• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    2017-06-05 08:56:43MushfiquddinKhanHamzaKhanInderjitSinghAvtarSingh

    Mushfiquddin Khan, Hamza Khan, Inderjit Singh Avtar K. Singh

    1 Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA

    2 College of Medicine, University of South Carolina, Columbia, SC, USA

    3 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA 4 Ralph H. Johnson VA Medical Center, Charleston, SC, USA

    Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Mushfiquddin Khan1,*, Hamza Khan2, Inderjit Singh1, Avtar K. Singh3,4

    1 Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA

    2 College of Medicine, University of South Carolina, Columbia, SC, USA

    3 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA 4 Ralph H. Johnson VA Medical Center, Charleston, SC, USA

    How to cite this article:Khan M, Khan H, Singh I, Singh AK (2017) Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen Res 12(5):696-701.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    Funding:This work was supported by grants from VA merit awards (BX3401 and RX2090).

    Mild traumatic brain injury (TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NOviathe mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

    traumatic brain injury; hypoxia inducible factor-1 alpha; S-nitrosoglutathione; neurorepair; functional recovery

    Introduction

    The U.S. Centers for Disease Control and Prevention define a traumatic brain injury (TBI) as being caused by a bump, blow, or jolt to the head or a penetrating head injury that disrupts normal brain function (www.cdc.gov/traumaticbraininjury/data). The causes of TBI are extremely diverse, ranging from accidents on the highways, to involvement in sports related injuries, and the effects of improvised explosive devices in the theater of war. Falls are the major cause of TBI in children and the elderly (Blennow et al., 2016). TBI causes neurobehavioral deficits, especially in motor and cognitive functions (Langlois et al., 2006). The observed cognitive changes that follow TBI include decreased mental flexibility, impaired attention, poor planning/judgment, deficits in verbal fluency, dementia, and problems with working memory (Levin and Kraus, 1994; Johnson et al., 2010). Furthermore, TBI is associated with significant morbidity/ mortality, pain, and fatigue (Levin and Diaz-Arrastia, 2015; Blennow et al., 2016; Mollayeva et al., 2017). TBI patients are also susceptible to stroke, epilepsy, and Alzheimer’s disease (Johnson et al., 2010; Liu et al., 2017).

    Over 5.3 million Americans suffer lifelong disabilities due to TBI and 1.7 million Americans meet with TBI-associated accidents annually (Gardner and Zafonte, 2016). Approximately 52,000 Americans die annually as a result of TBI (www.cdc.gov/traumaticbraininjury/data). As estimated by the World Health Organization, TBI will become the leading cause of death and disability worldwide by the year 2020 (Hyder et al., 2007). In terms of TBI-related mortality, the US 2006–2010 data revealed males had an almost threefold increased risk of TBI-related death than females, and individuals over the age of 64 years had the highest mortality rates (www.cdc.gov/traumaticbraininjury/data; Faul and Coronado, 2015). TBI among children aged 0–14 years is also prevalent due to falls (Langlois et al., 2005). The total (direct and indirect) TBI costs in the USA were approximately $60.43 billion in 2000 (Corso et al., 2006), which has now increased to approximately $76.5 billion (www.cdc.gov/ traumaticbraininjury/data). Despite substantial investments in TBI research, the treatment options are limited to manage the sequelae of the injury. The state of TBI science and pharmacotherapy have been thoroughly reviewed recently (Diaz-Arrastia et al., 2014).

    Immediately following TBI, the direct trauma and lack of blood flow cause necrotic neuronal death; however, even greater apoptotic neuron loss can occur later from secondaryinjury caused by hypoxia/ischemia and insults associated with oxidative stress and inflammation (Coles, 2004; Greve and Zink, 2009; Diaz-Arrastia et al., 2014). Focal injury, as a result of TBI, affects not only locomotor function but also cognition, perhaps because damage to brain connectivity is a critical component in the cognitive impairment from TBI. Moreover, cognitive impairment may not be the result of a single event but due to multiple mechanisms originating from secondary injury (Lloyd et al., 2008). The neurorepair process (in the chronic phase) depends on regeneration mechanisms that involve a coordinated integration of angiogenesis, neurogenesis, and remyelination of new and spared axons (Lu et al., 2007). Therapies to increase regeneration activity (angiogenesis, neurogenesis, remyelination) during the chronic phase of TBI therefore hold promise as a treatment strategy for stimulating the recovery of neurological functions.

    Approximately 40% of all TBIs are contusions; therefore, animal models of TBI using the focal cortical impact injury (CCI) technique are recognized as physiologically relevant to human TBI (Pennings et al., 1993). The CCI technique was developed by General Motors to model head injuries from automobile accidents and was later adapted for wider experimental use (Lighthall et al., 1989). It reproduces many of the features of brain injuries, including motor deficits, dementia, memory loss, and neuronal loss (Colicos et al., 1996). The severity of injury can be controlled by altering the velocity and depth of the impact and the size of the impact or tip (Dixon et al., 1991). CCI provides an animal model system to evaluate injuries in both the acute and chronic phases. The mechanisms of the injury in the two phases are different and complex. While CCI results in a significant number of necrotic as well as apoptotic neurons in the acute phase, it lacks sufficient regeneration process stimulation (Diaz-Arrastia et al., 2014). Stimulating neurorepair activity by therapeutic modalities,vianeurotrophic and growth factors, has been shown to improve motor and cognitive functions (Oyesiku et al., 1999; Kim et al., 2001; Wu et al., 2008; Sun et al., 2009). Our studies show that S-nitrosoglutathione (GSNO)-induced mechanisms stabilize hypoxia-inducible factor-1 alpha (HIF-1α) and stimulate the mechanisms of regeneration and functional recovery in TBI (Khan et al., 2016a). Unlike in stroke, the role of HIF-1α in TBI is less understood. While the activity of HIF-1α is increased immediately after TBI, its expression levels are significantly decreased 24 hours following TBI (Ding et al., 2009). Studies from other laboratories have also reported that neurorepair (stimulation of the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF)) mechanisms in the chronic phase of TBI are dependent on HIF-1α activity (Sen and Sen, 2016; Thelin et al., 2016).

