jié)合的方法,確定勞均播種面積、政府財(cái)政投入、農(nóng)民人均純收入、燃料價格指數(shù)和第一產(chǎn)業(yè)從業(yè)人員數(shù) 5個因素為影響農(nóng)機(jī)總動力增長預(yù)測的輸入因子,采用 EMD分解法對1986-2013年農(nóng)機(jī)總動力增長及其影響因素進(jìn)行多時間尺度分解,得到波動時間尺度為4~6 a和10 a左右的各本征模態(tài)函數(shù)及表示信號序列長期發(fā)展趨勢的趨勢量,并確定影響農(nóng)機(jī)總動力增長各本征模態(tài)函數(shù)IMF1、IMF2和趨勢量變化相對應(yīng)的因素。
2)應(yīng)用EMD-BP神經(jīng)網(wǎng)絡(luò)建立農(nóng)機(jī)總動力增長預(yù)測模型,預(yù)測值與實(shí)際值的平均擬合和預(yù)測相對誤差分別為0.99%和1.29%,決定系數(shù)約為0.999,均方根誤差為316.35 MW,通過后驗(yàn)差比和小誤差概率評定模型等級為“好”,預(yù)測值與實(shí)際值呈極顯著相關(guān)。通過將EMD-BP神經(jīng)網(wǎng)絡(luò)模型與多元線性回歸、GA-SVM、BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)測結(jié)果進(jìn)行對比,表明EMD分解法可以清晰地表達(dá)出原始時間序列在不同時間尺度上的波動情況,解決多時間尺度序列的預(yù)測問題,BP神經(jīng)網(wǎng)絡(luò)是一種能有效處理多因素非線性農(nóng)機(jī)總動力增長變化預(yù)測的方法。
構(gòu)建的基于EMD-BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力增長預(yù)測模型可確定農(nóng)機(jī)總動力增長波動與其主要影響因素各時間尺度波動變化的關(guān)系,有效解決農(nóng)機(jī)總動力增長預(yù)測問題,提高預(yù)測結(jié)果的準(zhǔn)確性,為農(nóng)機(jī)總動力增長的定量預(yù)測提供一種新方法,為農(nóng)機(jī)總動力發(fā)展規(guī)劃控制目標(biāo)優(yōu)化提供有效參考。
[1]朱瑞祥,黃玉祥,楊曉輝. 用灰色神經(jīng)網(wǎng)絡(luò)組合模型預(yù)測農(nóng)機(jī)總動力發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(2):107-110.Zhu Ruixiang, Huang Yuxiang, Yang Xiaohui. Method for estimating total power of agricultural machinery based on mixed grey neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(2): 107-110. (in Chinese with English abstract)
[2]張淑娟,趙飛. 基于 Shapley值的農(nóng)機(jī)總動力組合預(yù)測方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(5):60-64.Zhang Shujuan, Zhao Fei. Combinatorial forecast of agricultural machinery total power based on shapely value[J].Transactions of the Chinese Society for Agricultural Machinery,2008, 39(5): 60-64. (in Chinese with English abstract)
[3]鞠金艷,王金武,王金峰. 基于 BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力組合預(yù)測方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):87-92.Ju Jinyan, Wang Jinwu, Wang Jinfeng. Combined prediction method of total power of agricultural machinery based on BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 87-92. (in Chinese with English abstract)
[4]袁玉萍,安增龍. 基于 SVM 的農(nóng)機(jī)裝備水平組合預(yù)測模型研究[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,21(1):122-128.Yuan Yuping, An Zenglong. Research on combined forecasting model for the level of agricultural machinery equipment based on SVM[J]. Journal of China agricultural university, 2016, 21(1):122-128. (in Chinese with English abstract)
[5]王笑巖,王石. 基于 BP神經(jīng)網(wǎng)絡(luò)的遼寧省農(nóng)機(jī)總動力預(yù)測[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2015,36(2):314-317.Wang Xiaoyan, Wang Shi. Prediction on total power on agricultural machinery in Liaoning Province based on BP neural network[J]. Journal of Chinese Agricultural Mechanization, 2015,36(2): 314-317. (in Chinese with English abstract)
[6]宋琿,董欣,王兵. 基于BP 神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力預(yù)測模型研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,40(4): 116-120.Song Hui, Dong Xin, Wang Bing. Research on prediction model of the total power of agricultural machinery based on BP neural network[J]. Journal of Northeast agricultural University,2009, 40(4): 116-120. (in Chinese with English abstract)
[7]陳麗能,謝永良. 基于BP 神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)擁有量預(yù)測技術(shù)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(1): 118-121.
