房素素,魯植雄,王增才,刁秀永,魯 楊,龔佳慧,朱春瑩
(1. 山東大學機械工程學院高效潔凈機械制造教育部重點實驗室,濟南 250061;2. 南京農(nóng)業(yè)大學工學院,南京 210031)
拖拉機線控液壓轉(zhuǎn)向系統(tǒng)設(shè)計及樣車性能試驗
房素素1,魯植雄2※,王增才1,刁秀永2,魯 楊2,龔佳慧2,朱春瑩2
(1. 山東大學機械工程學院高效潔凈機械制造教育部重點實驗室,濟南 250061;2. 南京農(nóng)業(yè)大學工學院,南京 210031)
拖拉機的轉(zhuǎn)向系統(tǒng)是保證行駛安全、高效作業(yè)的關(guān)鍵機構(gòu),針對傳統(tǒng)的全液壓轉(zhuǎn)向系統(tǒng)在轉(zhuǎn)向過程中易發(fā)生轉(zhuǎn)向沉重,甚至失靈等狀況,該文提出一種拖拉機線控液壓轉(zhuǎn)向系統(tǒng)。論文首先對拖拉機線控液壓轉(zhuǎn)向系統(tǒng)進行總體設(shè)計,基于MATLAB軟件的Simulink/Simhydraulic模塊對線控液壓轉(zhuǎn)向系統(tǒng)進行動態(tài)建模和仿真分析,根據(jù)分析數(shù)據(jù)完成試驗樣車改裝,利用改裝樣車分別進行轉(zhuǎn)向系統(tǒng)的靜態(tài)隨機轉(zhuǎn)動試驗、蛇形試驗、雙紐線試驗、穩(wěn)態(tài)回轉(zhuǎn)試驗以及轉(zhuǎn)向瞬態(tài)響應(yīng)試驗。通過試驗分析得到線控液壓轉(zhuǎn)向系統(tǒng)在5個試驗中理論與實際轉(zhuǎn)向輪轉(zhuǎn)角平均誤差分別為1.58°,0.79°,1.09°,0.69°,0.47°。試驗結(jié)果表明線控液壓轉(zhuǎn)向系統(tǒng)的理論與實際轉(zhuǎn)角曲線吻合度更高,誤差均低于全液壓系統(tǒng),轉(zhuǎn)向誤差精度有大幅度提高,性能更理想。拖拉機線控轉(zhuǎn)向系統(tǒng)綜合了液壓和線控技術(shù)優(yōu)點,在保證大動力輸出的同時,又具有轉(zhuǎn)向靈活,方便安裝等特點,可為拖拉機線控轉(zhuǎn)向系統(tǒng)推廣應(yīng)用提供參考。
拖拉機;轉(zhuǎn)向;系統(tǒng);線控液壓;樣車改裝
房素素,魯植雄,王增才,刁秀永,魯 楊,龔佳慧,朱春瑩. 拖拉機線控液壓轉(zhuǎn)向系統(tǒng)設(shè)計及樣車性能試驗[J]. 農(nóng)業(yè)工程學報,2017,33(10):86-93. doi:10.11975/j.issn.1002-6819.2017.10.011 http://www.tcsae.org
Fang Susu, Lu Zhixiong, Wang Zengcai, Diao Xiuyong, Lu Yang, Gong Jiahui, Zhu Chunying. Design and prototype performance experiments of steering-by-wire hydraulic pressure system of tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 86-93. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.011 http://www.tcsae.org
拖拉機作為現(xiàn)代農(nóng)業(yè)中十分重要的一種農(nóng)業(yè)車輛,其工作環(huán)境主要在田間,條件惡劣,地面阻力大,目前傳統(tǒng)的全液壓轉(zhuǎn)向系統(tǒng)具有大動力輸出這一突出特點[1],但缺點也十分明顯,如在轉(zhuǎn)向過程中易發(fā)生轉(zhuǎn)向沉重,甚至失靈等狀況。同時農(nóng)業(yè)車輛在地域轉(zhuǎn)移時需在公路上行駛,且其重心一般較高,雖然其行駛速度相對于乘用車輛為低速,但是相對于自身車況則為高速行駛,側(cè)向穩(wěn)定性較差[2],特別是在轉(zhuǎn)向時,駕駛員安全感較低,而在汽車行業(yè)十分熱門的線控轉(zhuǎn)向系統(tǒng)具有角傳動比和力傳動比可變的特性[3-4],這一特點不僅可以大大提高轉(zhuǎn)向的靈敏度和精度[5],而且使得車輛操縱穩(wěn)定性得到改 善[6-8],但是汽車線控轉(zhuǎn)向系統(tǒng)并不適合拖拉機這類需要大動力輸出的農(nóng)業(yè)機械,綜合考慮將全液壓技術(shù)與線控技術(shù)相結(jié)合設(shè)計出拖拉機線控液壓轉(zhuǎn)向系統(tǒng)[9]。農(nóng)業(yè)車輛屬于作業(yè)車輛,通常更多關(guān)注其作業(yè)功能,很少關(guān)注駕駛員操作車輛的疲勞度,特別是在作業(yè)時,駕駛員往往需要大幅度頻繁轉(zhuǎn)向,而所設(shè)計的線控液壓轉(zhuǎn)向系統(tǒng)的變角傳動比和變力傳動比特性可以有效降低駕駛員的勞動強度。新系統(tǒng)取消全液壓轉(zhuǎn)向系統(tǒng)中轉(zhuǎn)向器與轉(zhuǎn)向輪之間復(fù)雜的液壓油路的布置,將兩者直接相連接;同時也取消轉(zhuǎn)向盤與轉(zhuǎn)向器之間的機械連接,通過電子元件與電路進行信號傳遞和控制,從而在理論上可以實現(xiàn)方向盤安裝在任何一個位置,大大拓展駕駛員的工作空間,且轉(zhuǎn)向輕便,安裝自由。未來農(nóng)業(yè)車輛的發(fā)展方向?qū)⑹亲詣愚D(zhuǎn)向[10],無人化作業(yè),線控轉(zhuǎn)向技術(shù)與自主導(dǎo)航技術(shù)[11-13]、雷達技術(shù)等都是農(nóng)業(yè)車輛發(fā)展的關(guān)鍵技術(shù),這些技術(shù)的結(jié)合相比較全液壓轉(zhuǎn)向系統(tǒng)將更好地實現(xiàn)無人化自主作業(yè)。
