陳菊香,高乃云,楊 靜,王超慧,古振川,江 闖(.新疆大學(xué)建筑工程學(xué)院,新疆 烏魯木齊 80047;.同濟(jì)大學(xué),污染控制與資源化研究國家重點實驗室,上海 0009;.內(nèi)蒙古科技大學(xué)能源與環(huán)境學(xué)院,內(nèi)蒙古 包頭0400)
UV/PS降解水中2,4-二氯苯酚的特性研究
陳菊香1,2,高乃云2*,楊 靜1,王超慧3,古振川2,江 闖2(1.新疆大學(xué)建筑工程學(xué)院,新疆 烏魯木齊 830047;2.同濟(jì)大學(xué),污染控制與資源化研究國家重點實驗室,上海 200092;3.內(nèi)蒙古科技大學(xué)能源與環(huán)境學(xué)院,內(nèi)蒙古 包頭014010)
比較采用PS,UV和UV/PS工藝降解2,4-DCP的去除效果及一級動力學(xué)常數(shù),研究光解反應(yīng)中OH? 和SO4?的貢獻(xiàn)率,計算SO4?與2,4-DCP反應(yīng)的二級動力學(xué)反應(yīng)常數(shù),考察實際水體中UV/PS光解2,4-DCP的效果,以及兩種有效工藝UV和UV/PS經(jīng)濟(jì)性計算和比較.結(jié)果表明,分別單獨(dú)采用PS,UV降解,降解率是4%和46.2%,而采用UV/PS去除率高達(dá)96.4%,大大提高單獨(dú)PS系統(tǒng)降解2,4-DCP的效率,表明 UV/PS系統(tǒng)可高效去除 2,4-DCP.采用 PS,UV和 UV/PS降解 2,4-DCP基本遵循擬一級反應(yīng)動力學(xué),一級反應(yīng)動力學(xué)常數(shù)分別為0.4×10-3,6.2×10-3和 35.1×10-3min-1.光解反應(yīng)中起主作用的是自由基 SO4?.SO4?與 2,4-DCP二級動力學(xué)反應(yīng)常數(shù)是 7.07×109(mol/L)-1s-12,4-DCP在3種實際水體(錫東水廠,西氿水庫,橫山水庫)中降解率比在超純水中的高.經(jīng)濟(jì)計算中UV/PS協(xié)同系統(tǒng)的能量利用率最高.
2, 4-DCP;UV/PS;反應(yīng)動力學(xué);實際水體;經(jīng)濟(jì)預(yù)算
氯酚是一類弱酸性的弱電解質(zhì),其中大部分有強(qiáng)毒性,強(qiáng)化學(xué)穩(wěn)定性和熱穩(wěn)定性,難生物降解并容易通過食物鏈在生物體內(nèi)富集,難以在環(huán)境中去除,對環(huán)境和人類造成很大危害,因而被美國環(huán)保局(USEPA)和歐盟環(huán)保署(EEA)列為優(yōu)先污染物(環(huán)境水法[1]和歐洲決議2455/2001E[2]).吸入一定量氯酚可能引起支氣管的炎癥、水腫、痙攣等病癥,甚至對人的中樞神經(jīng)系統(tǒng)、肝臟、腎臟造成很大的傷害,對氯酚污染的控制己成全世界科研工作者的研究熱點.開發(fā)氯酚廢水的高效處理技術(shù)已成為環(huán)境保護(hù)領(lǐng)域的當(dāng)務(wù)之急.
過硫酸鹽可被紫外激活活化分解為 SO4?或OH?,SO4?的氧化還原電位為 2.5~3.1V,可降解水中大部分污染物質(zhì)[3-6],但其對污染物的降解具有選擇性.故UV/PS系統(tǒng)降解2,4-DCP效果以待考察,溶液中SO4?和OH?兩種自由基在氧化實驗過程中貢獻(xiàn)率情況,SO4?與2,4-DCP二級反應(yīng)動力學(xué)常數(shù),實際水體里UV/PS工藝降解效果,UV和UV/PS工藝降解過程經(jīng)濟(jì)性計算等問題之前鮮見報道,以待研究.