    HIF-1α and its regulating enzymes, including prolyl-4-hydroxylases (PHDs), are directly regulated by S-nitrosylation (Metzen et al., 2003), leading to stabilization of HIF-1α and induction of neurorepair mechanisms in the repair phase. S-nitrosylation-mediated stabilization of HIF-1α was also reported to increase angiogenesis and myocardial protection (Lima et al., 2009), indicating a protective role of S-nitrosylated HIF-1α. Therefore, we investigated whether S-nitrosylation-mediated modulation of HIF-1α induces neurorepair, leading to functional recovery in a rat CCI model of TBI.

    HIF-1, a nuclear transcription factor, was discovered by Dr. Semenza in 1996 (Semenza, 1996). It was characterized as the master regulator of cellular oxygen homeostasis. It activates the tissue survival pathways by inducing several key enzymes involved in cell metabolism glucose transporter (GLUT), angiogenesis (VEGF, VEGFR1, angiopoietin), and free radical scavenging (heme hydroxylase-1; HO-1) (Ke and Costa, 2006). HIF is a heterodimeric protein composed of α and β subunits. There are three HIF-α isoforms (HIF-1α, HIF-2α and HIF-3α). The beta class includes HIF-1β. HIF-1 is a combination of the HIF-1α (120 kDa) and HIF-1β (91-94 kDa) subunits. The HIF-1β subunit is a constitutively expressed protein, but the expression of the HIF-1α subunit (a cytosolic protein) is largely dependent on oxygen levels. HIF-1α is rapidly up regulated in response to hypoxia and is rapidly degraded upon reoxygenation/reperfusion. Under normoxia, HIF-1α is bound by the von Hippel-Lindau protein (pVHL). pVHL recruits a ubiquitin ligase that targets HIF-1α for the 26S proteasomal degradation. The binding of pVHL is dependent upon hydroxylation of specific proline residues in HIF-1α (pro402 and pro564) by the PHD family of proteins (PHDs), especially HIF-1α-specific PHDs, such as PHD3/PHD2 (please see Ke and Costa, 2006; Harten et al., 2010 for details). These PHD isozymes share maximum homology, and they are implicated in degradation of HIF-1α. PHDs use oxygen as a substrate; therefore, their activity is inhibited under hypoxia. Oxygen can also activate factor-inhibiting HIF (FIH), leading to prevention of the binding of the co-activators p300/CBP, thus down regulating HIF-1-induced transcriptional activity (Figure 1). HIF-1α knockout mice show impaired vascular development and embryonic lethality, indicating HIF-1’s protective role in vascular diseases (Iyer et al., 1998).

    Remarkably, the HIF-1α pathway is involved in both pathological (hypoxia) and neurorepair (normoxia) mechanisms following TBI. The HIF-1α stabilizers/inducers, such as desferrioxamine (an iron chelator approved for haemochromatosis treatment), promote a number of survival pathways, including neuroprotection, angiogenesis and neurotrophins, and reduce brain infarctions when administered pre- or post-stroke (Kasivisvanathan et al., 2011). PHD inhibitors, such as FG-4539, are presently in a phase II anemia trial because of their activity to stabilize HIF-1α by preventing degradation with the ubiquitin proteasome system (Harten et al., 2010). However, inhibition of HIF-1α in the acute injury phase of TBI has also been reported to be neuroprotective (Shenaq et al., 2012; Schaible et al., 2014).

    Figure 1 Hypothesized HIF-1α regulation under hypoxia, normoxia, and redox.

    Under normoxic conditions, studies are lacking on direct stabilization of HIF-1α by secondary modification and the induction of consequent protective genes. Nevertheless, S-nitrosylation has been shown to stabilize HIF-1 protein expression and activity in normoxic endothelial cells (Palmer et al., 2000). Later, it was confirmed that, while GSNO stabilizes HIF-1α by S-nitrosylation, reactive nitrogen species (peroxynitrite) destabilize HIF-1α (Figure 1) (Wellman et al., 2004). GSNO-mediated stabilization of HIF-1α has been shown to be dependent on PI3K/Akt activity (Carver et al., 2007). A recent study in a mouse model of stroke shows that S-nitrosylation of phosphatase and tensin homolog (PTEN) results in an inhibition of its activity, leading to the activation of Akt (Numajiri et al., 2011). GSNO also activated Akt in a rat model of experimental stroke (Sakakima et al., 2012). Furthermore, GSNO also attenuated PHD activity during normoxia and inhibited proteasomal degradation of HIF-1α (Metzen et al., 2003). S-nitrosylation-mediated stabilization of HIF-1α has been shown to protect against myocardial injuryviathe VEGF/angiogenesis pathway in GSNO reductase (GSNOR) knockout mice (Lima et al., 2009), indicating that HIF-1 is a key player in the regeneration process. Our TBI studies showing that the HIF-1α/VEGF pathway accelerated functional recovery in a 2-week mouse model of TBIviaS-nitrosylation of HIF-1α further support the neuroreparative role of HIF-1α (Khan et al., 2016a) as depicted in Figure 2. S-nitrosylation/GSNO-mediated increased expression HIF-1α and stimulation of neurotrophic factors provide a strong rationale to evaluate the potential of a GSNO-mediated HIF-1α pathway for human therapy in the chronic phase of TBI.

    Figure 2 Schematic showing that exogenously administered GSNO stabilizes HIF-1αviaS-nitrosylation, leading to the stimulation of neurorepair mediators and functional recovery in TBI.