近幾年國內(nèi)外許多研究人員都對拖拉機線控液壓轉(zhuǎn)向系統(tǒng)進行一定的研究,并取得一定成果。陸垚忠等[14]設(shè)計了基于DSP的線控液壓轉(zhuǎn)向系統(tǒng),并在進行臺架試驗之后結(jié)果表明:該系統(tǒng)能更好地結(jié)合路況實現(xiàn)對車輛的轉(zhuǎn)向控制,減少液壓震顫;杜恒[15]對一輛重型七軸車輛的轉(zhuǎn)向系統(tǒng)進行電控液壓式改裝,并進行原地加載轉(zhuǎn)向試驗與實車試驗,從而論證使用電磁比例伺服閥可獲得較高的轉(zhuǎn)角跟蹤精度;常江雪等[16]對比分析拖拉機線控液壓轉(zhuǎn)向系統(tǒng)中的 PID控制算法和模糊控制算法,對轉(zhuǎn)向控制策略進行一定的研究; Naseem Daher等[17]在降低線控液壓轉(zhuǎn)向系統(tǒng)的使用成本方面提出了虛擬傳感的概念,并進行分析論證;魯植雄等[18-19]從路感特性方面進行一定的研究并設(shè)計出能較好協(xié)調(diào)轉(zhuǎn)向輕便性與路感之間矛盾的曲線型轉(zhuǎn)向路感特性。
這些研究成果對于線控液壓轉(zhuǎn)向系統(tǒng)能夠更好地應(yīng)用和發(fā)展都具有重要意義,但是目前研究都處于理論仿真以及臺架試驗階段,但鮮少有研究者將新系統(tǒng)真正應(yīng)用于樣車,并在對樣車進行改裝之后進行試驗。
文章主要是介紹拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的整體設(shè)計,介紹線控液壓轉(zhuǎn)向系統(tǒng)控制算法及建模仿真分析,根據(jù)理論設(shè)計進行樣車改裝,并在改裝好樣車之后進行樣車性能試驗。
1.1 線控液壓轉(zhuǎn)向系統(tǒng)的總體設(shè)計
線控液壓轉(zhuǎn)向系統(tǒng)實現(xiàn)變角傳動比[3],打破以往的隨動控制,這就使得轉(zhuǎn)向靈活輕便,操縱方便平穩(wěn),提高整體舒適性和安全性;如圖 1所示為線控液壓轉(zhuǎn)向系統(tǒng)的總體設(shè)計。
圖1 線控液壓轉(zhuǎn)向系統(tǒng)總體結(jié)構(gòu)Fig.1 Hydraulic steering-by-wire system overall structure
如圖1所示,3種不同線型分別代表輸入信號、輸出信號以及油路。此線控液壓轉(zhuǎn)向系統(tǒng)主要的工作原理是方向盤轉(zhuǎn)角信號和轉(zhuǎn)矩信號通過傳感器采集后被同時送到ECU(electronic control unit),ECU對信號分析處理并向轉(zhuǎn)向執(zhí)行系統(tǒng)的電磁比例伺服閥發(fā)出控制信號給轉(zhuǎn)向油缸,之后轉(zhuǎn)向梯形實現(xiàn)車輪轉(zhuǎn)向。前輪實際轉(zhuǎn)角由安裝在轉(zhuǎn)向油缸上的位移傳感器的輸出信號結(jié)合轉(zhuǎn)向梯形參數(shù)計算得到,并將計算得到的前輪實際轉(zhuǎn)角信號反饋給 ECU,以構(gòu)成對前輪轉(zhuǎn)角的閉環(huán)控制。相比于傳統(tǒng)的全液壓轉(zhuǎn)向系統(tǒng),線控液壓轉(zhuǎn)向系統(tǒng)使用電磁比例伺服閥替代全液壓轉(zhuǎn)向器控制液壓油路的流向與流量,以達到轉(zhuǎn)向目的。
1.2 線控液壓轉(zhuǎn)向系統(tǒng)硬件選型及控制算法
依照系統(tǒng)結(jié)構(gòu)設(shè)計,綜合考慮性能、成本、精度以及使用要求等各方面的因素,現(xiàn)將改裝中使用的各個零部件的選型[20]列于表1中。
表1 零部件選型Table 1 Components selection
文章重點研究通過對比線控液壓轉(zhuǎn)向系統(tǒng)和全液壓轉(zhuǎn)向系統(tǒng),證明設(shè)計的線控液壓轉(zhuǎn)向系統(tǒng)可以具有更優(yōu)的轉(zhuǎn)向性能,為完成試驗,系統(tǒng)設(shè)計完成之后采用最簡單的經(jīng)典PID控制算法來實現(xiàn)系統(tǒng)閉環(huán)控制[9]。通過精確整定 PID參數(shù)來保證控制算法性能,以達到控制目標,確保拖拉機的轉(zhuǎn)向性能。經(jīng)過大量仿真試驗,通過試湊法,將參數(shù)整定為:P=2,I=0.005,D=0.001[21]。
拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的PID控制器[22]設(shè)計如圖所示,整體結(jié)構(gòu)為閉環(huán)控制系統(tǒng),方向盤轉(zhuǎn)角傳感器采集轉(zhuǎn)角信號作為系統(tǒng)輸入,與實際轉(zhuǎn)角信號作差,得到結(jié)果信號進行算法處理后信號進入 PID控制器,控制器輸出控制電壓,此電壓信號驅(qū)動轉(zhuǎn)向執(zhí)行結(jié)構(gòu)完成轉(zhuǎn)向動作,具體為電磁比例伺服閥接收到信號控制轉(zhuǎn)向油缸液壓油流量,進而控制油缸活塞桿的運動,從而通過轉(zhuǎn)向梯形控制轉(zhuǎn)向輪的轉(zhuǎn)動。轉(zhuǎn)向輪的實際轉(zhuǎn)角信號由轉(zhuǎn)向輪轉(zhuǎn)角傳感器采集并經(jīng)過角傳動比的換算,在實際改裝中為滿足線控液壓系統(tǒng)性能要求,將角傳動比設(shè)定為12。
圖2 拖拉機線控液壓轉(zhuǎn)向系統(tǒng)PID控制器設(shè)計Fig.2 Design of tractor hydraulic steering-by-wire system PID controller
