• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic properties of metamizol monohydrate in pure and binary solvents at temperatures from(283.15 to 313.15)K☆

    2017-06-01 03:31:58MingxiaGuoQiuxiangYinChangWangYaohuiHuangYangLiZaixiangZhangXiaZhangZhaoWangMeijingZhangLingZhou
    Chinese Journal of Chemical Engineering 2017年10期

    Mingxia Guo ,Qiuxiang Yin ,2,Chang Wang ,Yaohui Huang ,Yang Li,Zaixiang Zhang ,Xia Zhang ,Zhao Wang ,2,Meijing Zhang ,2,Ling Zhou ,*

    1 School of Chemical Engineering and Technology,State Key Laboratory of Chemical Engineering,Tianjin University,Tianjin 300072,China

    2 The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin,Tianjin University,Tianjin 300072,China

    1.Introduction

    Metamizol monohydrate(C13H18N3NaO5S,CAS Registration No.5907-38-0,Fig.1)is a well-known and widely used analgetic and antipyretic drug employed for multicomponent preparations.It is also one of the five active ingredients of Pentalgin-FS tablets produced by Farmstandart-Leksredstva[1].However,some problems are still urgent in the industrial producing process of metamizol monohydrate,such as the long production period,small particle size,maldistribution and long drying and filtration time.Optimizing the cooling crystallization process and determining the optimum operating curve of the high-quality products are supposed to be the best way to solve these problems[2].

    In the pharmaceutical manufacturing industry,the unit operation of crystallization plays a major role which can determine the final product qualities like crystalsize distribution,crystalform,productpurity and so on.Moreover,the design of this significant crystallization process partly relies on the solid-liquid equilibrium solubility of the product,which is deeply influenced by the temperature and the solvent components[3].Therefore,solubility,a basic data of crystallization,is very important when it comes to the control and optimization of the drug producing process.However,poor data about the thermodynamic properties of metamizol monohydrate in the pure and binary mixed solvent systems at different temperatures is available in the existing literature.

    In this work,the solubility data of metamizol monohydrate in four pure solvents(methanol,ethanol,n-propanol and isopropanol)and two binary mixed solvent systems(methanol+ethanol)and(methanol+isopropanol)was measured from 283.15 K to 313.15 K at 0.1 MPa by gravimetric method[4-9].The samples were characterized by PXRD which can help to guarantee the same crystalform during the dissolving process.The DSC analysis was also used to determine the melting point and the enthalpy fusion of metamizol monohydrate.Several classical equations were applied to correlate the solubility of metamizol monohydrate in the investigated solvent systems.Among them,the modified Apelblat equation,the CNIBS/R-K equation,the Hybrid equation and the NRTL model were applied to investigate the impact of the temperature and the influence of the solvent components on the solubility,respectively.In addition,the mixing thermodynamic properties of metamizol monohydrate solution were discussed by the NRTL model,like the enthalpy,the Gibbs energy and the entropy during the mixing process in all the discussed solvent systems.

    2.Experiment Section

    2.1.Materials

    Fig.1.Chemical structure of metamizol monohydrate.

    Metamizol monohydrate was supplied by the Shandong Xinhua Pharmaceutical Co.,Ltd.,China.Anhydrous methanol,anhydrous ethanol,isopropanol andn-propanol were purchased from Jiangtian Chemical Technique Co.,Ltd.(Tianjin,China).The purity analysis had been done by the suppliers and all chemicals were used without further purification.More detailed information about the materials used in this work has been listed in Table 1.

    2.2.Characterization of metamizol monohydrate

    To ensure that the crystal form of metamizol monohydrate remains same during the experiments,Powder X-ray Diffraction(PXRD)patterns of excess solid and dried samples of metamizol monohydrate were all measured in the tested solvents at different temperature(T=283.15 K-313.15 K)after stirring 24 h.The PXRD patterns were obtained using Cu Kαradiation(0.154 nm)on Rigaku D/max-2500(Rigaku,Japan).The samples were conducted over a 2-theta range from 2°to 50°at a scanning rate of 1 step per second.

