劉珊 丁國華 王惠明
[摘要] 腎性貧血是慢性腎臟病的常見并發(fā)癥,發(fā)病機(jī)制復(fù)雜,信號通路眾多,臨床遠(yuǎn)期療效不容樂觀。缺氧誘導(dǎo)因子在低氧反應(yīng)中起關(guān)鍵作用,調(diào)節(jié)全身各組織損傷與修復(fù),在慢性腎臟病并貧血中尤為突出。近期研究發(fā)現(xiàn),炎癥與鐵缺乏是影響促紅細(xì)胞生成素不足的重要原因,缺氧誘導(dǎo)因子的活化為臨床提供新的治療策略,靶向腎性貧血的精準(zhǔn)治療是當(dāng)今醫(yī)藥領(lǐng)域的重大課題。
[關(guān)鍵詞] 缺氧誘導(dǎo)因子;腎性貧血;發(fā)病機(jī)制;治療
[中圖分類號] R556.9 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2016)12(a)-0050-05
Hypoxia inducible factor and renal anemia
LIU Shan DING Guohua WANG Huiming
Department of Nephrology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
[Abstract] Renal anemia is a clinical common complication of chronic kidney diseases, which is characterized by complex pathogenesis, many signaling pathways, and decreased long-term curative-effect. Hypoxia-inducible factor plays a key role in hypoxic responses, which can adjust the tissue injury and repair of whole body, especially in anemia associated with renal failure. The current researches suggest that, inflammation and iron deficiency are the important reasons of the lack of hemopoietin. The activation of hypoxia inducible factor provides a new therapeutic strategy for clinic, the accurate treatment of targeted renal anemia is an important project in the current medical field.
[Key words] Hypoxia inducible factor; Renal anemia; Pathogenesis; Treatment
缺氧誘導(dǎo)因子(hypoxia-inducible factors,HIFs)是一組具有成千上萬的靶基因譜及轉(zhuǎn)錄活性的核蛋白,參與氧平衡調(diào)節(jié)的核心環(huán)節(jié),其與靶基因結(jié)合后,通過轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控可使機(jī)體產(chǎn)生缺血缺氧、炎癥、腫瘤、自身免疫失調(diào)等一系列病理生理反應(yīng)。HIFs普遍存在于哺乳動物和人體內(nèi),是低氧活化的轉(zhuǎn)錄因子,直接或間接調(diào)節(jié)細(xì)胞能量代謝、細(xì)胞增殖與凋亡、氧化應(yīng)激、酸堿平衡、血管生成等眾多通路。在腎性貧血中,HIF-2是促紅細(xì)胞生成素(erythropoietin,EPO)、炎癥因子及鐵代謝的關(guān)鍵調(diào)節(jié)者。本文就HIFs在腎性貧血中發(fā)病機(jī)制及防治的研究進(jìn)展作一綜述。