基于設(shè)計完成的線控液壓轉(zhuǎn)向系統(tǒng)的總體結(jié)構(gòu)、PID控制器以及選定的參數(shù),在對拖拉機的轉(zhuǎn)向系統(tǒng)改裝之前,首先利用MATLAB軟件進行建模和仿真分析[23],基于 Simulink/Simhydraulic模塊建立線控液壓轉(zhuǎn)向系統(tǒng)模型[16],其中輸出為轉(zhuǎn)向輪的轉(zhuǎn)角信號和油缸位移信號,本文基于沃得 854拖拉機進行改裝及試驗,依據(jù)其型號參數(shù)所確定的油缸位移和轉(zhuǎn)向輪轉(zhuǎn)角的關(guān)系公式(1)對兩信號進行處理。
式中u表示油缸位移傳感器信號,mm。f(u)表示轉(zhuǎn)向輪轉(zhuǎn)角信號,V。因此在所得到的數(shù)據(jù)中輸出信號為轉(zhuǎn)向輪轉(zhuǎn)角信號[24-25]。整個模型的建立都基于線控液壓系統(tǒng)總體設(shè)計原理圖,并且在零部件選型和連接上保持一致。
圖3 線控液壓轉(zhuǎn)向系統(tǒng)仿真模型Fig.3 Simulation model of hydraulic steering-by-wire system
仿真結(jié)果如圖3b所示,PID控制器輸出信號與目標信號吻合程度較高,可驗證系統(tǒng)具有可行性,可以進行樣車改裝試驗。如圖 4所示為全液壓轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)圖。圖5a所示為總體改裝設(shè)計圖,虛線框內(nèi)是對樣車所做的改裝部分。圖5b所示的是總體改裝實物圖。由圖4,圖5對比可以看出,改裝過程中增加系統(tǒng)所需的控制閥,電子元件以及設(shè)計電路,通過信號傳遞替代全液壓系統(tǒng)中轉(zhuǎn)向盤與轉(zhuǎn)向執(zhí)行機構(gòu)之間復(fù)雜的油路連接,去除轉(zhuǎn)向柱等部件,大大減輕轉(zhuǎn)向系統(tǒng)的重量,不僅實現(xiàn)轉(zhuǎn)向盤與執(zhí)行機構(gòu)之間的獨立布置,并且轉(zhuǎn)向系統(tǒng)實現(xiàn)輕量化有利于節(jié)能。使用多個傳感器采集信號,控制器精確控制轉(zhuǎn)向執(zhí)行機構(gòu)實現(xiàn)變角傳動比和變力傳動比,從而提高轉(zhuǎn)向靈敏度,同時對轉(zhuǎn)向油泵實現(xiàn)電控,相對于圖 4中全液壓轉(zhuǎn)向系統(tǒng)中轉(zhuǎn)向油泵無論是否轉(zhuǎn)向都處于工作狀態(tài)的情況,線控液壓系統(tǒng)的油泵只有在轉(zhuǎn)向時才工作,避免能量浪費[26-27]。系統(tǒng)中的 PID控制器為閉環(huán)控制,改裝之后可消除拖拉機原轉(zhuǎn)向系統(tǒng)無反饋或反饋單一的缺點。
圖4 全液壓轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)Fig.4 Structure of full hydraulic steering system
圖5 線控液壓轉(zhuǎn)向系統(tǒng)總體改裝圖和實物圖Fig.5 General modification of hydraulic steering-by-wire system and modification picture
樣車改裝完成之后必須要進行大量的試驗測試,為多方面測試拖拉機改裝之后的轉(zhuǎn)向系統(tǒng)性能,對其進行靜態(tài)試驗和動態(tài)試驗。
靜態(tài)試驗可在實驗室內(nèi)進行,動態(tài)試驗需在室外試驗場地進行。實施試驗之前進行一系列準備工作,首先是儀器的選擇與安裝,按照表 1選定型號購買并安裝儀器;在試驗進行之前對試驗樣車進行檢查保證樣車可正常啟動,駕駛安全;同時保證試驗場地整潔平坦,天氣無異常,并準備好試驗所需基本工具[28]。除去對于試驗場地標樁的設(shè)置每個試驗不同外,其余試驗準備對于靜態(tài)試驗動態(tài)試驗都相同。
試驗開始之前需要先對傳感器進行標定,得到轉(zhuǎn)向輪角度與電壓的關(guān)系,這是控制器輸出精確轉(zhuǎn)向輪角度信號的基礎(chǔ)數(shù)據(jù)。
標定試驗使用的傳感器是安裝于轉(zhuǎn)向輪主銷上的轉(zhuǎn)向輪角位移編碼器,具體試驗過程為:首先進行找正,記錄轉(zhuǎn)向輪位于正中時編碼器的輸出信號值為300,記錄此時控制器的輸出電壓,為 2.46 V。之后轉(zhuǎn)動轉(zhuǎn)向盤,此時轉(zhuǎn)向盤每轉(zhuǎn)過一個角度,油缸位移傳感器則輸出相應(yīng)的電壓,之后轉(zhuǎn)向輪角位移編碼器輸出相應(yīng)的轉(zhuǎn)角信號,將電壓信號和轉(zhuǎn)角信號進行采集,并將試驗中記錄的轉(zhuǎn)角信號和電壓信號進行數(shù)據(jù)處理,擬合得到線性圖,輸出方程表示為公式(2)。
式中x表示電壓信號,V;y表示轉(zhuǎn)向輪轉(zhuǎn)角信號,(°);關(guān)系式的斜率為16.283 2。如圖6為轉(zhuǎn)向輪轉(zhuǎn)角與電壓的關(guān)系圖。
圖6 轉(zhuǎn)向輪轉(zhuǎn)角與電壓關(guān)系Fig.6 Relationship between steering angle of steering wheel angle and voltage
各個試驗所評價的車輛性能不盡相同[29-30],接下來將分別介紹各個試驗,并重點分析試驗結(jié)果,每個試驗都將分別對原系統(tǒng)和新系統(tǒng)進行測試,并保證兩系統(tǒng)在試驗環(huán)境和駕駛條件方面盡可能相同,保證試驗數(shù)據(jù)可靠性。每個試驗都將分別采集兩系統(tǒng)的兩類數(shù)據(jù),一類為轉(zhuǎn)動拖拉機轉(zhuǎn)向盤得到的轉(zhuǎn)角,即理論轉(zhuǎn)向盤轉(zhuǎn)角,此數(shù)據(jù)由安裝于方向盤上的空心軸式編碼器獲取;另一類為轉(zhuǎn)向盤轉(zhuǎn)角作用于轉(zhuǎn)向輪,使其轉(zhuǎn)過的角度,即實際轉(zhuǎn)向盤轉(zhuǎn)角,此信號由轉(zhuǎn)向輪油缸傳感器獲取。這兩個數(shù)據(jù)可最為直觀的反映拖拉機整體的操縱穩(wěn)定性以及轉(zhuǎn)向系統(tǒng)在隨動性以及靈敏性等方面的性能高低[21],并通過對曲線的直觀對比分析得出結(jié)論。