[8]王吉權(quán),王福林,邱立春. 基于 BP 神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動力預(yù)測[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(12): 121-126.Wang Jiquan, Wang Fulin, Qiu Lichun. Prediction of total power in agriculture machinery based on BP neural network [J].Transactions of the Chinese Society for Agricultural Machinery,2011, 42(12): 121-126. (in Chinese with English abstract)
[9]張士強(qiáng),王雯. 農(nóng)業(yè)機(jī)械總動力的ARMA和方程法組合預(yù)測分析:以青島市為例[J]. 中國農(nóng)機(jī)化,2012,(1):53-56.Zhang Shiqiang, Wang Wen. Agricultural machinery total power forecasting based on equation method and ARMA model: A case study of Qingdao[J]. Chinese Agricultural Mechanization,2012, (1): 53-56. (in Chinese with English abstract)
[10]張昭,朱瑞祥,朱虎良,等. 基于灰色理論的陜西農(nóng)業(yè)機(jī)械總動力預(yù)測[J]. 農(nóng)機(jī)化研究,2011,33(5): 46-48.Zhang Zhao, Zhu Ruixiang, Zhu Huliang, etal. Prediction of agricultural machinery total power of Shanxi based on grey theory[J]. Journal of Agricultural Mechanization Research,2011, 33(5): 46-48. (in Chinese with English abstract)
[11]劉玉靜,李成華,楊升明. 遼寧省農(nóng)機(jī)總動力組合預(yù)測與分析[J]. 農(nóng)機(jī)化研究,2007(5): 31-33.Liu Yujing, Li Chenghua, Yang Shengming. Combination prediction and analysis of total power of agricultural machinery in Liaoning Province[J]. Journal of Agricultural Mechanization Research, 2007(5): 31-33. (in Chinese with English abstract)
[12]尤文堅(jiān),葉雪英,唐仕云. 基于徑向基神經(jīng)網(wǎng)絡(luò)農(nóng)機(jī)數(shù)量預(yù)測的研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2013,34(2): 38-41.You Wenjian, Ye Xueying, Tang Shiyun. Research on forecast of the number of agricultural machinery based on RBF neural network[J]. Journal of Chinese Agricultural Mechanization,2013, 34(2): 38-41. (in Chinese with English abstract)
[13]朱榮勝,王福林. 黑龍江省農(nóng)機(jī)總動力趨勢包絡(luò)預(yù)測與分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,38(4):512-515.Zhu Rongsheng, Wang Fulin. Trend envelope predict and analysis of Heilongjiang province agriculture machinery total power[J]. Journal of Northeast Agricultural University, 2006,38(4):512-515. (in Chinese with English abstract)
[14]李建偉,梁愛琴,田輝. 2011-2015年河南省農(nóng)業(yè)機(jī)械總動力的預(yù)測[J]. 農(nóng)機(jī)化研究,2012(6):47-50.Li Jianwei, Liang Aiqin, Tian Hui. Prediction in the total power of Henan province’s agricultural machinery from 2011 to 2015[J]. Journal of Agricultural Mechanization Research,2012(6): 47-50. (in Chinese with English abstract)
[15]余國新,程靜. 中國農(nóng)業(yè)機(jī)械總動力預(yù)測分析:基于ARIMA模型[J]. 農(nóng)機(jī)化研究,2009,31(2):51-54.Yu Guoxin, Cheng Jing. Predict and analysis of agricultural machinery total power in China: Based on ARIMA model [J].Journal of Agricultural Mechanization Research, 2009, 31(2):51-54. (in Chinese with English abstract)
[16]劉靜,朱達(dá)榮. 考慮自變及因變影響的農(nóng)機(jī)總動力組合預(yù)測模型[J]. 農(nóng)機(jī)化研究,2015(4):230-236.Liu Jing, Zhu Darong. Combined prediction model of agricultural machinery total power based on independent and dependent variables[J]. Journal of Agricultural Mechanization Research, 2015(4): 230-236. (in Chinese with English abstract)
[17]陳寶峰,白人樸,劉廣利. 影響山西省農(nóng)機(jī)化水平的多因素逐步回歸分析[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2005,10(4):115-118.Chen Baofeng, Bai Renpu, Liu Guangli. Stepwise regression analysis on the influencing factors of Shanxi agriculture mechanization level[J]. Journal of China Agricultural University,2005, 10(4): 115-118. (in Chinese with English abstract)
[18]李紅,周浩. 農(nóng)機(jī)購置投入結(jié)構(gòu)與農(nóng)機(jī)總動力增長關(guān)系分析[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2013,34(3):30-37,41.Li hong, Zhou Hao. Analysis on the relation between input structure for purchasing agricultural machines and agricultural machines power[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(3): 30-37, 41.(in Chinese with English abstract)
[19]劉忠,黃峰,李保國. 基于經(jīng)驗(yàn)?zāi)B(tài)分解的中國糧食單產(chǎn)波動特征及影響因素[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):7-13.Liu Zhong, Huang Feng, Li Baoguo. Analysis on characteristics and influential factors of grain yield fluctuation in China based on empirical mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 7-13.(in Chinese with English abstract)
[20]Lei Polei, Shang Lizen, Wu Yute, et al. Single-trial analysis of cortical oscillatory activities during voluntary movements using empirical mode decomposition (EMD)-based spatiotemporal approach[J]. Annals of Biomedical Engineering, 2009, 37(8): 1683-1700.