    To determine the melting temperature and enthalpy fusion of metamizol monohydrate,a thermogravimetric/differential scanning calorimetry(Mettler-Toledo,Switzerland)was used for thermal analysis experiment under a nitrogen atmosphere.

    2.3.Determination of solubility

    The solubility of metamizol monohydrate was measured by the gravimetric method which was widely described in literature[10-12].A 50 ml cylindrical double-jacketed crystallizer was used to contain solvents,into which the excess amount of metamizol monohydrate was added.The jacketed temperature was controlled within±0.1 K by a thermostat(XOYS-2006,Nanjing Xianou Instrument Manufacturing Co.,Ltd.,China).The solid-liquid mixtures should be under stirring for 10 h,which was experimentally proved to be long enough to reach equilibrium.Then the agitation was stopped and the solution was kept still for about 4 h to make sure that the undissolved particles settled down.The upper clear saturated solution was filtered with a filter membrane(0.22 μm)and moved into a glass dish.Subsequently,the filtrate was weighed as quickly as possible and dried at 50°C until no mass change was observed.An analytical balance(type AL 204,Mettler Toledo,Switzerland)with uncertainty of±0.0001 g was used to measure all the masses including the solutions and the glass dishes in this work.Each experiment was repeated three times and the average value was used to calculate the mole fraction solubility.

    The mole fraction solubility(x1)of metamizol monohydrate in pure solvents was calculated by the following Eq.(1):

    wherem1is the mass of the solute,m2is the mass of the solvent;M1andM2are the molecular masses of solute and solvent,respectively.

    The molar fraction solubility(x1)of metamizol monohydrate in binary mixed solvent systems and the initial mole fraction(x20)of methanol in the solvent mixtures can be obtained by the following Eqs.((2)-(3)):

    wherem1,m2are the mass of metamizol monohydrate and methanol,respectively.m3represents the mass of ethanol or isopropanol which based on the choice of the solvents in the experiments.M1,M2andM3are the corresponding molecular mass of them.

    3.Results and Discussion

    3.1.Material characterization

    Fig.2.Power X-ray diffraction pattern of metamizol monohydrate(T=303.15 K,methanol+ethanol,(=0.5)):a,raw material;b,solid filtered after stirring;c,dried product;d,anhydrous analgin.

    Table 1Properties of materials used in this work

    In this work,the PXRD pattern of purchased material as well as the sediments and dried sediments were all tested and the results turned out to be as same as the counterpart of metamizol monohydrate.As shown in Fig.2,we take the PXRD patterns of the metamizol monohydrate,solid filtered in solution after stirring 24 h,dried product in the binary solvents(methanol+ethanol,=0.5))at temperatureT=303.15 K as an example.All the PXRD patterns of the tested materials have the same characteristic peaks of metamizol monohydrate.The PXRD pattern of anhydrous analgin which is the dehydrated product of metamizol monohydrate,obtained from the single crystal structure of anhydrous analgin with Mercury 3.3[13],is also showed in Fig.2.It confirms that the solute used in this study is metamizol monohydrate and there is no polymorphism,amorphous or dehydration during the process.

    As can be seen from the TGA analysis(Fig.3),there are two stages in the thermal decomposition process.The first one corresponds to crystal water loss which is about4.8%and the second step from 510.15 K with a weight loss because of the decomposition.The DSC analysis indicates that the exothermic and endothermic peaks both appear from 505 K to 525 K which suggests that metamizol monohydrate melt with decomposition.Therefore,the thermal analysis experiment cannot provide the melting temperature,neither nor the enthalpy of fusion of metamizol monohydrate.

    Fig.3.Thermal analysis(TGA/DSC)of metamizol monohydrate.The solid and dashed lines are the DSC and TGA curves,respectively.