3.1 靜態(tài)隨機轉(zhuǎn)動試驗
靜態(tài)試驗進行的是靜態(tài)隨機轉(zhuǎn)動試驗,過程為原地操縱拖拉機轉(zhuǎn)向系統(tǒng)進行測試試驗。兩系統(tǒng)在原理與結(jié)構(gòu)上都具有很大區(qū)別,并且在樣車開發(fā)過程中可以在原有轉(zhuǎn)向系統(tǒng)與線控液壓轉(zhuǎn)向系統(tǒng)之間實現(xiàn)一鍵切換功能,這不僅是出于安全的考慮,樣車開發(fā)必須保留原有的全液壓轉(zhuǎn)向系統(tǒng),以防止試驗中線控液壓轉(zhuǎn)向系統(tǒng)突然失靈,而且保證兩系統(tǒng)獨立運行,互不干擾。進行靜態(tài)試驗的目的是對比兩系統(tǒng)性能并測試系統(tǒng)進行動態(tài)試驗的安全性和可靠性,具體過程為:首先進行全液壓轉(zhuǎn)向系統(tǒng)隨機轉(zhuǎn)動試驗,隨機轉(zhuǎn)動方向盤,并同時電腦記錄試驗數(shù)據(jù),之后拖拉機熄火,重新啟動進行相同準備工作之后切換開關(guān)至線控液壓轉(zhuǎn)向系統(tǒng)隨機轉(zhuǎn)動方向盤記錄對應(yīng)數(shù)據(jù)。靜態(tài)試驗結(jié)果分析如圖7所示。
由于在靜態(tài)試驗中駕駛員隨機轉(zhuǎn)動方向盤,并且基本是有規(guī)律的左右轉(zhuǎn)動,因此可以很直觀的體現(xiàn)轉(zhuǎn)角的變化符合駕駛員的方向盤的轉(zhuǎn)動方向,轉(zhuǎn)向盤的工作行程是–360°~360°,轉(zhuǎn)向輪的工作行程是–30°~30°,因此在數(shù)據(jù)處理過程中將其倍數(shù)關(guān)系進行處理。兩系統(tǒng)在隨機過程中轉(zhuǎn)向盤輸入的轉(zhuǎn)角與轉(zhuǎn)向輪輸出轉(zhuǎn)角之間的差值將其稱為誤差。分析數(shù)據(jù)曲線可以說明轉(zhuǎn)向系統(tǒng)功能正常運行,這是作為之后兩系統(tǒng)性能比較的前提條件。同時全液壓轉(zhuǎn)向系統(tǒng)的隨機轉(zhuǎn)動試驗理論與實際轉(zhuǎn)角的差值隨著時間逐步加大,并且在轉(zhuǎn)角較大的情況下格外明顯,對比來看線控液壓系統(tǒng)的誤差值小且恒定,基本維持在 5°以下,且相比較全液壓系統(tǒng)的誤差,前者穩(wěn)定且在極值時刻誤差也沒有很大波動。全液壓系統(tǒng)在此試驗中的平均誤差為 8.22°,相比線控液壓轉(zhuǎn)向系統(tǒng)只有1.58°的誤差均值,在轉(zhuǎn)向性能方面并不理想,而改裝之后的拖拉機應(yīng)用線控液壓系統(tǒng),轉(zhuǎn)向性能大大提高。
圖7 2系統(tǒng)靜態(tài)隨機轉(zhuǎn)動試驗Fig.7 Static random rotation experiment of two systems
3.2 動態(tài)試驗
動態(tài)試驗進行的是蛇形試驗、雙紐線試驗、穩(wěn)態(tài)回轉(zhuǎn)試驗、轉(zhuǎn)角瞬態(tài)響應(yīng)試驗,試驗路徑如圖 8所示,各試驗結(jié)果如圖 9所示。通過試驗結(jié)果分析比較改裝之后的線控液壓轉(zhuǎn)向系統(tǒng)與全液壓轉(zhuǎn)向系統(tǒng)在性能各方面的差別,從而評價線控液壓轉(zhuǎn)向系統(tǒng)的可行性與創(chuàng)新之處,為之后作進一步的改進以及在農(nóng)業(yè)機械上的廣泛應(yīng)用提供可靠數(shù)據(jù)。動態(tài)試驗的幾項試驗中駕駛拖拉機進入試驗場地后為保證車速穩(wěn)定,在駕駛時將檔位調(diào)整至 4檔(低速擋),并將油門踩到1/3處,試驗員通過電腦采集數(shù)據(jù),各個試驗首先采集車輛使用全液壓轉(zhuǎn)向系統(tǒng)時的數(shù)據(jù),再一次按照原路線行駛,切換至線控液壓轉(zhuǎn)向系統(tǒng),獲取理論轉(zhuǎn)向盤與實際轉(zhuǎn)向盤轉(zhuǎn)角數(shù)據(jù)。
圖 8 2系統(tǒng)動態(tài)試驗路徑Fig.8 Paths ofdynamic experiments for two systems
3.2.1 蛇形試驗
蛇形試驗是綜合評價車輛操縱穩(wěn)定性和靈敏性的一項試驗,是包含人、機、外界環(huán)境幾大因素的一種閉環(huán)試驗[28]。由于拖拉機作業(yè)的特殊性一般來說車速較低,因此對拖拉機進行蛇形試驗將重點評價其方向操縱輕便性以及隨動性。試驗主要獲取蛇形轉(zhuǎn)向盤轉(zhuǎn)角以及蛇形轉(zhuǎn)向輪轉(zhuǎn)角,試驗在保證車速穩(wěn)定的情況下以盡可能高的車速行駛,并要求駕駛員經(jīng)驗豐富,拖拉機行進路線及方向如圖8a中實線及箭頭所示,以保證拖拉機可以正常轉(zhuǎn)向。
圖9a中所得曲線能夠很好地反映蛇形路徑以及轉(zhuǎn)向盤理論與實際的吻合程度。通過分析 2條誤差曲線也可以更加直觀清晰地對比兩系統(tǒng)的性能優(yōu)劣。1)首先分別對比兩系統(tǒng)轉(zhuǎn)向盤理論與實際轉(zhuǎn)角曲線的吻合程度,線控液壓轉(zhuǎn)向系統(tǒng)顯然更加理想;其次分別對比在實際與理論轉(zhuǎn)向輪轉(zhuǎn)角的相符程度上,線控液壓轉(zhuǎn)向系統(tǒng)吻合程度十分高,直觀地反映出線控液壓轉(zhuǎn)向系統(tǒng)使拖拉機具有更高的轉(zhuǎn)向靈敏性和隨動性,這對拖拉機性能上的優(yōu)化有很大意義。2)通過分析誤差曲線,可以明顯的看出線控液壓轉(zhuǎn)向系統(tǒng)試驗誤差始終在0~3°之間,最大為2.64°,始終在較小范圍內(nèi)波動,計算其平均誤差為0.79°;而全液壓轉(zhuǎn)向系統(tǒng)試驗誤差則波動很大,最大誤差值可以達到11.04°,計算其平均誤差為4.15°。由此可知線控液壓轉(zhuǎn)向系統(tǒng)在性能穩(wěn)定性以及轉(zhuǎn)向精度方面更有優(yōu)勢。