1 HIFs概述
HIFs成員包括HIF-1α、HIF-1β、HIF-2α、HIF-2β、HIF-3α、HIF-3β,而具有轉(zhuǎn)錄活性的是由HIF-1α-β與HIF-2α-β組成的四聚體,其中α亞單位和β亞單位(又稱芳香烴受體核轉(zhuǎn)運(yùn)子,ARNT)的氨基端均含有堿性的螺旋-環(huán)-螺旋(basic-he-lix-loop-helix,bHLH)構(gòu)型和Per/Amt/Sim(PAS)結(jié)構(gòu),是其形成異源二聚體并與DNA的缺氧反應(yīng)原件(hypoxia response elements,HRE)結(jié)合所必需的結(jié)構(gòu)[1]。在人類各系統(tǒng),脯氨酰羥化酶1/2/3(prolyl hydroxylase domain,PHD1/2/3)羥化脯氨酰基位點(diǎn)分別在C末端氧依賴降解結(jié)構(gòu)域(C-terminal oxygen-dependent degradation domain,CODD)和N末端氧依賴降解結(jié)構(gòu)域(N-terminal oxygen-dependent degradation domain,CODD),這些結(jié)構(gòu)域親和von Hippel-Lindau腫瘤抑制蛋白(pVHL),pVHL與泛素連接酶(E3)連體,經(jīng)泛素蛋白酶將HIF-α快速降解。此外,天冬酰胺酰羥化酶(factor inhibiting HIF,F(xiàn)IH)羥化天冬酰胺殘基位點(diǎn)在C末端活化結(jié)構(gòu)域(C-terminal activation domain CAD),通過阻礙HIF轉(zhuǎn)錄共活化蛋白下調(diào)轉(zhuǎn)錄功能。PHDs與FIH均屬于亞鐵離子及2-酮戊二酸加氧酶超家族,HIF羥化酶發(fā)揮類似2-酮戊二酸加氧酶作用,通過氧化脫羧并羥化產(chǎn)生琥珀酸鹽和二氧化碳[2]。當(dāng)細(xì)胞缺氧時,HIF羥化酶活性受抑,HIF-α蛋白酶解無能,組裝形成一活性轉(zhuǎn)錄復(fù)合物;能量共振轉(zhuǎn)移顯微鏡可在細(xì)胞核分析HIF1及HIF2遷移及組裝過程[3]。鑒于低氧涉及到許多人體疾病,氧合酶催化與低氧生理反應(yīng)間的平衡點(diǎn)成為了HIF羥化酶活性的調(diào)節(jié)器,這將成為有效的臨床治療靶點(diǎn)之一。
2 HIF與腎性貧血
HIF-2是紅細(xì)胞生成及鐵代謝的關(guān)鍵因子,在低氧狀態(tài)下活化,調(diào)控來自腎小管周間質(zhì)成纖維細(xì)胞樣細(xì)胞及肝細(xì)胞生成的EPO;HIF在腎臟上皮細(xì)胞活化還可誘導(dǎo)腎間質(zhì)細(xì)胞相互作用上調(diào)EPO[4-5]。在貧血相關(guān)性腎臟病中,EPO缺乏、炎癥、鐵不足均可抑制紅細(xì)胞生成,激活HIF通路可模擬生理反應(yīng)協(xié)調(diào)鐵代謝影響紅細(xì)胞產(chǎn)生。近來,腎性貧血的發(fā)病機(jī)制、信號傳遞及治療策略涌現(xiàn)出新的觀點(diǎn),且部分藥品投入臨床實驗。
2.1 腎性貧血發(fā)病機(jī)制
既往認(rèn)為,腎性貧血由多因素引起的紅細(xì)胞匱乏導(dǎo)致,其中EPO不足占主導(dǎo)地位且具有特異性,故重組人促紅素(rhEPO)和其他紅細(xì)胞刺激劑(ESAs)如阿法達(dá)貝?。╠arbepoetin alfa)和倍他依泊汀(epoetin beta)已作為改善腎性貧血的主要治療藥物,但部分患者即使超常使用也不能達(dá)到滿意療效。這些EPO抵抗患者大多數(shù)考慮炎癥和/或鐵缺乏,抑制了EPO及祖系紅細(xì)胞生成。