    In this study,the melting temperature and the enthalpy of fusion of metamizol monohydrate have been estimated by a method called group-contribution which has been proved to be accurate enough to determine these properties[14].In the determination of melting properties for more than 2000 materials reported in papers using this method,the absolute errors of melting temperature and fusion enthalpy are less than 33.87 K and 4.160 kJ·mol-1,respectively[14].The melting properties of metamizol monohydrate can be estimated by Eqs.(4)and(5).

    whereTm0andHfus0are the parameters,the values of which are 147.45 K and-2.806 kJ·mol-1,respectively.The contribution of the first-order group,second-order group and third-order group for the melting temperature is expressed byTm1i,Tm2jandTm3k,respectively.With respect to the enthalpy of fusion,the contribution of these groups is represented byHfus1i,Hfus2jandHfus3k,respectively.In these equations,the values ofTm1i,Tm2j,Tm3k,Hfus1i,Hfus2jandHfus3kof all the investigated groups can be got through literature[14].With this group-contribution method,the estimated melting point of metamizol monohydrate is 507.30 K and the predicted fusion enthalpy is 17.56 kJ·mol-1.

    3.2.Solubility of metamizol monohydrate in four pure solvents

    The experimental solubility of metamizol monohydrate in the pure solvents from 283.15 K to 313.15 K is shown in Table 2 and plotted against temperature in Fig.4.It can be seen clearly from the results that the solubility of metamizol monohydrate in methanol,ethanol,n-propanol and isopropanol all increase slowly with the rise of the temperature.The interesting thing is that the dissolving capacity order of the solvents for metamizol monohydrate is as same as the polarity order of these solvents,which can be arranged as methanol> ethanol>n-propanol>isopropanol in literature[15,16].This coincidence means that the polarity of solvents must play a major role in affecting the solubility of metamizol monohydrate.

    In order to research the influence factors of solubility deeply,different models has been introduced to correlate the solubility data.The average relative deviation percentage(ARD)is a useful index which can not only calculate the differences between the experimental and calculated data but can also help us to choose the best model.TheARDis defined as:

    Table 2Experimental solubility of metamizol monohydrate in four pure solvents at different temperatures(0.1 MPa)

    Fig.4.Experimental solubility data of metamizol monohydrate in four pure solvents:■,methanol;▲,ethanol;? n-propanol;●,isopropanol.The solid lines represent the correlated solubility by a)the modified Apelblat model and b)the NRTL model.

    whereNis the number of the experimental points.x1,iandare the experimental and the calculated solubility value,respectively.

    MATLAB software,including many correlated equations,was used to correlate the solubility of metamizol monohydrate.Among them,the modified Apelblat equation,a semi-empirical model,has three parameters which is widely used in correlating solubility data[17-20]:

    wherex1represents the mole fraction solubility of solute.Tis the absolute experimental temperature.AandBreflect the non-ideality of the real solution because of the variation of activity coefficient in the solution,whileCmeans the effect of temperature on the fusion enthalpy.A,B,andCare all empirical constants.

    The correlated solubility data of analgin by modified Apelblat equation is represented in Fig.4a).The values of correlated model parameters and average relative deviation(ARD)are given in Table 3.These results show that the correlation equation in this work can give good correlation results,which means that the solubility has temperature dependence in these dissolving processes.

    Table 3Parameters and ARD s of the modified Apelblat equation about the solubility of metamizol monohydrate in four pure solvents(P=0.1 MPa)

    The activity coefficient(γ)was introduced to estimate the thermodynamic properties in real solutions,which can be calculated through the local composition model-NRTL model.The correlated solubility data,the enthalpy,the Gibbs energy and the entropy of the mixing process can be also obtained from this model[21].At phase equilibrium including solid and liquid,the fugacity of the solute in the solid phase and that in the liquid phase must be the same one,which can be interpreted as the following Eq.(8):

    Adopting some assumptions,the equation can be expressed as follows:

    where ΔfusH(enthalpy of fusion)andTm(melting point)were obtained using the group-contribution method mentioned in Section 3.1.

    The values of activity coefficient γican be calculated from the following equation in NRTL model:

    whereGij,Gji,τijand τjiare the parameters of this model.Their values can be calculated as:

    whereais an adjustable empirical constant.τ is a constant used to express the nonrandomness of the mixture.gmeans the Gibbs energy of intermolecular interaction.The calculated solubility values of metamizol monohydrate by NRTL model are plotted in Fig.4b),and the model parameters are listed in Table 4.These results indicate that the good correlation results can be obtained from NRTL model,which means that it can be used in the analysis of the thermodynamic properties during the mixing process in the next section.