3.2.2 雙紐線試驗
雙紐線試驗是評價車輛轉(zhuǎn)向輕便性的一項試驗,本試驗測量拖拉機在低速大轉(zhuǎn)角時的轉(zhuǎn)向輕便性,試驗過程中駕駛員操縱轉(zhuǎn)向盤駕駛拖拉機按照如圖8b所示的雙紐線路徑前進,途中標樁構(gòu)成雙紐線造型,雙紐線頂點的曲率半徑為4.5 m,結(jié)點至頂點的距離為9 m,拖拉機保持低速穩(wěn)定前進,同時采集記錄數(shù)據(jù),分析數(shù)據(jù)后如圖9b所示。
圖9 2系統(tǒng)動態(tài)試驗結(jié)果Fig.9 Dynamic experiments results for two systems
1)對比兩系統(tǒng)4條試驗曲線,其形狀都可正常反映雙紐線試驗的曲線特點,2轉(zhuǎn)向系統(tǒng)都能完成正常轉(zhuǎn)向,并且在行駛過程中與路徑相符合程度基本達到正常行駛要求。但可以很明顯地看出,全液壓轉(zhuǎn)向系統(tǒng)理論與實際的轉(zhuǎn)向盤轉(zhuǎn)角在轉(zhuǎn)向角度較大的情況下吻合程度會下降,當轉(zhuǎn)向角度較大時,轉(zhuǎn)向輪轉(zhuǎn)角并不完全符合轉(zhuǎn)向盤的轉(zhuǎn)角大小,而是小于轉(zhuǎn)向盤轉(zhuǎn)角,這在實際轉(zhuǎn)向過程中會使得操縱靈敏性和輕便性大大下降。而線控液壓轉(zhuǎn)向系統(tǒng)的雙紐線試驗理論與實際轉(zhuǎn)角曲線吻合程度很高,即工作過程中駕駛員轉(zhuǎn)動方向盤多大角度,相應(yīng)的轉(zhuǎn)向輪就轉(zhuǎn)過多大角度,轉(zhuǎn)向更為輕便靈活。
通過 2系統(tǒng)雙紐線試驗誤差對比,從曲線數(shù)據(jù)得到線控液壓轉(zhuǎn)向系統(tǒng)的誤差波動始終在 4°以內(nèi),最大達到3.55°,相比較全液壓轉(zhuǎn)向系統(tǒng)極值大于15°的曲線變化,前者轉(zhuǎn)向更具有穩(wěn)定性,其性能更加優(yōu)越。對比線控液壓與全液壓系統(tǒng)分別為1.09°、6.25°的誤差均值,可以更加準確地說明前者的轉(zhuǎn)向輕便性能好。
3.2.3 穩(wěn)態(tài)回轉(zhuǎn)試驗
拖拉機的穩(wěn)態(tài)回轉(zhuǎn)試驗是測定在給定拖拉機轉(zhuǎn)向盤一個轉(zhuǎn)角輸入時,其運動的穩(wěn)態(tài)響應(yīng)過程,此試驗與蛇形試驗,雙紐線試驗以及角脈沖角階躍試驗共同評價拖拉機的操縱穩(wěn)定性。試驗具體過程為:在試驗場地上用標樁擺出一個半徑為15 m的圓,拖拉機保持最低穩(wěn)定車速沿所設(shè)置的圓外圈行駛,行駛路線如圖8c所示結(jié)果。進行數(shù)據(jù)處理以及誤差分析,得到圖9c。
圖9c所示的全液壓系統(tǒng)穩(wěn)態(tài)回轉(zhuǎn)試驗與線控液壓轉(zhuǎn)向系統(tǒng)試驗曲線,試驗曲線在整體趨勢走向上基本一致,說明拖拉機的轉(zhuǎn)向功能正常,差異在于轉(zhuǎn)向操縱穩(wěn)定性能高低以及穩(wěn)態(tài)響應(yīng)的靈敏程度不同。
通過誤差曲線更可以直觀的看到線控液壓轉(zhuǎn)向系統(tǒng)穩(wěn)定性強,平均誤差小于全液壓轉(zhuǎn)向系統(tǒng)1.62°的一半,只有0.69°。全液壓系統(tǒng)相較線控液壓系統(tǒng)要差,也說明現(xiàn)代車輛轉(zhuǎn)向系統(tǒng)的發(fā)展逐漸趨于線控技術(shù),的確是因為線控技術(shù)有很大優(yōu)勢。
3.2.4 轉(zhuǎn)向瞬態(tài)響應(yīng)試驗
拖拉機的轉(zhuǎn)向瞬態(tài)響應(yīng)試驗主要包括 2個試驗,轉(zhuǎn)向盤角階躍輸入的轉(zhuǎn)向瞬態(tài)響應(yīng)試驗和轉(zhuǎn)向盤角脈沖輸入的轉(zhuǎn)向瞬態(tài)響應(yīng)試驗。從操作方法以及獲取的數(shù)據(jù)可以簡單地認為轉(zhuǎn)角階躍輸入試驗就是進行一半的轉(zhuǎn)角脈沖輸入穩(wěn)態(tài)響應(yīng)試驗,因此在以下敘述中將只介紹分析轉(zhuǎn)角脈沖試驗過程以及結(jié)果。試驗過程為:拖拉機以試驗車速直線行駛,之后轉(zhuǎn)向盤突然轉(zhuǎn)動180°后保持不動,約3 s后突然轉(zhuǎn)動方向盤回正,之后駕駛拖拉機行駛直至其恢復(fù)到正常直線行駛狀態(tài)。此試驗過程中記錄數(shù)據(jù),駕駛員保證油門開度不變。
圖9d所顯示的是2系統(tǒng)的轉(zhuǎn)角脈沖輸入的瞬態(tài)響應(yīng)試驗結(jié)果曲線以及 2系統(tǒng)誤差對比分析曲線圖,試驗結(jié)果曲線都有明顯的脈沖信號,說明兩系統(tǒng)轉(zhuǎn)向功能都正常,但全液壓轉(zhuǎn)向系統(tǒng)的試驗曲線符合度不高,即理論與實際轉(zhuǎn)角仍存在較大的誤差,而線控液壓轉(zhuǎn)向系統(tǒng)瞬態(tài)的響應(yīng)能力更強,靈敏性更高。通過兩系統(tǒng)誤差對比分析,將理論與實際轉(zhuǎn)角的誤差匯總并取平均誤差值,計算得到全液壓轉(zhuǎn)向系統(tǒng)在此試驗中的誤差均值為1.14°,而線控液壓轉(zhuǎn)向系統(tǒng)的誤差均值只有0.47°,此結(jié)果更加清晰地論證線控液壓轉(zhuǎn)向系統(tǒng)具有更高的轉(zhuǎn)向精度,響應(yīng)更快。