2.1.1 炎性反應(yīng) 自身免疫性疾病、糖尿病等并發(fā)腎衰竭和/或腎衰竭并人工血管通路建立均有不同程度的全身炎性反應(yīng),骨髓來源炎性因子成為EPO抵抗的原因之一。當(dāng)自身免疫性疾病或惡性腫瘤且腎功能正?;颊卟l(fā)貧血時,存在炎性反應(yīng)者血EPO相對低下,在類似貧血非炎性反應(yīng)患者血EPO相對不變。5/6腎切除大鼠反映了EPO抵抗與系統(tǒng)性或腎臟炎癥有關(guān),以HIF-1α、轉(zhuǎn)化生長因子β1(TGF-β1)、結(jié)締組織生長因子(CTGF)上調(diào)為主要表現(xiàn)構(gòu)成了貧血惡性循環(huán)[6]。本研究團(tuán)隊前期在糖尿病大鼠模型中發(fā)現(xiàn)HIF-1α主要表達(dá)在腎小管上皮細(xì)胞,替米沙坦可能通過抑制AngⅡ受體影響ROS依賴的P13K/Akt途徑降低管周毛細(xì)血管的丟失,從而降低HIF-1α表達(dá),進(jìn)而減輕腎臟炎性反應(yīng)[7];EPO可通過抑制糖尿病大鼠腎臟氧化應(yīng)激,降低TGF-β1、纖連蛋白(FN)的表達(dá),發(fā)揮腎臟保護(hù)作用[8];百令可改善蔗糖鐵在治療血液透析并腎性貧血患者中的氧化應(yīng)激狀態(tài)[9]。除了炎癥因子抑制EPO生成,幾個炎癥介質(zhì)如白介素6(IL-6)、腫瘤壞死因子(TNF)、γ干擾素(IFN-γ)等還抑制祖系紅細(xì)胞的分化。轉(zhuǎn)錄因子PU.1是髓系基因表達(dá)的關(guān)鍵調(diào)控元件,其分布廣泛,功能特異,直接影響髓系前體細(xì)胞的分化發(fā)育過程;IFN-γ可誘導(dǎo)PU.1抑制紅系分化,促進(jìn)粒-單核細(xì)胞系分化[10]。在紅細(xì)胞生成后期,血紅蛋白(HGB)需要鐵參與,在炎癥和/或感染刺激下,STAT3通路活化IL-6激活編碼鐵調(diào)素的基因HAMP轉(zhuǎn)錄及通過BMP/Smad1/5/8通路活化B細(xì)胞可阻礙鐵參與骨髓造血[11]。炎性反應(yīng)在腎性貧血中扮演巨大的絆腳石,嚴(yán)重阻礙著抗貧血遠(yuǎn)期療效,強(qiáng)化HIF信號可以抑制炎性反應(yīng)[12]。
2.1.2 鐵缺乏效應(yīng) HGB合成中除了炎性反應(yīng)影響鐵的有效利用,還可由反復(fù)血液透析失血導(dǎo)致慢性腎臟?。–KD)相關(guān)貧血引起絕對鐵不足。2/3鐵存在于人體紅細(xì)胞內(nèi),終末期腎臟病(ESRD)維持性血液透析(MHD)患者鐵丟失途徑多見于透析后殘血滯留于透析裝置和透析管道、透析后中心靜脈置管出口或動靜脈內(nèi)瘺穿刺點(diǎn)滲血、反復(fù)抽血檢驗等。在正常情況下,HGB約消耗25 mg/d鐵提供給紅細(xì)胞,同時巨噬細(xì)胞通過降解HGB回收再利用鐵及吞噬衰老紅細(xì)胞提供最多的合成原料。當(dāng)出血或溶血時,貯存的、再循環(huán)的及腸上皮吸收的鐵產(chǎn)出增加,其機(jī)制為受EPO刺激的有核紅細(xì)胞產(chǎn)一種激素,它是小鼠在放血或注射EPO 后首先呈現(xiàn)某種紅系細(xì)胞特異性基因轉(zhuǎn)錄表達(dá)的蛋白產(chǎn)物,命名為erythroferrone,可抑制鐵調(diào)素生成[13]。在腎臟疾病,EPO缺乏及慢性炎癥均可導(dǎo)致大量有核紅細(xì)胞丟失,從而erythroferrone表達(dá)嚴(yán)重不足。隨著鐵利用率進(jìn)行性下降,紅細(xì)胞生成越來越受限,同時珍稀的鐵將貯存在非紅細(xì)胞內(nèi)。在mRNAs的5'非編碼區(qū)(UTRs)和3'UTRs,鐵調(diào)節(jié)蛋白(IRP)1和IRP2結(jié)合鐵反應(yīng)原件(IREs)調(diào)控涉及鐵生成、利用、貯存的所有蛋白表達(dá)。