    Table 4Parameters for the NRTL model in four pure solvents(P=0.1 MPa)

    3.3.The thermodynamic properties of mixing in pure solvents

    The dissolving process can be divided into three hypothetic steps[22]:

    The fusion of the solute,the cooling of the liquid solute and the mixing of the liquid solute constitute this dissolving process.As for the crystal structure of metamizol monohydrate are supposed to determine the fusion properties,the major determined factor to explore this whole dissolving process must be the mixing properties of the solution.

    The following equations explain how to calculate the thermodynamic properties of mixing process in four pure solvents.The mixing Gibbs free energy(ΔGm),the mixing enthalpy(ΔHm)and the mixing entropy(ΔSm)can be obtained by:

    whereMcan be substituted byG,H,andS.ΔMidis the mixing property of the ideal solution,whileMEis the excess property.

    The ΔGm,ΔHmand ΔSmof the ideal solution are calculated by[23]:

    wherexiis the mole fraction of every componentin the solution.n is the total components of the solution.n=2 or 3 means the dissolving process happened in pure solvents or in the binary mixed solvent systems respectively.

    The excess mixing Gibbs energy(ΔGE),mixing entropy(ΔSE)and mixing enthalpy(ΔHE)are calculated as[24]:

    where γiis the activity coefficient of every component in the solution.n=2 or 3 means the dissolving process happened in pure solvents or in the binary mixed solvent systems respectively.

    The calculated thermodynamic properties of mixing of metamizol monohydrate are shown in Table 5.The negative values of every ΔGmmean that the mixing process is all spontaneous in the pure solvents used in this work.However,the values of ΔSmare all positive,which illustrates that this process is entropically favorable.Furthermore,the mixing process in n-propanol and isopropanol is endothermic according to the positive values of ΔHmwhile the counterpart in methanol and ethanol is exothermic based on the negative values of ΔHm.

    3.4.Solubility of metamizol monohydrate in binary mixed solvent systems

    The solubility of metamizol monohydrate in two binary mixed solvent systems containing good solvent and poor solvent was measured to meet the demand of controlling and optimizing the drug producingprocess.As a result,the experimental solubility data of metamizol monohydrate in the binary mixed solvent systems including(methanol+ethanol)and(methanol+isopropanol)from 283.15 K to 313.15 K under atmospheric pressure(0.1 MPa)are shown in Tables 6 and 7 and plotted in Figs.5-8 respectively.From the solubility data,we can easily find that the solubility trends conform to the famous rule “dissolve like dissolve”[25].What's more,the solubility of metamizol monohydrate increases with the rise of the methanol composition in binary mixed solvent systems at a constant temperature.Additionally,although the solvent composition kept unchanged,the solubility of metamizol monohydrate increases with the rise of the temperature.

    Table 5The thermodynamic properties of mixing for solution with four pure solvents from 283.15 K to 313.15 K(P=0.1 MPa)

    The modified Apelblat equation,the CNIBS/R-K model,the Hybrid model and the NRTL model were all applied to correlate the solubility of metamizol monohydrate in the binary mixed solvent systems including(methanol+ethanol)and(methanol+isopropanol).And the calculated solubilities are all plotted in Figs.5-8,respectively.The modified Apelblat equation was applied to explain the relationship between temperature and solubility;the CNIBS/R-K model was used to explain the relationship between the solvent component and the isothermal solubility;the Hybrid model was supposed to illustrate the relationship among solubility,temperature and solvent component;the NRTL model was applied to correlate the solubility and the thermodynamic properties.

    The values of correlated model parameters and average relative deviation(ARD)of modified Apelblat equation mentioned about the solubility of metamizol monohydrate in the component solvent are given in Table 8.The data shows that this modified equation in binarymixed solventsystems gives good correlation results justlike that in the pure solvents,indicating that the solubility has temperature dependence,either.

    Table 6Mole fraction solubility(x1)of metamizol monohydrate in the binary(methanol(2)+ethanol(3))solvent mixtures at different temperatures from 283.15 K to 313.15 K(P=0.1 MPa).