1)基于拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的理論設(shè)計完成樣車改裝,并且對改裝完成之后的樣車進行樣車試驗,對線控液壓轉(zhuǎn)向系統(tǒng)的各項性能進行研究分析。線控液壓轉(zhuǎn)向系統(tǒng)結(jié)合線控技術(shù)和液壓技術(shù)優(yōu)勢于一體可使拖拉機轉(zhuǎn)向性能得到全新提升,也為農(nóng)業(yè)車輛轉(zhuǎn)向領(lǐng)域的研究提供新的研究數(shù)據(jù)。
2)通過靜態(tài)試驗和動態(tài)試驗對全液壓轉(zhuǎn)向系統(tǒng)和線控液壓轉(zhuǎn)向系統(tǒng)進行試驗結(jié)果分析對比得出靜態(tài)試驗中全液壓轉(zhuǎn)向系統(tǒng)理論與實際轉(zhuǎn)向輪轉(zhuǎn)角平均誤差值為8.22°,而線控液壓轉(zhuǎn)向系統(tǒng)只有1.58°。動態(tài)試驗中線控液壓轉(zhuǎn)向系統(tǒng)的平均誤差值分別為0.79°,1.09°,0.69°,0.47°,而全液壓轉(zhuǎn)向系統(tǒng)平均誤差分別為4.15°,6.25°,1.62°,1.14°,從結(jié)果對比可以看出新改裝的系統(tǒng)在試驗中理論與實際轉(zhuǎn)角誤差波動明顯小于全液壓系統(tǒng),平均誤差數(shù)值也低于全液壓系統(tǒng),轉(zhuǎn)向精度更高,響應(yīng)更快,具有不僅可以提高拖拉機的操縱穩(wěn)定性和路徑跟蹤能力,并且可以有效減少駕駛員勞動強度的優(yōu)點。
[1]文愛民,魯植雄,吳俊淦. 全液壓轉(zhuǎn)向特性測試的實驗與分析[J]. 中國農(nóng)機化學報,2014,35(5):128-133.Wen Aimin, Lu Zhixiong, Wu Jungan. Experiment and analysis of full hydraulic steering characteristics[J]. Journal of Chinese AgriculturalMechanization, 2014, 35(5): 122-127. (in Chinese with English abstract)
[2]Masaya S, Shiro N, Osamu N, et al.Vehicle stability control strategy for steer-by-wire system[J]. JSAE Review, 2001,22(9): 383-388.
[3]宗長富,韓衍東,何磊,等. 汽車線控轉(zhuǎn)向變角傳動比特性研究[J]. 中國公路學報,2015,28(9):119-124.Zong Changfu, He Yandong, He Lei, et al. Research on variable angle transmission ratio characteristics for automobile with SBW[J]. China Journal of Highway and Transport, 2015,28(9): 119-124. (in Chinese with English abstract)
[4]于蕾艷,林逸,施國標. 線控轉(zhuǎn)向系統(tǒng)的角傳動比研究[J].農(nóng)業(yè)機械學報,2007,38(8):190-192.Yu Leiyan, Lin Yi, Shi Guobiao. Research on angular transmission ratio of steer-by-wire system[J]. Journal of agricultural machinery, 2007, 38(8): 190-192. (in Chinese with English abstract)
[5]王祥. 汽車線控轉(zhuǎn)向系統(tǒng)雙向控制及變傳動比特性研究[D]. 長春:吉林大學,2013.Wang Xiang. Research on Bilateral Control and Variable Ratio Characteristics for Steer-by-Wire Automobile[D].Changchun: Jilin University, 2013. (in Chinese with English abstract)
[6]潘冠廷. 山地履帶拖拉機坡地轉(zhuǎn)向動態(tài)穩(wěn)定性理論研究[D]. 楊凌:西北農(nóng)林科技大學,2015.Pan Guanting. Study on the Dynamic Stability of the Slope of a Mountain Crawler Tractor[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract)
[7]施國標,趙萬忠,王成玲,等. 線控轉(zhuǎn)向變傳動比控制對車輛操縱穩(wěn)定性的影響[J]. 北京理工大學學報,2008,28(3):207-210,236.Shi Guobiao, Zhao Wanzhong, Wang Chengling, et al. The influence of variable steer-by-wire ratio control for vehiclestability[J]. Journal of Beijing Institute of Technology, 2008,28 (3): 207-210,236. (in Chinese with English abstract)
[8]Naseem Daher,Monika Ivantysynova. A virtual yaw rate sensor for articulated vehicles featuring novel electrohydraulic steer-by-wire technology[J]. Control Engineering Practice, 2014(30): 45-54.