[21]Huang N E, Wu M C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London,Series A, 2003, 459: 2317-2354.
[22]鞠金艷,趙林,王金峰. 農(nóng)機(jī)總動力增長波動影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):84-91.Ju Jinyan, Zhao Lin, Wang Jinfeng.Fluctuations influence factors analysis of growth of agricultural machinery total power[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 84-91. (in Chinese with English abstract)
[23]鞠金艷,王金武. 黑龍江省農(nóng)業(yè)機(jī)械化發(fā)展關(guān)鍵影響因素分析[J]. 農(nóng)機(jī)化研究,2014(2):60-63.Ju Jinyan, Wang Jinwu. Analysis of key influencing factors for Heilongjiang agricultural mechanization development[J].Journal of Agricultural Mechanization Research, 2014(2):60-63. (in Chinese with English abstract)
[24]戴立勛,魏宏安. 甘肅省農(nóng)業(yè)機(jī)械化影響因素的量化分析[J]. 中國農(nóng)機(jī)化,2010 (4):24-28, 32.Dai Lixun,Wei Hongan. Analysis on influencing factors of Gansu agricultural mechanization[J]. Chinese Agricultural Mechanization, 2010 (4): 24-28, 32. (in Chinese with English abstract)
[25]楊敏麗,白人樸. 農(nóng)業(yè)機(jī)械總動力與影響因素關(guān)系分析[J].農(nóng)機(jī)化研究,2004,(6):45-47.Yang Minli, Bai Renpu. Analysis on the relationship between agricultural machinery gross power and influence factors [J].Journal of Agricultural Mechanization Research, 2004, (6):45-47. (in Chinese with English abstract)
[26]鄭文忠,應(yīng)霞芳. 農(nóng)業(yè)機(jī)械總動力變化影響因素的灰色關(guān)聯(lián)分析[J]. 農(nóng)機(jī)化研究,2007(12):9-11.Zheng Wenzhong, Ying Xiafang. Correlative degree analysis between agricultural machinery gross power and influencing factors[J]. Journal of Agricultural Mechanization Research,2007(12): 9-11. (in Chinese with English abstract)
[27]劉蕓蕓,李紅. 基于主成分回歸模型的新疆農(nóng)業(yè)機(jī)械化發(fā)展影響因素評價[J]. 貴州農(nóng)業(yè)科學(xué),2013,41(9):197-201.Liu Yunyun, Li Hong. Evaluation of factors influencing agricultural mechanization development in Xinjiang based on principal component regression model [J].Guizhou Agricultural Sciences, 2013, 41(9): 197-201. (in Chinese with English abstract)
[28]盧秉福,張祖立,朱明,等. 農(nóng)業(yè)機(jī)械化發(fā)展關(guān)鍵影響因素的辨識與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(11):114-117.Lu Bingfu, Zhang Zuli, Zhu Ming, et al. Discrimination and analysis of key influencing factors for agricultural mechanization development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 114-117. (in Chinese with English abstract)
[29]Aminian F, Suarez E D. Forecasting economic data with neural networks[J]. Computational Economics, 2006, 28: 71-88.