    The CNIBS/R-K model was introduced to correlate the solubility of metamizol monohydrate in the two binary mixed solvent systems[26,27],which can give us a clearly explain about the effect of solvent component on the solubility ability.The equation can be expressed as:

    whereandexpress the initial mole fraction of methanol and the initial mole fraction of ethanol(isopropanol)in the binary mixed solvent system methanol+ethanol(methanol+isopropanol)without solute metamizol monohydrate.Andx1denotes the mole fraction solubility of the metamizol monohydrate,while(x1)iis the mole fraction solubility of the metamizol monohydrate inpure solvent I;sirepresents the model parameter;nrepresents the number of “curve- fit”parameters.In the two binary mixed solvent systems,nshould be assigned a value as two,then the equation can be simplified to the following equation whenreplaced with(1-)in Eq.(20):

    Table 7Mole fraction solubility(x1)of metamizol monohydrate in the binary(methanol(2)+isopropanol(3))solvent mixtures at different temperatures from 283.15 K to 313.15 K(P=0.1 MPa).

    The model parameters of the(NIBS)/Redlich-Kister model and the calculatedARDs in this correlation are listed in Table 9.The result illustrates that this model is very suitable to correlate the experimental solubility,showing that the solubility data has a great dependence on the solvent component.

    Fig.5.Mole fraction solubility(x1)of metamizol monohydrate versus mole fraction of methanolin methanol(2)+ethanol(3)binary mixed solvent systems from 283.15 K to 313.15 K(P=0.1 MPa):■,T=283.15 K; ,T=288.15 K; ,T=293.15 K; ,T=298.15 K;,T=303.15 K;,T=308.15 K;,T=313.15 K.The solid lines represent the correlated solubility by the CNIBS/R-K model.

    Fig.6.Mole fraction solubility(x1)of metamizol monohydrate versus mole fraction of methanolin methanol(2)+isopropanol(3)binary mixed solvent systems from 283.15 K to 313.15 K(P=0.1 MPa):■,T=283.15 K; ,T=288.15 K; ,T=293.15 K; ,T=298.15 K;,T=303.15 K;,T=308.15 K;,T=313.15 K.The solid lines represent the correlated solubility by the CNIBS/R-K model.

    Taking the in fluence of temperature and solvent component on the solubility of metamizol monohydrate into consideration,the Hybrid model,a combination of the modified Apelblat equation and Jouyban-Acree model,was used to correlate the solubility in two binary mixed solvent systems from 283.15 K to 313.15 at 0.1 MPa[28].The hybrid model can be expressed as:

    Fig.7.Mole fraction solubility(x1)of metamizol monohydrate versus temperature T in methanol(2)+ethanol(3)binary mixed solvent systems from 283.15 K to 313.15 K(P=0.1 MPa):■,=0;,=0.1; ,=0.2; ,=0.3;,=0.4;,=0.5;,=0.6;,=0.7;,=0.8;,=0.9;=1.The solid lines represent the correlated solubility by a)the modified Apelblat model,b)the Hybrid model and c)the NRTL model.

    Fig.8.Mole fraction solubility(x1)of metamizol monohydrate versus temperature T in methanol(2)+isopropanol(3)binary mixed solvent systems from 283.15 K to 313.15 K(P=0.1 MPa):■,=0;,=0.1; ,=0.2; ,=0.3;,=0.4;,=0.5;,=0.6;,=0.7;,=0.8; ,=0.9;,=1.The solid lines represent the correlated solubility by a)the modified Apelblat model,b)the Hybrid model and c)the NRTL model.

    wherex1,andexpress the mole fraction of metamizol monohydrate,the initial mole fraction of methanol and the initial mole fraction of ethanol or isopropanol,respectively.Jiis supposed to be a constant.According to the modified Apelblat equation,(x1)2and(x1)3can be replaced by the following Eqs.((22)-(23)):

    Table 9Parameters of the CNIBS/R-K equation for metamizol monohydrate in different binary mixed solvent systems at the temperature from 283.15 K to 313.15 K(P=0.1 MPa)

    Table 10Parameters of the Hybrid model for metamizol monohydrate in different binary solvent systems at the temperature from 283.15 K to 313.15 K(P=0.1 MPa)

    Table 11Parameters of the NRTL model for metamizol monohydrate in different binary solvent systems at the temperature from 283.15 K to 313.15 K(P=0.1 MPa)

    Replacingwith(1-),a new equation can be obtained:

    whereA1toA9are the model parameters.