1.1 試劑與裝置
2,4 -二氯苯酚(色譜純)購自阿拉丁(上海)貿(mào)易有限公司(物理性質(zhì)見表 1),過硫酸鈉、甲醇( MEOH≥99.7%)、乙醇(ETOH≥99.7%)、叔丁醇(TBA≥99.5%)、磷酸氫二鈉、磷酸二氫鈉、苯甲酸(BA))等試劑均購自國藥集團(tuán)化學(xué)試驗有限公司.甲醇、乙腈(色譜純)購自西格瑪奧德里奇(上海)貿(mào)易有限公司.
表1 2,4-DCP物理化學(xué)性質(zhì)Table 1 Physical and chemical properties of 2, 4-DCP
紫外光照實驗裝置采用準(zhǔn)平行光束儀,該裝置根據(jù)國際紫外協(xié)會標(biāo)準(zhǔn)進(jìn)行設(shè)計自制, 低壓汞燈(75W,天津新景有限公司).2,4-DCP濃度檢測采用高效液相色譜儀(HPLC2010)(日本島津),配有C18色譜(250mm×4.62mm×5 μm, Waters).實際水體是分別從錫東水廠、西氿水庫、橫山水庫進(jìn)水口取的水樣添加 2,4-DCP后配制2,4-DCP溶液.與超純水同等反應(yīng)條件下進(jìn)行光解反應(yīng),實驗所需源水水質(zhì)指標(biāo)(表2)
表2 實際水體的水質(zhì)表Table 2 Water qualityTable of actual water body
1.2 實驗方法
實驗室條件下,用去離子水配制溶液,在200mL結(jié)晶皿中加入含目標(biāo)污染物(2,4-DCP)的溶液 100mL(已采用磷酸鹽緩沖溶液將溶液 pH值調(diào)至 7.0),加入按規(guī)定的摩爾比配好的過硫酸鈉溶液作氧化劑,隨后將結(jié)晶皿放置在紫外光照儀器試驗臺上,同時開始計時,且控制好室內(nèi)反應(yīng)溫度,采用移液槍每次取0.8mL樣品于預(yù)先放置了足量淬滅劑甲醇的棕色液相小瓶中,實驗進(jìn)行3次取平均值.
2.1 不同氧化工藝(PS,UV,UV/PS)降解2,4-DCP
圖1可知采用UV單獨(dú)降解2,4-DCP45min降解率達(dá) 46%,這是因為紫外線主要輻射波長254nm,正好在2,4-DCP物質(zhì)吸光度吸收波段[7-8].采用PS單獨(dú)降解2,4-DCP時降解率僅有4%,而同樣反應(yīng)時間,同樣反應(yīng)條件下,UV/PS工藝光解降解速率迅速增大,降解率可達(dá)96%.說明PS在紫外光照激發(fā)后加快了2,4-DCP的降解速率,進(jìn)而也證明了先前文獻(xiàn)報道的紫外激發(fā)PS溶液生成大量的OH?或SO4?-[9-10].分別將PS,UV,UV/PS的光解數(shù)據(jù)進(jìn)行擬一級反應(yīng)動力學(xué)擬合,擬合線性相關(guān)系數(shù)均大于 R2=0.99,符合擬一級反應(yīng)動力學(xué)模型,PS,UV,UV/PS降解的一級反應(yīng)速率常數(shù)分別是0.4×10-3,6.2×10-3和35.1×10-3min-1.