[30]鞠金艷,王金武. 黑龍江省農(nóng)業(yè)機(jī)械化作業(yè)水平預(yù)測方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(5): 83-88.Ju Jinyan, Wang Jinwu. Prediction method for the operation level of agricultural mechanization in Heilongjiang Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 83-88. (in Chinese with English abstract)
[31]唐萬梅. BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化問題的研究[J].系統(tǒng)工程理論與實(shí)踐,2005,25(10):95-100.Tang Wanmei. The study of the optimal structure of BP neural network[J]. Systems Engineering Theory &Practice,2005, 25(10): 95-100. (in Chinese with English abstract)
[32]楊娟麗,徐梅,王福林,等. 基于 BP 神經(jīng)網(wǎng)絡(luò)的時間序列預(yù)測問題研究[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識,2013,43(4):158-164.Yang Juanli, Xu Mei, Wang Fulin, et al. Research based on BP neural network times series forecasting[J]. Mathematics in Practice and Theory, 2013, 43(4): 158-164. (in Chinese with English abstract)
[33]王霞,王占岐,金 貴,等. 基于核函數(shù)支持向量回歸機(jī)的耕地面積預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(4):204-211.Wang Xia, Wang Zhanqi, Jin Gui, et al. Land reserve prediction using different kernel based support vector regression[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(4): 204-211. (in Chinese with English abstract)
[34]張豪,羅亦泳,張立亭,等. 基于遺傳算法最小二乘支持向量機(jī)的耕地變化預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(7):226-231.Zhang Hao, Luo Yiyong, Zhang Liting, et al. Cultivated land change forecast based on genetic algorithm and least squares support vector machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009,25(7): 226-231. (in Chinese with English abstract)
Prediction of total power growth of agricultural machinery based on empirical mode decomposition and BP neural network
Wang Jinfeng1, Yan Dongwei1, Ju Jinyan2, Wang Jinwu1
(1.College of Engineering,Northeast Agricultural University,Harbin150030,China;2.College of Mechanical Engineering,Heilongjiang University of Science and Technology,Harbin150022,China)
The traditional time series prediction models and multi-factor linear regression prediction models for total power of agricultural machinery are difficult to meet the actual analysis and forecasting demand. The total power growth of agricultural machinery and its influencing factors have strong correlation and obvious nonlinear fluctuation characteristics in various time scales. Taking the time series data of the total power growth of agricultural machinery and its influencing factors from 1986 to 2013 as the research objects, the prediction model for the total power growth of agricultural machinery was proposed to improve the accuracy and reliability of prediction results based on empirical mode decomposition (EMD) and BP (back propagation) neural network. The total power growth of agricultural machinery was affected by many factors such as government macro policy,farmers’ income growth, production scale expanding, production capacity improving, and so on. In order to determine the main influencing factors, the principal component analysis method was adopted to analyze the main contribution factors, and then the correlation analysis method was used to analyze the correlations between factors. The less affected factors were eliminated,and ultimately, planting area per labor, government finance investment, per capita net income of farmers, fuel price index and the number of first industry practitioners were determined as the main influencing factors, which were used to forecast the total power growth of agricultural machinery. The EMD method was adopted to decompose the total power growth of agricultural machinery and its main influencing factors from 1986 to 2013 in multi-time scale, the intrinsic mode functions (IMFs) with different time scales and the trend items were obtained, and then the nonlinear relationships between each IMF component and trend item of the total power growth of agricultural machinery and volatile component of influencing factors were established using BP network. At last, the results were reconstructed to forecast the total power growth of agricultural machinery. In order to evaluate the accuracy of developed EMD-BP model, the comparative models of multiple linear regression (MLR), support vector machine (SVM) model and BP neural network were developed. The prediction results of EMD-BP network, MLR,SVM model and BP neural network were analyzed. The average relative error of EMD-BP model fitting and prediction was 0.99% and 1.29% respectively, the relevant decision coefficient was 0.999, the standard error was 316.35 MW, and the evaluation grade of the model was good, and thus the accuracy evaluation indicators of EMD-BP network were better than other methods and had high precision and reliability. The results show that the EMD method can clearly express the volatility of original time series in different time scales, which can solve the prediction problem of multi-time scale sequence. The BP neural network is a kind of effective prediction method for the total power growth of agricultural machinery with nonlinear fluctuation. The developed EMD-BP neural network can determine the fluctuation relationships between the total power of agricultural machinery and its main influencing factors in each time scale, which can effectively solve the forecast problem of the total power growth of agricultural machinery and improve the accuracy of predicted results. The EMD-BP neural network offers a new method for quantitatively predicting the total power growth of agricultural machinery, and provides effective references for developing agricultural mechanization development plan and publishing relevant policy.
agricultural machinery; models; support vector machine; empirical mode decomposition; BP neural network;agricultural machinery total power; prediction
10.11975/j.issn.1002-6819.2017.10.015
S23
A
1002-6819(2017)-10-0116-07
2016-10-22
2017-03-21
國家自然科學(xué)基金項(xiàng)目(51205056);“十三五”國家重點(diǎn)研發(fā)項(xiàng)目(2016YFD0300909);東北農(nóng)業(yè)大學(xué)學(xué)術(shù)骨干項(xiàng)目(16XG09);東北農(nóng)業(yè)大學(xué)青年才俊項(xiàng)目(14QC34)
王金峰,男,黑龍江哈爾濱人,博士,副教授,從事田間作業(yè)機(jī)械和農(nóng)業(yè)機(jī)械化生產(chǎn)管理的研究。哈爾濱 東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。
Email:jinfeng_w@126.com