在含鐵充足的細(xì)胞內(nèi),IRP1具有順烏頭酸酶活性且鐵硫簇位于其活化位點(diǎn),IRP2迅速被降解;若細(xì)胞缺鐵,IRP1缺少鐵硫簇致活化無能,IRP2穩(wěn)定表達(dá),IRP1和IRP2結(jié)合IREs,IRPs結(jié)合mRNA的5'UTRs-IREs抑制其翻譯及表達(dá),而IREs與mRNA的3'UTRs結(jié)合可穩(wěn)定mRNA,增加其翻譯及表達(dá)。在大多數(shù)細(xì)胞,轉(zhuǎn)鐵蛋白mRNA由5'IREs調(diào)控,在鐵利用過程中減少并維持細(xì)胞內(nèi)鐵含量水平。但在十二指腸細(xì)胞及祖系紅細(xì)胞發(fā)現(xiàn)可變剪接,為無5'IREs的轉(zhuǎn)鐵蛋白mRNA,在鐵缺乏過程中穩(wěn)定表達(dá)轉(zhuǎn)鐵蛋白,只吸收來自十二指腸的鐵,在紅系幼稚細(xì)胞內(nèi)鐵蓄積減少[14]。在鐵不足狀態(tài),IRPs還結(jié)合其他2個mRNA的5'IREs并增加其表達(dá),他們分別是HIF-2α和紅系血紅素合成酶(ALAS2)。血液循環(huán)中紅細(xì)胞數(shù)減少即可在腎皮質(zhì)發(fā)生缺氧,盡管如此,IRP1結(jié)合HIF-2α mRNA的5'IREs,抑制HIF-2α在腎皮質(zhì)內(nèi)皮祖細(xì)胞(EPCs)翻譯,進(jìn)而使HIF-2α蛋白相對表達(dá)下調(diào),阻礙EPO生成[15-17]。即使在缺鐵性貧血中EPO生成比腎性貧血或慢性炎癥相關(guān)性貧血(惡性腫瘤、感染、免疫失調(diào)等)顯著增多,由于IRP介導(dǎo)HIF-2α下調(diào),也會預(yù)示在相同貧血程度下,缺鐵性貧血比非缺鐵性貧血(溶血性貧血、巨幼細(xì)胞性貧血)腎臟合成EPO的能力明顯下降。同樣,鐵缺失也會誘導(dǎo)IRP與編碼ALAS2的mRNA的5'IREs結(jié)合,充當(dāng)卟啉合成的限速酶,減少原卟啉及血色素在有核紅細(xì)胞中聚集。反之,血色素丟失增加了HRI激酶活性,進(jìn)一步限制有核紅細(xì)胞蛋白合成。缺鐵在賴以生存的EPO依賴階段導(dǎo)致紅細(xì)胞系造血祖細(xì)胞不足,在HGB合成中HRI激酶抑制有核紅細(xì)胞蛋白合成,因此不能滿足EPO最大產(chǎn)出,表現(xiàn)出紅細(xì)胞體積縮小和/或數(shù)量減少、HGB低下。
2.2 低氧信號及下游效應(yīng)
HIF信號刺激肝腎來源的EPO,通過鐵的攝取和利用、改善骨髓微環(huán)境以利于紅細(xì)胞系造血祖細(xì)胞成熟和增殖綜合調(diào)控紅細(xì)胞生成。這種良性的生物行為為靶向腎性貧血提供藥理方向:通過激活HIF信號端口模擬低氧反應(yīng)發(fā)生的一系列生理路徑協(xié)調(diào)鐵代謝與紅細(xì)胞生成。
2.2.1 低氧調(diào)控EPO 低氧下HIF2介導(dǎo)并結(jié)合特異型調(diào)節(jié)原件調(diào)控肝腎EPO基因轉(zhuǎn)錄[18],且涉及到多組順式及反式調(diào)節(jié)原件[19]。條件性敲除編碼PHD各亞基及HIF-2基因小鼠模型表明[20]:PHD總體活化比通過PHD-HIF2α-EpoHE級聯(lián)調(diào)控肝臟各PDH亞基生成EPO更為重要。在腎臟發(fā)現(xiàn)8 kb可誘導(dǎo)原件位于EPO基因的5'區(qū)域,且高度保守的5'HRE在腎臟誘導(dǎo)部位已確定,目前其在體內(nèi)的作用仍然不清楚[21]。硫酸吲哚酚(indoxyl sulfate,IS)是一典型致腎性貧血尿毒癥毒素,通過利用IS在肝癌細(xì)胞與CKD患者血中濃度相似原理,對大鼠進(jìn)行口服吲哚試驗,發(fā)現(xiàn)在肝腎皮質(zhì)區(qū)IS誘導(dǎo)芳香烴受體(AhR)活化可抑制HIF活性及低氧誘導(dǎo)的EPO mRNA表達(dá)[22];犬尿氨酸為內(nèi)源性AhR活化劑,AhR搶占HIF-2α位點(diǎn)與HIF-1β結(jié)合導(dǎo)致炎癥性貧血[23];低氧促進(jìn)內(nèi)源性硫化氫(H2S)產(chǎn)生可協(xié)助EPO合成上調(diào)[24];甲基轉(zhuǎn)移酶可抑制小鼠纖維化腎臟產(chǎn)EPO,去甲基制劑5氮雜胞苷上調(diào)低氧誘導(dǎo)的EPO[25]。靶向AhR失活、H2S活化、去甲基化,可為腎性貧血治療提供新的思路。