圖1 PS,UV,UV/PS工藝降解2,4-DCP的效果及一級動力學(xué)擬合Fig.1 Degradation of 2, 4-DCP in PS, UV, UV/PS processes
2.2 SO4?和OH?光解2,4-DCP中的作用
通過反應(yīng)方程(1)-(4)的反應(yīng)速率常數(shù)可知,SO4?和 OH?與甲醇發(fā)生反應(yīng)的速率常數(shù)差別不大,而 SO4?和 OH?與叔丁醇發(fā)生反應(yīng)的速率常數(shù)差別 3個數(shù)量級.甲醇是有效清除 SO4?和OH?的淬滅劑,而叔丁醇只是OH?高效猝滅劑.在同等反應(yīng)條件下通過添加同等容積的甲醇或叔丁醇,2,4-DCP的不同去除率可以研究 SO4?或OH?的貢獻(xiàn)率.由圖2可知在剛投加少量甲醇和叔丁醇時,反應(yīng)速率常數(shù)瞬間降低,隨著后續(xù)投加量增多而繼續(xù)降低,但降低速率變慢. 2,4-DCP的降解率隨甲醇投加量從0到6μmol/L時2,4-DCP的反應(yīng)速率常數(shù)已下降了89.9%,當(dāng)劑量達(dá)到60μmol/L時降解率的下降可達(dá)97.9%.在投加0到6μmol/L的叔丁醇時2,4-DCP的降解率已下降了 60.1%,當(dāng)劑量達(dá)到 60μmol/L時降解率已下降可達(dá)62.9%.該實驗證明,UV活化過硫酸鈉溶液中確實同時存在SO4?和OH?兩種自由基,尤其是 SO4?在降解2,4-DCP過程中起了主要作用.
2.3 SO4?與2,4-DCP反應(yīng)的反應(yīng)速率
圖2 SO4?和OH?降解2,4-DCP中的作用Fig.2 The role of SO4?and OH? during degradation of 2,4-DCP
圖3 2,4-DCP與SO4?反應(yīng)速率常數(shù)計算Fig.3 Determination of the reaction rate constants of SO4?with 2, 4-DCP
由 2.2部分證實 UV/PS的 SO4?和 OH?對2,4-DCP光解過程起主要的作用.自由基氧化有機(jī)物的動力學(xué)速率常數(shù)必須采用相對速率法來計算[13-14].實驗選用苯甲酸(BA)作為 2,4-DCP的參照對象,在相同的反應(yīng)條件下,將不同時間下被測定 2,4-DCP濃度和參照物 BA濃度按Ln(C0/Ct)2,4-DCP~Ln(C0/Ct)BA做圖,進(jìn)行線性回歸分析,由圖 3所示,所得的兩條線性相關(guān)系數(shù) R2均大于0.99.2,4-DCP和苯甲酸在pH=7.0條件下分別與 SO4?反應(yīng)的反應(yīng)速率常數(shù)比 k2,4-DCP/ kBA=a=5.89±0.05,因已知BA與SO4?反應(yīng)速率常數(shù) kBA=1.2×109(mol/L)-1s-1[15],采用相對速率法及公式(7)對數(shù)據(jù)進(jìn)行處理,可計算出 2,4-DCP與SO4?反應(yīng)的反應(yīng)速率常數(shù) k2,4-DCP=(7.07±0.6)× 109(mol/L)-1s-1.
2.4 實際水體UV/PS工藝光解效果
如表2列出了12月份錫東水廠、西氿水庫、橫山水庫的部分陰離子濃度檢測數(shù)值,水廠和兩水庫陰離子濃度中,NO3離子濃度和 pH值差距不大,只有CO32和Cl濃度數(shù)值差別很大.由圖4可知,光氧化時間 45min,錫東水廠,西氿水庫,橫山水庫,超純水的光解效率分別可達(dá) 96.7%、94.5%、89%、86.4%.有相關(guān)研究表明[16-19],小濃度的CO32/HCO3和Cl對UV/PS工藝光解有機(jī)物是有促進(jìn)作用的.這也較好的解釋了原水水質(zhì)條件下(含小濃度的陰離子溶液)2,4-DCP光解效率高于超純水水質(zhì)條件.