    GSNO is a natural component of the human body produced by the reaction of nitric oxide (NO) with glutathione (GSH) in the presence of oxygen (Singh et al., 1996). It is sensitive to light, ascorbate, thiols and divalent cations such as Fe2+ and Cu2+(Broniowska et al., 2013). GSNO is present in the brain and other organs (Kluge et al., 1997). It is directly involved in cell signalingviaS-nitrosylation of target proteins, including nuclear factor kappaB (NF-κB), signal transducer and activator of transcription 3 (STAT3), cyclooxygenase-2 (COX-2), caspase-3, calpains, inducible nitric oxide synthase (iNOS), and endothelial NOS (eNOS) and neuronal NOS (nNOS) (Jaffrey et al., 2001; Khan et al., 2005, 2006, 2012, 2016a, b; Kim et al., 2013). Exogenous admin-istration of GSNO (Rassaf et al., 2006) also protects against cardiac ischemic injury (Konorev et al., 1995; Lima et al., 2009), supporting the therapeutic potential of GSNO. Studies have also reported that GSNO inhibits platelet activation in humans (Radomski et al., 1992) and protects both bloodbrain barrier integrity and epithelial permeability (Savidge et al., 2007; Khan et al., 2009). Various disease conditions are known to have reduced levels of S-nitrosothiols (-SNO/ GSNO) (Snyder et al., 2002; Heiss et al., 2006; Schonhoff et al., 2006) and exogenous administration of GSNO has increased endogenous GSNO and S-NO levels (Khan et al., 2012; Zanini et al., 2012; Hu et al., 2013).

    In a microenvironment of TBI, NO released by conventional NO-donors or NO gas itself is anticipated to be inactivated by superoxide, thus forming deleterious peroxynitrite (Singh et al., 2007; Deng-Bryant et al., 2008; Reed et al., 2009). Unlike NO, the disadvantage of inactivation is not associated with the S-nitrosylating agent GSNO (Khan et al., 2006). In addition, S-nitrosylation of cysteine residue (a reversible modification) prevents it from further oxidation to sulfinic and sulfonic acids (an irreversible modification), thereby preventing inactivation of both NO and proteins. The neurorepair effect of GSNO may be mediated by two different mechanisms: 1) S-nitrosylation and 2) maintaining redox by mechanistically reducing the production of oxidants, including peroxynitrite. Such multi-mechanistic functional and therapeutic abilities are not embedded in conventional NO donors as previously reported (Khan et al., 2006), making GSNO a unique candidate to be investigated for the stimulation of functional recovery following TBI.

    Several studies showing the efficacy of GSNO in human diseases have been listed by Hornyak et al. (Hornyak et al., 2011). Recently, GSNO was also used in early onset of preeclampsia (Christopher et al.). None of the studies report major or significant side effects associated with the use of GSNO in humans. GSNO-releasing nanoparticles, hydrogel and/or polymers are also used tropically in wound healing and skin diseases (Georgii et al., 2011; Chouake et al., 2012). Microparticles loaded with GSNO have a much longer half-life than free GSNO and show neurovascular protective efficacy in an animal model of embolic stroke (Parent et al., 2015). GSNO-mediated therapeutic effects can also be achievedviathe inhibition of GSNO reductase (GSNOR) enzyme. GSNOR is the major GSNO-metabolizing enzyme and thus GSNOR knock out mice store GSNO in excess. GSNOR degrades GSNO into ammonia and oxidized glutathione without releasing free NO. Other enzymes, including carbonyl reductase, formaldehyde dehydrogenase and gamma glutamyl transpeptidase also metabolize GSNO, but their activity is not specific toward GSNO (Foster et al., 2009). Pharmacological inhibition of GSNOR has also been shown to improve endothelial functions (Chen et al., 2013), indicating a protective role of GSNO in neurovascular dysfunction. A recent report shows that GSNOR knock out mice behave normally and GSNO invokes its mechanistic effectviathe mechanisms of trans-S-nitrosylation (Moon et al., 2017). However, another study found GSNOR knock mice having compromised neuro-muscular functions (Montagna et al., 2014). Use of GSNOR inhibitors have been found beneficial in animal models of experimental asthma (Ferrini et al., 2013), allergic airway inflammation (Blonder et al., 2014) and endothelial vasodilatory dysfunction (Chen et al., 2013). These results support the association of beneficial activity with GSNO-mediated mechanisms in several diseases.

    Conclusion

    The potential of GSNO as an HIF-1α stabilization-based therapeutic agent in TBI offers a novel target for further investigation (Figure 2). Mechanistically, GSNO invokes its action mainlyviaan S-nitrosylation-based mechanism, a physiological secondary protein modification process. Unlike other chemical therapeutics, GSNO is an endogenous neurorepair-inducing agent and its exogenous administration protects against neurodegenerative disease mechanisms in stroke, spinal cord injury, and TBI. The treatment with GSNO accelerated functional recovery and improved overall outcomes in a comparatively long-term TBI study (Khan et al., 2016a). Furthermore, GSNO’s administration in humans for other indications resulted in no toxicity or side effects, thus supporting the translational potential of GSNO therapy in TBI. A long term study showing stimulation of neurorepair mechanisms and improvements of neurological functions in humans will determine the overall efficacy and the clinical relevance of GSNO as a rehabilitation therapy in TBI.

    Acknowledgments:We acknowledge Dr. Tom Smith, Ph.D., from the MUSC Writing Center for his valuable editing of the manuscript. We also thank Dr. Tajinder S. Dhammu for his input in understanding the role of HIFs in TBI.

    Author contributions:This article is based on original contributions from MK, IS and AKS. MK and HK have assembled, written and edited the manuscript. All authors hereby approve the content of the article.

    Conflicts of interest:The authors declare that they have no competing interests.

    Open peer reviewer:Eric Peter Thelin.

    Additional file:Open peer review report 1.

    Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H (2016) Traumatic brain injuries. Nat Rev Dis Primers 2:16084.