2.2.2 低氧與鐵代謝 血漿中HIF-2誘導(dǎo)低氧刺激紅細(xì)胞生成時,HIF-PHD氧敏感通路優(yōu)化鐵攝取及利用以增加骨髓造血原料。二價金屬離子轉(zhuǎn)運(yùn)子(divalent metal transporter 1,DMT1)的作用是轉(zhuǎn)運(yùn)鐵到細(xì)胞質(zhì)中,由于十二指腸細(xì)胞色素b還原酶(duodenal cytochrome b reductase,DCYTB)限制Fe3+形成Fe2+,F(xiàn)e2+通過DMT1從腸道攝取到腸黏膜細(xì)胞受限。HIF-2α/IRP與鐵網(wǎng)絡(luò)連接極其緊密[26]。涉及到調(diào)節(jié)轉(zhuǎn)鐵蛋白的HIF調(diào)控因子還有鐵調(diào)素降解的靶標(biāo)——轉(zhuǎn)鐵蛋白、轉(zhuǎn)鐵蛋白受體、氧化Fe2+還原為Fe3+的銅藍(lán)蛋白、促進(jìn)回收鐵再利用的血紅素加氧酶1。
2.2.3 低氧與骨髓效應(yīng) 低氧與HIF-PHD通路對骨髓產(chǎn)生直接效應(yīng)。低氧刺激EPO受體調(diào)節(jié)HGB合成相關(guān)元件,維持干細(xì)胞穩(wěn)定、祖系分化和成熟。內(nèi)皮HIF-2在骨髓方面發(fā)揮著特異性作用,小鼠全組織HIF-2表達(dá)低下導(dǎo)致紅系祖細(xì)胞成熟障礙體現(xiàn)了以上關(guān)系[27]。這種成熟障礙可能與維持紅系成熟的表面蛋白——血管黏附分子1(VCAM-1)有關(guān)。HIF-1α在低氧狀態(tài)通過調(diào)節(jié)HIF-2α靶基因——血管內(nèi)皮生長因子受體(FLK-1和FLT-1)替代受損的HIF-2α糾正貧血[28]。
3 穩(wěn)定HIF抗腎性貧血相關(guān)治療
目前腎性貧血治療主要還是ESAs及靜脈鐵劑的應(yīng)用,盡管該應(yīng)用對大多數(shù)患者有效,ESA治療及ESA相關(guān)的HGB水平與心血管風(fēng)險仍呈正相關(guān)。利用HIF應(yīng)答活化的藥理作用為臨床治療可提供極大幫助,該作用可模擬生理反應(yīng)糾正貧血且盡可能避免重組EPO帶來的相關(guān)心血管不良反應(yīng)。HIF穩(wěn)定劑主要優(yōu)點(diǎn)有以下幾方面:①生理范圍內(nèi)血漿EPO維持穩(wěn)定,避免ESA靜脈應(yīng)用引起的血漿EPO超生理狀態(tài)增加;②促進(jìn)鐵吸收及動員,減少靜脈鐵劑應(yīng)用,降低相關(guān)不良反應(yīng);③口服制劑具有更有效的調(diào)節(jié)性能,穩(wěn)定血液中各生化指標(biāo),使過度干預(yù)靶標(biāo)帶來的風(fēng)險降到最低限度。
國際科學(xué)臨床會議上公布了1000多例腎性貧血患者使用FibroGen制藥公司生產(chǎn)的FG-4592情況。FG-4592抑制所有HIF-PHDs,半衰期12 h,1~2 mg/(kg·次),BIW或TIW;納入患者類型有非透析CKD、MHD-ESRD、維持性腹膜透析(PD)ESRD,其中包含EPO剛使用患者,均無明顯不良反應(yīng),HGB達(dá)標(biāo)且維持正常鐵代謝,不依賴給藥途徑增加總鐵結(jié)合力,降低血清鐵蛋白水平,持續(xù)下調(diào)鐵調(diào)素,藥效不受炎癥影響。一項Ⅱ期臨床試驗顯示[29]:與使用阿法依泊汀治療的血液透析患者相比,F(xiàn)G-4592治療的血液透析患者抑制脂質(zhì)代謝明顯,血清總膽固醇約減少20%。