[9]王靜,魯植雄,常江雪,等. 拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的設(shè)計與實驗[J]. 中國農(nóng)機化學報,2013,34(6):188-192,201.Wang Jing, Lu Zhixiong, Chang Jiangxue,et al. Design and test of tractor's hydraulic steering by-wire system [J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 188-192, 201. (in Chinese with English abstract)
[10]劉金波,遲德霞,金宏亮. 國內(nèi)的農(nóng)用車輛自動轉(zhuǎn)向系統(tǒng)研究進展[J]. 農(nóng)業(yè)科技與裝備,2011,26(4):67-68, 72.Liu Jinbo, Chi Dexia, Jin Hongliang. Research progress of automatic steering system of agricultural vehicles in China[J]. Agricultural Science and Technology and Equipment,2011, 26 (4): 67-68, 72. (in Chinese with English abstract)
[11]馮雷. 基于 GPS和傳感技術(shù)的農(nóng)用車輛自動導(dǎo)航系統(tǒng)的研究[D]. 杭州:浙江大學,2004.Feng Lei. Research on Automatic Navigation System of Agricultural Vehicle Based on GPS and Sensor Technology[D]. Hangzhou: Zhejiang University, 2004. (in Chinese with English abstract)
[12]連世江. 農(nóng)用車輛自動導(dǎo)航控制系統(tǒng)研究[D]. 楊凌:西北農(nóng)林科技大學,2009.Lian Shijiang. Study on the Automatic Navigation Control System of Agricultural Vehicles[D]. Yangling: Northwest A& F University, 2009. (in Chinese with English abstract)
[13]張美娜,呂曉蘭,陶建平,等. 農(nóng)用車輛自主導(dǎo)航控制系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機械學報,2016,47(7):42-47.Zhang Meina, Lü Xiaolan, Tao Jianping, et al. Design and experiment of autonomous navigation control system for agricultural vehicle[J]. Proceedings of the Chinese Society for Agricultural Machinery, 2016, 47(7): 42-47. (in Chinese with English abstract)
[14]陸垚忠. 基于模糊控制的線控液壓轉(zhuǎn)向系統(tǒng)的研究與實現(xiàn)[D]. 南京:南京農(nóng)業(yè)大學,2010.Lu Yaozhong, Research and Realization of by-Wire Hydraulic Steering System Based on Fuzzy Control[D].Nanjing: Nanjing Agricultural University, 2010. (in Chinese with English abstract)
[15]杜恒. 大型輪式車輛油氣懸架及電液伺服轉(zhuǎn)向系統(tǒng)研究[D]. 杭州:浙江大學,2011.Du Heng. Study on Oil and Gas Suspension and Electro Hydraulic Servo Steering System for Large Wheeled Vehicle[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)
[16]常江雪,魯植雄,白學峰. 拖拉機新型線控液壓轉(zhuǎn)向系統(tǒng)的研究與仿真[J]. 江西農(nóng)業(yè)學報,2012,24(8):109-112.Chang Jiangxue, Lu Zhixiong, Bai Xuefeng. Study and simulation on new-type wire-controlled hydraulic steering system of tractor[J]. Journal of Jiangxi Agricultural, 2012,24(8): 109-112. (in Chinese with English abstract)
[17]Naseem Daher, Monika Ivantysynova. Yaw stability control of articulated frame off-highway vehicles via displacement controlled steer-by-wire[J]. Control Engineering Practice,2015(45): 46-53.
[18]魯植雄,刁秀永,龔佳慧,等. 輪式拖拉機線控液壓轉(zhuǎn)向系統(tǒng)路感特性與評價[J]. 農(nóng)業(yè)工程學報,2015,31(12):57-63.Lu Zhixiong, Diao Xiuyong, Gong Jiahui, et al. Assessment and characteristic of road-feeling for wheeled tractor hydraulic steer-by-wire system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015, 31(12): 57-63. (in Chinese with English abstract)
[19]吳俊淦,刁秀永,魯植雄,等. 拖拉機線控液壓轉(zhuǎn)向路感特性設(shè)計[J]. 浙江農(nóng)業(yè)學報,2014,26(6):268-273.Wu Jungan, Diao Xiuyong, Lu Zhixiong, et al. Design of the road feel characteristics for tractor’s hydraulic steering by-wire system[J]. Acta Agriculturae Zhejiangensis, 2014,26(6): 268-273. (in Chinese with English abstract)
[20]梅世坤. 拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的設(shè)計與研究[D]. 南京:南京農(nóng)業(yè)大學,2015.Mei Shikun. Design and Research of Tractor’s Hydraulic Steering by-Wire System[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[21]刁秀永,魯植雄,梅士坤,等. 拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的聯(lián)合仿真[J]. 農(nóng)業(yè)現(xiàn)代化研究,2015,36(2):315-320.Diao Xiuyong, Lu Zhixiong, Mei Shikun, et al. Co-simulation on hydraulic steer-by-wire system of tractor [J]. Research of Agricultural Modernization, 2015, 36(2): 315-320. (in Chinese with English abstract)
[22]魯植雄,龔佳慧,魯楊,等. 拖拉機線控液壓轉(zhuǎn)向系統(tǒng)的雙通道 PID控制仿真與試驗[J]. 農(nóng)業(yè)工程學報,2016,32(6):109-114.Lu Zhixiong, Gong Jiahui, Lu Yang, et al. Simulation and experiment of dual channel PID control for hydraulic steering-by-wire system of tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 109-114. (in Chinese with English abstract)
[23]王野牧,王潔,陳先惠,等. 液壓伺服閉環(huán)系統(tǒng)的SIMULINK仿真實現(xiàn)[J]. 沈陽工業(yè)大學學報,2000,22(5):370-372.Wang Yemu, Wang Jie, Chen Xianhui, et al. Simulation of hydraulic servo closed loop system based on SIMULINK[J].Journal of Shenyang University of Technology, 2000, 22(5):370-372. (in Chinese with English abstract)
[24]Tavoosi V, Kazemi R, Oveisi A. Nonlinear adaptive optimal control for vehicle handling improvement through steer-bywire system[J]. Journal of Central South University, 2014,36(1): 100-112.