圖4 UV/PS光解不同水質(zhì)背景2,4-DCP的效果Fig.4 Effect of UV/PS on different water quality backgrounds2, 4-DCP
2.5 經(jīng)濟(jì)性預(yù)算
為了比較PS,UV,UV/PS成本費(fèi)用,本文獻(xiàn)采用單位電能效率(EE/O)對比了兩種方法降解有機(jī)污染物所需要的電能.單位電能消耗率 EE/O為將單位體積廢水(1m3)特征污染指標(biāo)降低一個數(shù)量級的污染物所需要的電能(kW?h/m3/order),采用如下公式計算:
式中:P為總用電量,kW;t為紫外線總的輻射時間, h;v為被處理水的總體積,m3.
表3 兩種工藝直接電能消耗EE/O-eTable 3 Direct electric energy consumption of the two processes EE/O-e
表4 兩種工藝的間接電能消耗EE/O-c和總電能效率EE/OTable 4 Indirect electric energy consumption (EE/O-c) and total electric energy efficiency (EE/O) of the two processes
其他條件為:過硫酸鈉鹽摩爾投加量為 0.1mmol/L,初始 pH值為 7.0,紫外線的光強(qiáng)為410mJ/cm2.EE/O-e和EE/O-c分別表示為:直接消耗的電能和藥劑投機(jī)對應(yīng)的費(fèi)用折算成間接消耗的電能.
通過表3可知UV,UV/PS的電能效率分別為5.00和 3.00kW?h/(m3?order).相比于 UV單一系統(tǒng),UV/PS協(xié)同系統(tǒng)的能量利用率更高.UV/PS協(xié)同系統(tǒng)的能量利用率是單一系統(tǒng)的1.67倍.
3.1 PS,UV,UV/PS 3種工藝可去除2,4-DCP基本遵循擬一級反應(yīng)動力學(xué),反應(yīng)動力學(xué)常數(shù)分別是0.4×10-3,6.1×10-3和35.1×10-3min-1.
3.2 采用相對速率法計算出 SO4?與 2,4-DCP的二級反應(yīng)速率常數(shù)7.07×109(mol/L)-1s-1.
3.3 對 UV/PS工藝進(jìn)行經(jīng)濟(jì)性預(yù)算,結(jié)果表明UV/PS協(xié)同系統(tǒng)的能量利用率高,可達(dá)到單一系統(tǒng)的1.67倍.
[1]Hayward K. Drinking water contaminant hit-list for US EPA [J]. Water, 1998,21(4).
[2]EC Decision 2455/2001/EC of the European Parliameniand of the Council of November20, 2001establishing the list of Priority substances in the field of water Policy and amending Directive 2000/60EC (L331of l5-12-2001).
[3]Zhang Q, Chen J, Dai C, et al. Degradation of carbamazepine and toxicity evaluation using the UV/persulfate process in aqueous solution [J]. Journal of Chemical Technology and Biotechnology, 2015,90(4):701-708.
[4]郭佑羅,高乃云,等.紫外過硫酸鹽工藝降解水中氯貝酸的研究[J]. 中國環(huán)境科學(xué), 2016,36(7):2014-2019.
[5]李衛(wèi)平,王超慧,于玲紅,等.紫外激活過硫酸鹽降解莠滅凈的動力學(xué)研究 [J]. 中國環(huán)境科學(xué), 2016,36(11):3341-3347.
[6]Shu H Y, Chang M C, Hunag S W. UV/persulfate advanced oxidation process for degradation of Acid Blue 113wastewater [C]// National Meeting of the American—Chemical-Society. 2014.
[7]Pereira V J, Linden K G, Weinberg H S. Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water [J]. Water Research, 2007, 41(19):4413-4423.
[8]Dahlén J, Bertilsson S, Pettersson C. Effects of UV-A irradiation on dissolved organic matter in humic surface waters [J]. Environment International, 1996,22(5):501-506.