另有一項針對非透析CKD并貧血Ⅱa期臨床試驗顯示[30]:FG-4592瞬間或適度增加內(nèi)源性EPO及降低鐵調(diào)素,HGB與劑量正相關(guān),無明顯不良反應(yīng)。近期再次對CKD并貧血并HD或PD患者進(jìn)行非盲隨機(jī)持續(xù)12周和6~19周兩大Ⅱ期試驗,結(jié)果證明:該藥物適用于HD或PD患者,有效維持HGB并能下調(diào)鐵調(diào)素[31-32]。上述調(diào)查結(jié)果不完善,仍然需要大量Ⅲ期臨床數(shù)據(jù)完善評價,目前約8500例患者正在接受該藥物試驗[29]。葛蘭素史克(英國制藥公司)生產(chǎn)的GSK1278863正在對腎性貧血患者進(jìn)行Ⅱ期臨床試驗。GSK1278863為HIF-1和HIF-2活化劑,一項獨(dú)立試驗顯示,CKD 3~5期非透析患者及ESRD血液透析患者血生化指標(biāo)及鐵調(diào)素水平均表現(xiàn)為劑量依賴性(10~100 mg不等)[29];在日本及高加索兩個不同種族,應(yīng)用50~100 mg GSK1278863后EPO、VEGF及網(wǎng)織紅細(xì)胞均升高,15%~20%的患者出現(xiàn)頭痛、腹痛不良反應(yīng),但藥代動力學(xué)和藥效學(xué)無種族差異[33]。2016年6月,一項為期28 d的CKD并貧血隨機(jī)對照實驗顯示:GSK1278863有效刺激EPO反應(yīng)及非EPO依賴的紅細(xì)胞生成[34]。Akebia Therapeutics公司研發(fā)的AKB-6548已完成Ⅱa及Ⅱb期試驗,AKB-6548主要穩(wěn)定HIF-2α,CKD 3~4期患者單劑量500 mg,獲益同F(xiàn)G-4592,在為期28 d的劑量遞增試驗中出現(xiàn)短暫輕微的平均動脈壓下降及尿酸增加;在隨機(jī)雙盲安慰劑對照Ⅱ期試驗中,CKD 3~4期患者分別接受240、370、500、630 mg/d,持續(xù)6周,HGB均升高至7.5~15.0 g/L,血EPO水平在不同劑量組別間的差異無統(tǒng)計學(xué)意義,提示該藥物作用在血EPO生理范圍內(nèi)治療腎性貧血有效[19]。拜耳公司推出的抗貧血藥物為BAY85-3934,抑制所有HIF-PHDs,中度抑制PHD2,前期在5/6腎切除大鼠動物實驗發(fā)現(xiàn)有抗高血壓及心機(jī)保護(hù)作用[35],目前近800例CKD患者正在接受Ⅱ期臨床試驗[29],該藥物應(yīng)用價值指日可待。從幾個公司對不同PHIs在腎性貧血患者中治療的臨床資料來看,以死亡率及心血管事件發(fā)生率為主要研究終點(diǎn),證明了PHIs安全有效,且還具有防止缺血再灌注損傷的功效[36]。近期推出紅細(xì)胞生物制劑如生長分化因子11(GDF11)(商品名:sotatercept,luspatercept)在Ⅱa期臨床試驗中獲得較好療效[37],仍然需要評估遠(yuǎn)期免疫能力。
4 展望
氧依賴的紅細(xì)胞生成及EPO、鐵、慢性炎癥間相互關(guān)系的調(diào)控在人體病理生理分析中逐步優(yōu)化,模擬生理反應(yīng)的更廣泛的新型抗腎性貧血藥物陸續(xù)投入臨床試驗。HIF穩(wěn)定劑針對不同PHD位點(diǎn)可制訂精準(zhǔn)抗貧血治療方案,但也有可能存在異常血管增生、代謝紊亂及心血管不良反應(yīng)等,這仍然需要大量科研人員致力于大樣本多中心臨床試驗。系統(tǒng)性HIF活化效應(yīng)究竟對人體生理及病理的利弊各占多少應(yīng)該是科研界探索并關(guān)注的熱點(diǎn)。
[參考文獻(xiàn)]
[1] Wu D,Potluri N,Lu J,et al. Structural integration in hypoxia-inducible factors [J]. Nature,2015,524(7565):303-308.