    Blonder JP, Mutka SC, Sun X, Qiu J, Green LH, Mehra NK, Boyanapalli R, Suniga M, Look K, Delany C, Richards JP, Looker D, Scoggin C, Rosenthal GJ (2014) Pharmacologic inhibition of S-nitrosoglutathione reductase protects against experimental asthma in BALB/c mice through attenuation of both bronchoconstriction and inflammation. BMC Pulm Med 14:3.

    Broniowska KA, Diers AR, Hogg N (2013) S-nitrosoglutathione. Biochim Biophys Acta 1830:3173-3181.

    Carver DJ, Gaston B, Deronde K, Palmer LA (2007) Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol 37:255-263.

    Chen Q, Sievers RE, Varga M, Kharait S, Haddad DJ, Patton AK, Delany CS, Mutka SC, Blonder JP, Dube GP, Rosenthal GJ, Springer ML (2013) Pharmacological inhibition of S-nitrosoglutathione reductase improves endothelial vasodilatory function in rats in vivo. J Appl Physiol (1985) 114:752-760.

    Chouake J, Schairer D, Kutner A, Sanchez DA, Makdisi J, Blecher-Paz K, Nacharaju P, Tuckman-Vernon C, Gialanella P, Friedman JM, Nosanchuk JD, Friedman AJ (2012) Nitrosoglutathione generating nitric oxide nanoparticles as an improved strategy for combating Pseudomonas aeruginosa-infected wounds. J Drugs Dermatol 11:1471-1477.

    Coles JP (2004) Regional ischemia after head injury. Curr Opin Crit Care 10:120-125.

    Colicos MA, Dixon CE, Dash PK (1996) Delayed, selective neuronal death following experimental cortical impact injury in rats: possible role in memory deficits. Brain Res 739:111-119.

    Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E (2006) Incidence and lifetime costs of injuries in the United States. Inj Prev 12:212-218.

    Deng-Bryant Y, Singh IN, Carrico KM, Hall ED (2008) Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab 28:1114-1126.

    Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ, Loh LT, Adam LT, Oskvig D, Curley KC, Salzer W (2014) Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 31:135-158.

    Ding JY, Kreipke CW, Speirs SL, Schafer P, Schafer S, Rafols JA (2009) Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci Lett 453:68-72.

    Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253-262.

    Faul M, Coronado V (2015) Epidemiology of traumatic brain injury. Handb Clin Neurol 127:3-13.

    Ferrini ME, Simons BJ, Bassett DJ, Bradley MO, Roberts K, Jaffar Z (2013) S-nitrosoglutathione reductase inhibition regulates allergen-induced lung inflammation and airway hyperreactivity. PLoS One 8:e70351.

    Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391-404.

    Gardner AJ, Zafonte R (2016) Neuroepidemiology of traumatic brain injury. Handb Clin Neurol 138:207-223.

    Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A (2011) Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds. J Tissue Eng Regen Med 5:612-619.

    Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76:97-104.

    Harten SK, Ashcroft M, Maxwell PH (2010) Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid Redox Signal 12:459-480.

    Heiss C, Lauer T, Dejam A, Kleinbongard P, Hamada S, Rassaf T, Matern S, Feelisch M, Kelm M (2006) Plasma nitroso compounds are decreased in patients with endothelial dysfunction. J Am Coll Cardiol 47:573-579.

    Hornyak I, Pankotai E, Kiss L, Lacza Z (2011) Current developments in the therapeutic potential of S-nitrosoglutathione, an endogenous NO-donor molecule. Curr Pharm Biotechnol 12:1368-1374.

    Hu Z, Bian X, Liu X, Zhu Y, Zhang X, Chen S, Wang K, Wang Y (2013) Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res 1491:204-212.

    Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341-353.

    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149-162.

    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193-197.

    Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11:361-370.

    Kasivisvanathan V, Shalhoub J, Lim CS, Shepherd AC, Thapar A, Davies AH (2011) Hypoxia-inducible factor-1 in arterial disease: a putative therapeutic target. Curr Vasc Pharmacol 9:333-349.

    Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469-1480.

    Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I (2006) Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 15:114-124.

    Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I (2009) Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 6:32.

    Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, Singh I (2012) The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 123 Suppl 2:86-97.

    Khan M, Dhammu TS, Baarine M, Kim J, Paintlia MK, Singh I, Singh AK (2016a) GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1alpha. Behav Brain Res doi:10.1016/ j.bbr.2016.10.037.

    Khan M, Dhammu TS, Matsuda F, Annamalai B, Dhindsa TS, Singh I, Singh AK (2016b) Targeting the nNOS/peroxynitrite/calpain system to confer neuroprotection and aid functional recovery in a mouse model of TBI. Brain Res 1630:159-170.

    Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, Singh AK, Singh I (2005) S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 25:177-192.

    Kim BT, Rao VL, Sailor KA, Bowen KK, Dempsey RJ (2001) Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg 95:674-679.

    Kim J, Won JS, Singh AK, Sharma AK, Singh I (2013) STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 20:2514-2527.

    Kluge I, Gutteck-Amsler U, Zollinger M, Do KQ (1997) S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J Neurochem 69:2599-2607.

    Konorev EA, Tarpey MM, Joseph J, Baker JE, Kalyanaraman B (1995) S-nitrosoglutathione improves functional recovery in the isolated rat heart after cardioplegic ischemic arrest-evidence for a cardioprotective effect of nitric oxide. J Pharmacol Exp Ther 274:200-206.

    Langlois JA, Rutland-Brown W, Thomas KE (2005) The incidence of traumatic brain injury among children in the United States: differences by race. J Head Trauma Rehabil 20:229-238.

    Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375-378.

    Levin H, Kraus MF (1994) The frontal lobes and traumatic brain injury. J Neuropsychiatry Clin Neurosci 6:443-454.

    Levin HS, Diaz-Arrastia RR (2015) Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol 14:506-517.