    The model parameters and the calculatedARDs of this model are listed in Table 10.The results illustrate that this mixed model is good to correlates the solubility of metamizol monohydrate in the measured binary mixed solvent systems at different solvent component and temperatures,the range of which is confined from 283.15 K to 313.15 K.

    The activity coefficients of metamizol monohydrate(γi)in the binary mixed solvent systems including(methanol+ethanol)and(methanol+isopropanol)were also obtained by the NRTL modelmentioned in Section 3.2.The γiin the binary mixed solvent systems can be expressed as:

    Table 12The mixing thermodynamic properties of metamizol monohydrate in binary solvent mixtures(methanol+ethanol)from 283.15 K to 313.15 K(P=0.1 MPa)

    whereGij,Gik,Gji,Gjk,Gki,Gkj,τij,τik,τji,τjk,τkiand τkjare the model parameters.Their definition is as same as the counterparts in Section 3.2.The binary NRTL parameters can be used for the ternary system prediction,especially in the vapor-liquid equilibria systems[29-31].However,a considerable deviation often exists in solid-liquid equilibrium when using this way to predictthe solubility for the ternary system's complexity[32-35].In order to avoid that deviation,people even developed some revised NRTL equation like NRTL-SAC model to predict ternary solubility depending on the binary parameters to eliminate error as far as possible[34,35].Here,we tried to predict the solubility for the ternary systems using the binary NRTL parameters.However,theARDs were both higher than 20%,which revealed that it was not suitable here to predict the ternary solubility by the binary system parameters in these systems.So,we correlated the solubility data using parameters came from ternary systems for their good correlated results.The optimized fitting model parameters were listed in Table 11.

    3.5.The thermodynamic properties of mixing in binary mixed solvent systems

    The thermodynamic properties of the mixing process in the two binary mixed solvent systems were calculated by Eq.(13)and represented in Tables 12 and 13 respectively.It can be seen that ΔGm< 0 and ΔSm>0 in both solution systems with binary solvents,indicating that the mixing process in the two binary mixed solvent systems(methanol+ethanol)and(methanol+isopropanol)is spontaneous and entropically favorable.What's more,the mixing processes are both exothermic because of the negative values of the ΔHm.

    4.Conclusions

    In this work,under the atmospheric pressure(0.1 MPa),the solubility of metamizol monohydrate in four pure solvents(methanol,ethanol,n-propanol and isopropanol)and two binary mixed solvent systems(methanol+ethanol)and(methanol+isopropanol)were measured by gravimetric method from 283.15 K to 313.15 K.

    In four pure solvents,the solubility increases with the increasing of the temperature.What's more,under a constant temperature,the dissolving capacity of these solvents corresponded with the polarity order which is methanol>ethanol>n-propanol>isopropanol.The modified Apelblat equation and the NRTL model are verified that both have the ability to correlate the experimental solubility of metamizol monohydrate with the lowARDvalues.The second model also can be used to predict the thermodynamic properties in the four pure solvents.

    In the binary mixed solvent systems,the solubility of metamizol monohydrate also shows temperature dependence just like that in the pure solvents.In addition,at a given temperature,the solubility of the metamizol monohydrate is mainly influenced by the different solvent components of the binary solvents.What's more,the results show that the experimental data can be well correlated by several classical models,like the modified Apelblatequation,the CNIBS/R-K equation,the Hybrid model and the NRTL model.

    Table 13The mixing thermodynamic properties of metamizol monohydrate in binary solvent mixtures(methanol+isopropanol)from 283.15 K to 313.15 K(P=0.1 MPa)

    Furthermore,the thermodynamic properties of the mixing process in four pure solvents and two binary mixed solvent systems were all obtained by NRTL model in order to get a deep understanding about the solubility.It turns out that the mixing process of metamizol monohydrate in all tested solvent systems is always spontaneous and entropically favorable,which has instructional function to the further study about the crystallization of metamizol monohydrate.