[2] Chan MC,Holt-Martyn JP,Schofield CJ,et al. Pharmacological targeting of the HIF hydroxylases--A new field in medicine development [J]. Mol Aspects Med,2016,47/48:54-75.
[3] Hu J,Bernardini A,F(xiàn)andrey J2.(HIF)-1 Complex Assembly:Imaging of Cellular Oxygen Sensing [J]. Adv Exp Med Biol,2016,903:247-258.
[4] Edwards JK. Anaemia:Regulation of renal erythropoietin via HIF [J]. Nat Rev Nephrol,2016,12(5):256.
[5] Farsijani NM,Liu Q,Kobayashi H,et al. Renal epithelium regulates erythr- opoiesis via HIF-dependent suppression of erythropoietin [J]. J Clin Invest,2016,126(4):1425-1437.
[6] Ribeiro S,Garrido P,F(xiàn)ernandes J,et al. Pathological and molecular mechanisms underlying resistance to recombinant human erythropoietin therapy in the remnant kidney rat model of chronic kidney disease associated anemia [J]. Biochimie,2016,125:150-162.
[7] 武麗娟,張靜靜,胡鳳琪,等.替米沙坦對糖尿病大鼠腎臟缺氧誘導(dǎo)因子1α表達(dá)的影響[J].臨床腎臟病雜志,2011,11(4):177-180.
[8] 黨建中,賈汝漢,涂亞芳,等.紅細(xì)胞生成素對糖尿病大鼠腎臟保護(hù)作用的機(jī)制[J].中華腎臟病雜志,2011,27(8):597-601.
[9] 魯慶紅,石明,李益明,等.百令膠囊對蔗糖鐵致血液透析腎性貧血患者氧化應(yīng)激的干預(yù)作用[J].中國中西醫(yī)結(jié)合腎病雜志,2014,15(12):1102-1103.
[10] Libregts SF,Gutierrez L,de Bruin AM,et al. Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis [J]. Blood,2011,118(9):2578-2588.
[11] Besson-Fournier C,Latour C,Kautz L,et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling [J]. Blood,2012,120(2):431-439.
[12] Souma T,Nezu M,Nakano D,et al. Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling [J]. J Am Soc Nephrol,2016,27(2):428-438.
[13] Kautz L,Jung G,Valore EV,et al. Identification of erythroferrone as an erythroid regulator of iron metabolism [J]. Nat Genet,2014,46(7):678-684.
[14] Zhang DL,Senecal T,Ghosh MC,et al. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts [J]. Blood,2011,118(10):2868-2877.
[15] Anderson SA,Nizzi CP,Chang YI,et al. The IRP1-HIF-2alpha axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption [J]. Cell Metab,2013,17(2):282-290.
[16] Wilkinson N,Pantopoulos K. IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2alpha mRNA translation [J]. Blood,2013,122(9):1658-1668.
[17] Ghosh MC,Zhang DL,Jeong SY,et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2alpha [J]. Cell Metab,2013,17(2):271-281.
[18] Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors [J]. Blood Rev,2013,27(1):41-53.