    Lighthall JW, Dixon CE, Anderson TE (1989) Experimental models of brain injury. J Neurotrauma 6:83-97.

    Lima B, Lam GK, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM, Stamler JS, Rockman HA (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci U S A 106:6297-6302.

    Liu SW, Huang LC, Chung WF, Chang HK, Wu JC, Chen LF, Chen YC, Huang WC, Cheng H, Lo SS (2017) Increased risk of stroke in patients of concussion: a nationwide cohort study. Int J Environ Res Public Health 14:E230.

    Lloyd E, Somera-Molina K, Van Eldik LJ, Watterson DM, Wainwright MS (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28.

    Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132-1146.

    Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470-3481.

    Mollayeva T, Cassidy JD, Shapiro CM, Mollayeva S, Colantonio A (2017) Concussion/mild traumatic brain injury-related chronic pain in males and females: A diagnostic modelling study. Medicine (Baltimore) 96:e5917.

    Montagna C, Di Giacomo G, Rizza S, Cardaci S, Ferraro E, Grumati P, De Zio D, Maiani E, Muscoli C, Lauro F, Ilari S, Bernardini S, Cannata S, Gargioli C, Ciriolo MR, Cecconi F, Bonaldo P, Filomeni G (2014) S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid Redox Signal 21:570-587.

    Moon Y, Cao Y, Zhu J, Xu Y, Balkan W, Buys ES, Diaz F, Kerrick WG, Hare JM, Percival JM (2017) GSNOR deficiency enhances in situ skeletal muscle strength, fatigue resistance, and RyR1 S-nitrosylation without impacting mitochondrial content and activity. Antioxid Redox Signal 26:165-181.

    Numajiri N, Takasawa K, Nishiya T, Tanaka H, Ohno K, Hayakawa W, Asada M, Matsuda H, Azumi K, Kamata H, Nakamura T, Hara H, Minami M, Lipton SA, Uehara T (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A 108:10349-10354.

    Oyesiku NM, Evans CO, Houston S, Darrell RS, Smith JS, Fulop ZL, Dixon CE, Stein DG (1999) Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 833:161-172.

    Palmer LA, Gaston B, Johns RA (2000) Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol 58:1197-1203.

    Parent M, Boudier A, Perrin J, Vigneron C, Maincent P, Violle N, Bisson JF, Lartaud I, Dupuis F (2015) In situ microparticles loaded with S-nitrosoglutathione protect from stroke. PLoS One 10:e0144659.

    Pennings JL, Bachulis BL, Simons CT, Slazinski T (1993) Survival after severe brain injury in the aged. Arch Surg 128:787-793; discussion 793-784.

    Radomski MW, Rees DD, Dutra A, Moncada S (1992) S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol 107:745-749.

    Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, Gharini P, Andersen K, Schulz R, Heusch G, Modder U, Kelm M (2006) Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J 27:1699-1705.

    Reed TT, Owen J, Pierce WM, Sebastian A, Sullivan PG, Butterfield DA (2009) Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma-glutamylcysteine ethyl ester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury. J Neurosci Res 87:408-417.

    Sakakima H, Khan M, Dhammu TS, Shunmugavel A, Yoshida Y, Singh I, Singh AK (2012) Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion. Restor Neurol Neurosci 30:383-396.

    Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:1344-1358.

    Schaible EV, Windschugl J, Bobkiewicz W, Kaburov Y, Dangel L, Kramer T, Huang C, Sebastiani A, Luh C, Werner C, Engelhard K, Thal SC, Schafer MK (2014) 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1alpha response after traumatic brain injury in mice. J Neurochem 129:940-954.

    Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevez AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB (2006) S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103:2404-2409.

    Semenza GL (1996) Transcriptional regulation by hypoxia-inducible factor 1 molecular mechanisms of oxygen homeostasis. Trends Cardiovasc Med 6:151-157.

    Sen T, Sen N (2016) Treatment with an activator of hypoxia-inducible factor 1, DMOG provides neuroprotection after traumatic brain injury. Neuropharmacology 107:79-88.

    Shenaq M, Kassem H, Peng C, Schafer S, Ding JY, Fredrickson V, Guthikonda M, Kreipke CW, Rafols JA, Ding Y (2012) Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1alpha after traumatic brain injury (TBI). J Neurol Sci 323:134-140.

    Singh IN, Sullivan PG, Hall ED (2007) Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J Neurosci Res 85:2216-2223.

    Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci U S A 93:14428-14433.

    Snyder AH, McPherson ME, Hunt JF, Johnson M, Stamler JS, Gaston B (2002) Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am J Respir Crit Care Med 165:922-926.

    Sun D, Bullock MR, McGinn MJ, Zhou Z, Altememi N, Hagood S, Hamm R, Colello RJ (2009) Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 216:56-65.

    Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, Risling M, Svensson M, Morganti-Kossmann MC, Bellander BM (2016) Lesion size is exacerbated in hypoxic rats whereas hypoxia-inducible factor-1 alpha and vascular endothelial growth factor increase in injured normoxic rats: a prospective cohort study of secondary hypoxia in focal traumatic brain injury. Front Neurol 7:23.

    Wellman TL, Jenkins J, Penar PL, Tranmer B, Zahr R, Lounsbury KM (2004) Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries. Faseb J 18:379-381.

    Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, Mahmood A, Zhou D, Chopp M (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25:130-139.

    www.cdc.gov/traumaticbraininjury/data The US centers for disease control and prevention, Atlanta, GA.

    Zanini GM, Martins YC, Cabrales P, Frangos JA, Carvalho LJ (2012) S-nitrosoglutathione prevents experimental cerebral malaria. J Neuroimmune Pharmacol 7:477-487.

    *< class="emphasis_italic">Correspondence to: Mushfiquddin Khan, Ph.D., khanm@musc.edu.