[25]Na H. Investigations on control algorithm of steady-state cornering and control strategy for dynamical correction in a steer-by-wire system[J]. Journal of Zhejiang University:Science A: An International Applied Physics & Engineering Journal, 2009, 35(6): 900-908.
[26]Gong Youping, Bian Xiangjuan, Chen Guojin. Multifunctional loader steering hydraulic system model construction and simulation based on power bond graphs[J]. Procedia Engineering, 2011(15): 358-364.
[27]Tang Bing, Jiang Haobin, Xu Zhe, et al. Dynamics of electromagnetic slip coupling for hydraulic power steering application and its energy-saving characteristics[J]. Journal of Central South University, 2015, 22(5): 1994-2000.
[28]魯植雄. 汽車拖拉機綜合實習教程[M]. 北京:中國農(nóng)業(yè)出版社,2013:44-68.
[29]龍佳慶. 汽車操縱穩(wěn)定性的試驗方法和評價指標研究[J].大眾科技,2015,17(8),70-71.Long Jiaqing. Research on the test way and evalution indexes of the vehicle’s steering stability[J]. Popoular Science &Technology, 2015, 17(8): 70-71. (in Chinese with English abstract)
[30]劉杰,萬里翔,王波. 乘用車操縱穩(wěn)定性評價方法的研究[J]. 汽車科技,2016,27(3):27-33.Liu Jie, Wan Lixiang, Wang Bo. Study on the evaluation methods of passenger car’s handling and stability[J]. Auto Mobile Science & Technology, 2016, 27(3): 27-33. (in Chinese with English abstract)
Design and prototype performance experiments of steering-by-wire hydraulic pressure system of tractor
Fang Susu1, Lu Zhixiong2※, Wang Zengcai1, Diao Xiuyong2, Lu Yang2, Gong Jiahui2, Zhu Chunying2
(1.Key Laboratory of High Efficiency Clean Machinery Manufacturing, Ministry of Education, College of Mechanical Engineering,Shandong University, Jinan250061,China; 2.College of Engineering Agricultural University, Nanjing210031,China.)
The tractor steering system is the key to ensure the safe and efficient operation of the driving mechanism, the traditional hydraulic steering system in the steering process is prone to heavy steering and even failure, and the performance is not ideal, so this paper put forward a new hydraulic steering-by-wire system, which combined hydraulic steering technology with the steering-by-wire technology. This system not only cancels the steering wheel and the mechanical connection between the hand wheel and the steering gear, but also simplifies the hydraulic oil circuit design between the steering gear and steering wheel. It makes steering flexible and convenient, and meanwhile the use of hydraulic system can ensure high power output.Agricultural vehicles need to drive on the highway when transferring in the different regions, and its center of gravity is generally higher, while its speed is lower compared with the passenger vehicle. Actually, the speed is high in their own condition, and the vehicle’s lateral stability is poor. When the agricultural vehicle is in operation, the driver needs to steer the wheel frequently, but the design of the variable angle transmission ratio and variable force transmission ratio of hydraulic steering-by-wire system makes the vehicle handling stability improved, and can reduce the driver’s labor intensity effectively.Compared with the traditional full hydraulic steering system, the new system can better promote the development of agricultural vehicles, and eventually make the unmanned autonomous operation agricultural vehicles come true. This paper introduced the overall design of the tractor’s hydraulic steering-by-wire system, and all kinds of important parts were showed clearly by design chart: ECU (electronic control unit), circuit design, input signal, output signal, and so on. The system uses the classical PID (proportion, integral, derivative) to design the controller, and the whole system is a closed loop control system.Building model and simulation analysis were based on Simulink/Simhydraulic module of MATLAB software, and the modeling and the real vehicle modification for various parts were all based on the overall design principle of hydraulic steering-by-wire system. After the completion of the selection of parts, the tractor was modified. The key components of the new system and the design of the circuit and controller were described in detail, which were compared with the original structure of the steering system. Meanwhile, the energy saving of the new system was analyzed in this paper. Then the static and dynamic experiments with the prototype were finished. The static experiment was a random rotation experiment, the main purpose of which was to test how the new system was feasible, and ensure that the dynamic experiments could be carried out safely. Four dynamic experiments were snake-shaped experiment, lemniscate experiment, steady-state experiment, and angle transient response experiment, which were used to evaluate different vehicle performances. Every experiment tested the hydraulic steering system and hydraulic steering-by-wire system respectively, and the 2 systems’ difference was evaluated in the performance of steering sensitivity, handling stability, and convenient operation. In the experiment process of 2 systems, 2 kinds of data should be obtained, i.e. the hand wheel angle data (the theoretical angle data) and the steering wheel angle data(the actual angle data). Two kinds of data were compared and analyzed, and the experimental results showed that the theoretical and actual angle curve of hydraulic steering-by-wire system fitted better, and the error was lower than the full hydraulic system. Although both of the 2 steering systems could complete the steering action, the difference of performances existed between the hydraulic system and hydraulic steering-by-wire system. Hydraulic steering-by-wire system is feasible,which makes the function innovation, structure innovation, and practice innovation. In function, it combines the advantages of steering-by-wire technology and hydraulic technology, so that the tractor steering performance gets a new upgrade. The system structure innovation is to use various types of sensors to complete the closed-loop control, use electromagnetism proportional servo valve to replace the full hydraulic steering gear, and use the PID to controller complete steering system control. Based on theory design, we modified the tractor, and performed a series of experiments with the tractor. The final experiments results showed that the hydraulic steering-by-wire system can achieve better steering function compared with the traditional full hydraulic steering system.
tractors; steering; systems; hydraulic steering-by-wire; modified tractor
10.11975/j.issn.1002-6819.2017.10.011
S232
A
1002-6819(2017)-10-0086-08
2016-10-09
2017-04-13
國家重點研發(fā)計劃(2016YFD0701100)
房素素,女,山東淄博人,主要從事汽車電子控制及農(nóng)業(yè)機械轉(zhuǎn)向系統(tǒng)研究。濟南 山東大學機械工程學院高效潔凈機械制造教育部重點實驗室,250061。Email:fangsusu9@126.com
※通信作者:魯植雄,男,湖北武穴人,教授,博士生導(dǎo)師,主要從事車輛電子學研究與車輛-地面系統(tǒng)力學研究。南京 南京農(nóng)業(yè)大學工學院,210031。
Email:luzx@njau.edu.cn