[9]Xie P, Ma J, Liu W, et al. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals [J]. Water Research, 2015,69:223-233.
[10]Wang C W, Liang C. Oxidative degradation of TMAH solution with UV persulfate activation [J]. Chemical Engineering Journal, 2014,254:472-478.
[11]Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in aqueous solution [J]. J. Phys. Chem. Ref. Data 17(3):1027e1284
[12]Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988.Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH/O) in aqueous solution [J]. J. Phys. Chem. Ref. Data 17 (2), 513-886.
[13]吳 海,牟玉靜,張曉山,等.相對速率法測 OH?自由基與幾種低碳醇的反應(yīng)速率常數(shù) [J]. 環(huán)境科學(xué)學(xué)報, 2001,21(5):525-529.
[14]吳 海,牟玉靜,張曉山,等.相對速率法測氯原子與一系列低碳醇的反應(yīng)速率常數(shù) [J]. 環(huán)境科學(xué)學(xué)報, 2001,21(6):649-653.
[15]Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988,17(3):1027-1284.
[16]Tan C, Gao N, Deng Y, et al. Degradation of antipyrine by UV, UV/H2O2and UV/PS [J]. Journal of Hazardous Materials, 2013, 260:1008-1016.
[17]Bennedsen L R, Muff J, S?gaard E G. Influence of chloride and carbonates on the reactivity of activated persulfate [J]. Chemosphere, 2012,86(11):1092-1097.
[18]Le Truong G, De Laat J, Legube B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2[J]. Water Research, 2004,38(9):2384-2394.
[19]Liang C, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20℃[J]. Science of the Total Environment, 2006,370(2):271-277.
Study on the characteristics of 2, 4-dichlorophenol in water degraded by UV/PS.
CHEN Ju-xiang1,2, GAO Nai-yun2*,YANG Jing1, WANG Chao-hui3, GU Zhen-chuan2, Jiang Chuang2(1.College of Architecture and Civil Engineering, Xinjiang University, Urumqi 30047, China;2.State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China;3.School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China). China Environmental Science, 2017,37(6):2145~2149
The study compared the removal effects and the first order reaction kinetics constants of 2, 4-DCP with PS、UV and UV/PS processes, respectively. Investigated the contribution rate of OH? and SO4?in the photolysis reaction, calculated the two order kinetics constants for SO4?with 2, 4-DCP reactions. Meanwhile, the degradation rates in actual water conditions were tested and the economic budge of UV and UV/PS processes were calculated and compared. The results showed that the removal rate of 2, 4-DCP was only 4% in the PS process alone, 46.2% in UV process. The degradation percentage can reach as high as 96.4% with UV/PS process, which effectively improved the degradation effect of 2, 4-DCP, meanwhile 2, 4-DCP degradation by PS, UV and UV/PS fitted the pseudo-first-order reaction equation and the kobs(reaction rate constant) was 0.4×10-3, 6.2×10-3and 35.1×10-3min-1, respectly. The main contribution function of the photolysis reaction was SO4?, the second-order-reaction constants for SO4?with 2, 4-DCP was 7.07×109(mol/L)-1s-1. The photo-degradation rates of 2, 4-DCP in three actual water conditions (Xidong water works, Xijiu reservoir, Hengshan reservoir) were higher than in the ultrapure water. The energy utilization rate of UV/PS cooperative system is the highest during economic calculation.
2, 4-DCP;UV/PS;reaction kinetics;actual water body;economic budge
X703
A
1000-6923(2017)06-2145-05
陳菊香(1979-),女,重慶大足人,副教授,博士研究生,主要從事水處理理論與技術(shù)研究.發(fā)表論文20余篇
2016-10-17
國家科技重大專項(2012ZX07403-001,2014ZX07406002);國家自然科學(xué)基金資助項目(51178321)
* 責(zé)任作者, 教授, Gaonaiyun@sina.com