    Mushfiquddin Khan, Ph.D., khanm@musc.edu.

    orcid: 0000-0001-7945-3237 (Mushfiquddin Khan)

    10.4103/1673-5374.206632

    Accepted: 2017-05-05

    国产成人精品久久久久久| 亚洲av免费高清在线观看| 日本午夜av视频| 亚洲电影在线观看av| 亚洲欧美成人精品一区二区| 亚洲成人一二三区av| 欧美一区二区亚洲| 成人国产麻豆网| 欧美日本视频| 国产乱人偷精品视频| 嫩草影院入口| 国产精品三级大全| 亚洲精品aⅴ在线观看| 天天躁日日操中文字幕| 亚洲天堂av无毛| 99热这里只有是精品50| 91在线精品国自产拍蜜月| 午夜福利在线在线| 久久久久久久久久久免费av| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 欧美zozozo另类| 超碰av人人做人人爽久久| av.在线天堂| 精品人妻熟女av久视频| 网址你懂的国产日韩在线| 久久99热这里只频精品6学生| 亚洲欧美日韩东京热| 如何舔出高潮| 人妻少妇偷人精品九色| 国产免费视频播放在线视频| 春色校园在线视频观看| 久久人人爽人人片av| 国产久久久一区二区三区| 男人狂女人下面高潮的视频| 干丝袜人妻中文字幕| 亚洲成人久久爱视频| 大香蕉97超碰在线| 国产高清国产精品国产三级 | 婷婷色综合www| 国产一区二区亚洲精品在线观看| 岛国毛片在线播放| 久久久久久久国产电影| 久久国产乱子免费精品| 午夜激情福利司机影院| 国产午夜福利久久久久久| 在现免费观看毛片| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久| 啦啦啦中文免费视频观看日本| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 一个人看视频在线观看www免费| 亚洲成人久久爱视频| 亚洲精品视频女| 国产精品国产av在线观看| 18禁动态无遮挡网站| 一级黄片播放器| 麻豆国产97在线/欧美| 日韩强制内射视频| 大香蕉97超碰在线| 99久久人妻综合| 伦精品一区二区三区| 男的添女的下面高潮视频| 一级毛片 在线播放| 亚洲,一卡二卡三卡| 国产中年淑女户外野战色| 亚洲在线观看片| 在线a可以看的网站| eeuss影院久久| 舔av片在线| 国产老妇伦熟女老妇高清| 99久久人妻综合| 黄色一级大片看看| 中文欧美无线码| 国产男女内射视频| 26uuu在线亚洲综合色| 男女边摸边吃奶| 亚洲国产高清在线一区二区三| 香蕉精品网在线| 欧美一区二区亚洲| 国产免费福利视频在线观看| 亚洲av在线观看美女高潮| 尤物成人国产欧美一区二区三区| 午夜免费鲁丝| 蜜臀久久99精品久久宅男| 18+在线观看网站| 亚洲色图综合在线观看| 国产爱豆传媒在线观看| 亚洲图色成人| 欧美zozozo另类| 青春草亚洲视频在线观看| 国产一区二区亚洲精品在线观看| 精品久久久久久久久亚洲| 亚洲av成人精品一区久久| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩另类电影网站 | 久久久久久久久久久丰满| 久久人人爽av亚洲精品天堂 | 日本黄大片高清| 亚洲人成网站在线播| 精品久久久久久久久av| 日韩av在线免费看完整版不卡| 日韩 亚洲 欧美在线| 亚洲一区二区三区欧美精品 | 国产极品天堂在线| 成年av动漫网址| 激情 狠狠 欧美| 男女国产视频网站| 亚洲国产欧美人成| 欧美日韩一区二区视频在线观看视频在线 | 少妇人妻一区二区三区视频| 国产有黄有色有爽视频| 少妇高潮的动态图| 国产黄色免费在线视频| 99热网站在线观看| 一级毛片久久久久久久久女| 好男人在线观看高清免费视频| 国产精品蜜桃在线观看| 波多野结衣巨乳人妻| 最近中文字幕2019免费版| 中文欧美无线码| 有码 亚洲区| 丰满少妇做爰视频| 欧美成人精品欧美一级黄| 熟妇人妻不卡中文字幕| 成人一区二区视频在线观看| 18禁动态无遮挡网站| 高清av免费在线| 丰满人妻一区二区三区视频av| 久久精品久久久久久噜噜老黄| 日本色播在线视频| 国产精品秋霞免费鲁丝片| 夫妻午夜视频| 日韩强制内射视频| 亚洲色图综合在线观看| 天美传媒精品一区二区| 六月丁香七月| 成年人午夜在线观看视频| 热re99久久精品国产66热6| 成人综合一区亚洲| 久久久精品免费免费高清| 亚洲性久久影院| 国产在线一区二区三区精| 亚洲国产色片| 成人亚洲欧美一区二区av| av.在线天堂| 国产 一区精品| 夜夜看夜夜爽夜夜摸| 波野结衣二区三区在线| 国产精品成人在线| 色哟哟·www| 99久久精品国产国产毛片| 午夜精品国产一区二区电影 | 内射极品少妇av片p| 在线观看av片永久免费下载| 国产精品国产三级国产av玫瑰| 午夜福利视频精品| 又爽又黄无遮挡网站| 亚洲精品一二三| 内射极品少妇av片p| 免费av不卡在线播放| 亚洲精品乱码久久久久久按摩| 26uuu在线亚洲综合色| 五月玫瑰六月丁香| 69av精品久久久久久| 亚洲综合精品二区| 久久久久久久大尺度免费视频| 国产淫语在线视频| 久久久久久久久久久免费av| 亚洲精品乱久久久久久| 国产美女午夜福利| 内射极品少妇av片p| www.色视频.com| 在线 av 中文字幕| 熟女av电影| 久久久久精品久久久久真实原创| 午夜福利视频1000在线观看| 亚洲丝袜综合中文字幕| 亚洲精品,欧美精品| 91精品伊人久久大香线蕉| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 视频中文字幕在线观看| av线在线观看网站| 久久久久久九九精品二区国产| 深爱激情五月婷婷| 亚洲图色成人| 交换朋友夫妻互换小说| 免费大片18禁| 亚洲不卡免费看| 1000部很黄的大片| 久久影院123| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 99九九线精品视频在线观看视频| 99热这里只有精品一区| 国产午夜福利久久久久久| 我要看日韩黄色一级片| 亚洲美女搞黄在线观看| 91久久精品电影网| 精品少妇久久久久久888优播| av在线app专区| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 水蜜桃什么品种好| 久久99精品国语久久久| 国产成人精品福利久久| 免费av观看视频| 尾随美女入室| 特级一级黄色大片| 丝瓜视频免费看黄片| 成人欧美大片| av.