[19] Suzuki N. Erythropoietin gene expression:developmental-stage specificity,cell-type specificity,and hypoxia inducibility [J]. Tohoku J Exp Med,2015,235(3):233-240.
[20] Tojo Y,Sekine H,Hirano I,et al. Hypoxia Signaling Cascade for Erythro- poietin Production in Hepatocytes [J]. Mol Cell Biol,2015,35(15):2658-2672.
[21] Storti F,Santambrogio S,Crowther LM,et al. A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression [J]. Haematologica,2014,99(4):e45-e48.
[22] Asai H,Hirata J,Hirano A,et al. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expr- ession by indoxyl sulfate [J]. Am J Physiol Cell Physiol,2016,310(2):C142-C150.
[23] Eleftheriadis T,Pissas G,Antoniadi G,et al. Kynurenine,by activating aryl hydrocarbon receptor,decreases erythropoietin and increases hepcidin production in HepG2 cells:A new mechanism for anemia of inflammation [J]. Exp Hematol,2016,44(1):60-67.
[24] Leigh J,Saha MN,Mok A,et al. Hydrogen Sulfide Induced Erythropoietin Synthesis is Regulated by HIF Proteins [J]. J Urol,2016,196(1):251-260.
[25] Chang YT,Yang CC,Pan SY,et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys [J]. J Clin Invest,2016,126(2):721-731.
[26] Simpson RJ,Mckie AT. Iron and oxygen sensing:a tale of 2 interacting elements? [J]. Metallomics,2015,7(2):223-231.
[27] Yamashita T,Ohneda O,Sakiyama A,et al. The microenvironment for erythropoiesis is regulated by HIF-2alpha through VCAM-1 in endothelial cells [J]. Blood,2008,112(4):1482-1492.
[28] Tsuboi I,Yamashita T,Nagano M,et al. Impaired expression of HIF-2alpha induces compensatory expression of HIF-1alpha for the recovery from anemia [J]. J Cell Physiol,2015,230(7):1534-1548.
[29] Koury MJ,Haase VH. Anaemia in kidney disease:harnessing hypoxia responses for therapy [J]. Nat Rev Nephrol,2015,11(7):394-410.
[30] Besarab A,Provenzano R,Hertel J,et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat(FG-4592)to treat anemia in nondialysis-dependent chronic kidney disease(NDD-CKD)patients [J]. Nephrol Dial Transplant,2015,30(10):1665-1673.
[31] Provenzano R,Besarab A,Wright S,et al. Roxadustat(FG-4592)Versus Epoetin Alfa for Anemia in Patients Receiving Maintenance Hemodialysis:A Phase 2,Randomized,6- to 19-Week,Open-Label,Active-Comparator,Dose-Ranging,Safety and Exploratory Efficacy Study [J]. Am J Kidney Dis,2016,67(6):912-924.
[32] Besarab A,Chernyavskaya E,Motylev I,et al. Roxadustat(FG-4592):Correction of Anemia in Incident Dialysis Patients [J]. J Am Soc Nephrol,2016,27(4):1225-1233.
[33] Hara K,Takahashi N,Wakamatsu A,et al. Pharmacokinetics,pharmacodynamics and safety of single,oral doses of GSK1278863,a novel HIF-prolyl hydroxylase inhibitor,in healthy Japanese and Caucasian subjects [J]. Drug Metab Pharmacokinet,2015,30(6):410-418.
[34] Brigandi RA,Johnson B,Oei C,et al. A Novel Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor(GSK12 78863)for Anemia in CKD:A 28-Day,Phase 2A Randomized Trial [J]. Am J Kidney Dis,2016,67(6):861-871.
[35] Flamme I,Oehme F,Ellinghaus P,et al. Mimicking hypoxia to treat anemia:HIF-stabilizer BAY 85-3934(Molidustat)stimulates erythropoietin production without hypertensive effects [J]. PLoS One,2014,9(11):e111838.
[36] Maxwell PH,Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond [J]. Nat Rev Nephrol,2016,12(3):157-168.
[37] Schmid H,Jelkmann W. Investigational therapies for renal disease-induced anemia [J]. Expert Opin Investig Drugs,2016,25(8):901-916.
(收稿日期:2016-08-01 本文編輯:張瑜杰)