在线天堂| 免费av不卡在线播放| 一个人看视频在线观看www免费| 联通29元200g的流量卡| 久久久久性生活片| 人妻少妇偷人精品九色| 国产免费又黄又爽又色| 亚洲国产高清在线一区二区三| av免费在线看不卡| 亚洲欧美清纯卡通| 国产亚洲av片在线观看秒播厂| 三级男女做爰猛烈吃奶摸视频| 成人国产麻豆网| 国产免费一区二区三区四区乱码| 国产乱人偷精品视频| 国产av码专区亚洲av| 高清日韩中文字幕在线| 2021少妇久久久久久久久久久| 日本三级黄在线观看| 亚洲性久久影院| 亚洲av日韩在线播放| 成人国产av品久久久| av天堂中文字幕网| 一级a做视频免费观看| 亚洲精品国产av蜜桃| 亚洲第一区二区三区不卡| 超碰av人人做人人爽久久| 在线观看人妻少妇| 亚洲自拍偷在线| 日韩免费高清中文字幕av| 亚洲精品一二三| 99久久中文字幕三级久久日本| 韩国高清视频一区二区三区| 高清午夜精品一区二区三区| 亚洲av电影在线观看一区二区三区 | 两个人的视频大全免费| 欧美zozozo另类| av专区在线播放| 又大又黄又爽视频免费| 亚洲成人久久爱视频| 亚洲经典国产精华液单| 成人特级av手机在线观看| 国产久久久一区二区三区| 亚洲精品自拍成人| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| 黑人高潮一二区| 国产精品蜜桃在线观看| 国产永久视频网站| 欧美日韩国产mv在线观看视频 | 国产亚洲5aaaaa淫片| 性色avwww在线观看| 人人妻人人爽人人添夜夜欢视频 | 最近中文字幕2019免费版| 一级二级三级毛片免费看| 一级爰片在线观看| 欧美日韩精品成人综合77777| 国产老妇伦熟女老妇高清| 伦理电影大哥的女人| 国产视频首页在线观看| 亚洲天堂国产精品一区在线| 国产精品成人在线| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 嫩草影院精品99| 国产成人a区在线观看| 99热国产这里只有精品6| 久久精品夜色国产| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 九九久久精品国产亚洲av麻豆| 少妇人妻精品综合一区二区| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 午夜福利视频精品| 人妻一区二区av| 欧美精品国产亚洲| 国产乱人偷精品视频| 国产一区二区三区av在线| 一本一本综合久久| 波野结衣二区三区在线| 黄色怎么调成土黄色| 欧美一级a爱片免费观看看| 99热国产这里只有精品6| 国产视频内射| 欧美精品一区二区大全| 亚洲va在线va天堂va国产| 黄色配什么色好看| 亚洲最大成人av| 男女那种视频在线观看| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 国产免费一级a男人的天堂| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡 | 97超视频在线观看视频| 亚洲美女搞黄在线观看| 亚洲精品日韩av片在线观看| 亚洲精品第二区| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 亚洲最大成人中文| 久久ye,这里只有精品| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 成年av动漫网址| 欧美日韩视频精品一区| 99热6这里只有精品| 国内精品美女久久久久久| 国产精品久久久久久av不卡| 搞女人的毛片| 亚洲精品国产色婷婷电影| 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人一二三区av| 中文字幕av成人在线电影| 男人和女人高潮做爰伦理| 国产男女超爽视频在线观看| av国产精品久久久久影院| 亚洲性久久影院| 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 国产精品国产三级专区第一集| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 午夜老司机福利剧场| 国产成人精品福利久久| 久久99热这里只频精品6学生| 亚洲人成网站在线观看播放| 国产av不卡久久| 最近最新中文字幕大全电影3| 日韩制服骚丝袜av| 午夜精品国产一区二区电影 | 亚洲欧美一区二区三区国产| 日韩欧美 国产精品| 国内精品宾馆在线| 亚洲精品国产av蜜桃| 国产精品偷伦视频观看了| 国产中年淑女户外野战色| 欧美精品人与动牲交sv欧美| 亚洲av免费高清在线观看| 亚洲成人av在线免费| 亚洲精品影视一区二区三区av| 日本熟妇午夜| 免费观看性生交大片5| 久久久久久久久久成人| 我要看日韩黄色一级片| 97超碰精品成人国产| 91久久精品国产一区二区三区| 午夜免费观看性视频| 国产黄a三级三级三级人| 国产色婷婷99| 2018国产大陆天天弄谢| 中文字幕久久专区| 在线观看三级黄色| 亚洲av成人精品一区久久| 国产精品国产三级国产av玫瑰| 国产综合懂色| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 久久久久久伊人网av| 日日啪夜夜爽| 美女国产视频在线观看| 国产日韩欧美亚洲二区| av免费在线看不卡| 成年av动漫网址| 久久久久精品久久久久真实原创| 99热这里只有精品一区| 亚洲怡红院男人天堂| 久久久久久久久久久丰满| 精品久久久久久电影网| av黄色大香蕉| 99热网站在线观看| 极品少妇高潮喷水抽搐| 日韩大片免费观看网站| 国产成人a区在线观看| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 777米奇影视久久| 男女无遮挡免费网站观看| 国产成人福利小说| 欧美变态另类bdsm刘玥| 我要看日韩黄色一级片| 麻豆成人av视频| 欧美一区二区亚洲| 国产一区二区三区综合在线观看 | 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 美女视频免费永久观看网站| 中文欧美无线码| 久久久色成人| h日本视频在线播放| 王馨瑶露胸无遮挡在线观看| 日本熟妇午夜| 男女国产视频网站| 人妻 亚洲 视频| 噜噜噜噜噜久久久久久91| 亚洲无线观看免费| av国产精品久久久久影院| 大香蕉久久网| 18禁在线无遮挡免费观看视频| 在线a可以看的网站| 国语对白做爰xxxⅹ性视频网站| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 两个人的视频大全免费| 亚洲欧美日韩另类电影网站 | 亚洲美女视频黄频| 伊人久久国产一区二区| 亚州av有码| 成人一区二区视频在线观看| av一本久久久久| 国产成人一区二区在线| 免费观看无遮挡的男女| 免费av不卡在线播放| 婷婷色综合www| 成人毛片60女人毛片免费| 性插视频无遮挡在线免费观看| 亚洲,欧美,日韩| 日本猛色少妇xxxxx猛交久久| 亚洲精品456在线播放app| 免费观看在线日韩| 男女边吃奶边做爰视频| 国产视频内射| 国产乱人视频| 美女内射精品一级片tv| 又黄又爽又刺激的免费视频.| 国产成人精品久久久久久| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 人人妻人人澡人人爽人人夜夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区三区影片| 99re6热这里在线精品视频| 精品国产三级普通话版| 天天躁日日操中文字幕| 久久久久久久国产电影| 欧美精品一区二区大全| 嫩草影院精品99| 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| av一本久久久久| 久久久精品免费免费高清| 亚洲av福利一区| 又黄又爽又刺激的免费视频.| 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 国产精品一区二区三区四区免费观看| 国产伦精品一区二区三区视频9| 国产精品一区二区在线观看99| 日韩av免费高清视频| 免费在线观看成人毛片| 大陆偷拍与自拍| 亚洲高清免费不卡视频| 久久久久国产网址| 欧美国产精品一级二级三级 | av在线蜜桃| 国产精品女同一区二区软件| 99热这里只有是精品50| 亚州av有码| 亚洲天堂国产精品一区在线| 亚洲国产av新网站| 亚洲精品456在线播放app| 国产精品一区二区在线观看99| 国产男女内射视频| 国产v大片淫在线免费观看| 日本免费在线观看一区| 一级毛片久久久久久久久女| 免费黄网站久久成人精品| 欧美三级亚洲精品| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| av网站免费在线观看视频| 青青草视频在线视频观看| 欧美成人精品欧美一级黄| 国产精品一区二区性色av| 男女下面进入的视频免费午夜| 亚洲欧美一区二区三区国产| 黄色日韩在线| 舔av片在线| 亚洲人成网站高清观看| 国产 一区精品| 成人无遮挡网站| 国产精品人妻久久久久久| 国产成人91sexporn| 又爽又黄无遮挡网站| 永久免费av网站大全| 一个人观看的视频www高清免费观看| 国产伦精品一区二区三区四那| 国产成人91sexporn| 亚洲精品456在线播放app| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| 色5月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 99久国产av精品国产电影| 久久久久国产网址| 搡老乐熟女国产| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 在线免费观看不下载黄p国产| 免费观看av网站的网址| 卡戴珊不雅视频在线播放| 熟女av电影| 一级a做视频免费观看| 中文在线观看免费www的网站| 久久国产乱子免费精品| 日韩欧美精品免费久久| 99热全是精品| 久久久成人免费电影| 少妇熟女欧美另类| av在线app专区| 国产精品久久久久久久久免| 国产免费又黄又爽又色| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 免费av不卡在线播放| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 精品久久久久久久末码| 男女无遮挡免费网站观看| 男的添女的下面高潮视频| 久久久久久久午夜电影| 少妇 在线观看| 国产在线男女| 亚洲熟女精品中文字幕| 性插视频无遮挡在线免费观看| 联通29元200g的流量卡| 成年女人看的毛片在线观看| 国产视频首页在线观看| 成人二区视频| 波野结衣二区三区在线| 亚洲综合色惰| 黄色视频在线播放观看不卡| 日韩成人伦理影院| 欧美日韩视频精品一区| 插阴视频在线观看视频| 黄色欧美视频在线观看| 国产亚洲5aaaaa淫片| 欧美日韩国产mv在线观看视频 | 久久人人爽人人爽人人片va| 亚洲欧美日韩无卡精品| 永久免费av网站大全| www.av在线官网国产| 九九爱精品视频在线观看| 91久久精品国产一区二区成人| 亚洲精品aⅴ在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 欧美精品人与动牲交sv欧美| 亚洲欧美成人综合另类久久久| 亚洲一区二区三区欧美精品 | 成年av动漫网址| 国产精品久久久久久av不卡| 男女啪啪激烈高潮av片| 亚洲自拍偷在线| 精品久久久精品久久久| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久亚洲| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 国产午夜精品久久久久久一区二区三区| av在线天堂中文字幕| 97在线人人人人妻| 男的添女的下面高潮视频| 少妇裸体淫交视频免费看高清| 国产日韩欧美在线精品| 久久久亚洲精品成人影院| 久久久久久久精品精品| 国产亚洲av片在线观看秒播厂| 日本与韩国留学比较| 春色校园在线视频观看| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 午夜激情福利司机影院| 你懂的网址亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| 国产成人免费无遮挡视频| 中文字幕久久专区| 久久国产乱子免费精品| 久久久久精品性色| 欧美日韩综合久久久久久| 亚洲最大成人av|