    Nomenclature

    A,B,Cempirical parameter for the modified Apelblat equation

    Ai(i=1-9)empirical parameters for Jouyban-Acree equation

    ARDaverage absolute deviation between experimental and calculated solubility

    aijthe adjustable empirical constant for the NRTL model

    Bi(i=1-5)empirical parameters for CNIBS/R-K equation

    GEexcess Gibbs energy of solution,J·mol-1

    ΔGmthe mixing Gibbs energy of solution,J·mol-1

    the mixing Gibbs energy of ideal solution,J·mol-1

    Δgijparameters for the NRTL model,J·mol-1

    HEexcess enthalpy of solution,J·mol-1

    ΔHmthe mixing enthalpy of solution,J·mol-1

    the mixing enthalpy of ideal solution,J·mol-1

    M1the molecular mass of metamizol monohydrate,g·mol-1

    M2the respective molecular mass of pure solvents(methanol,ethanol,n-propanol and isopropanol),g·mol-1

    M3the respective molecular mass of the second solventin binary mixed solvent systems(ethanol or isopropanol),g·mol-1

    m1the mass of metamizol monohydrate,g

    m2the mass of pure solvents(methanol,ethanol,n-propanoland isopropanol),g

    m3the mass of the second solvent in binary mixed solvent systems(ethanol or isopropanol),g

    Nnumber of experimental points in each system

    ppressure,MPa

    Rgas constant,J·mol-1·K-1

    SEexcess entropy of solution,J·mol-1·K-1

    ΔSmthe mixing entropy of solution,J·mol-1·K-1

    the mixing entropy of ideal solution,J·mol-1·K-1

    Tabsolute temperature,K

    x1experimental solubility of the solute,mol·mol-1

    the initial mole fraction of methanol in the binary mixed solvent systems,mol·mol-1

    γithe activity coefficient at equilibrium

    [1]G.B.Golubitskii,A.V.Kostarnoi,E.V.Budko,V.M.Ivanov,E.M.Basova,Decomposition of Analgin in aqueous acetonitrile solutions,J.Anal.Chem.61(10)(2006)997-1001.

    [2]W.O.Mar,J.U.Irich,Solid liquid equilibrium,metastable zone,and nucleation parameters of the oxalic acid-water system,Cryst.Growth Des.6(8)(2006)1927-1930.

    [3]H.Wu,L.Dang,H.Wei,Solid-liquid phase equilibrium of nicotinamide in different pure solvents:measurements and thermodynamic modeling,Ind.Eng.Chem.Res.53(2014)1707-1711.

    [4]D.Jia,X.Zhang,J.Li,C.Li,Measurement and correlation of the solubility of N-(phosphonomethyl)iminodiacetic acid in different organic solvents,Fluid Phase Equilib.382(2014)54-58.

    [5]G.Wang,Y.Wang,X.Hu,Y.Ma,H.Hao,Determination and correlation of cefoperazone solubility in different pure solvents and binary mixture,Fluid Phase Equilib.361(2014)223-228.

    [6]Z.Chen,J.Z,X.L,S.M,Solubility measurement and correlation of the form A of ibrutinib in organic solvents from 278.15 to 323.15 K,J.Chem.Thermodyn.103(2016)342-348.

    [7]H.Wang,Y.Wang,G.Wang,J.Zhang,H.Hao,Q.Yin,Solid-liquid equilibrium of sulbactam in pure solvents and binary solvent mixtures,Fluid Phase Equilib.382(2014)197-204.

    [8]Y.Wang,Q.Yin,X.Sun,Y.Bao,J.Gong,B.Hou,Y.Wang,M.Zhang,C.Xie,H.Hao,Measurement and correlation of solubility of thiourea in two solvent mixtures fromT=(283.15 to 313.15)K,J.Chem.Thermodyn.94(2016)110-118.

    [9]D.Han,X.Li,H.Wang,Determination and correlation of pyridoxine hydrochloride solubility in different binary mixtures at temperatures from(278.15 to 313.15)K,J.Chem.Thermodyn.94(2016)138-151.

    [10]P.Cui,Q.Yin,J.Gong,Solubility of candesartan cilexetil in different solvents at various temperatures,J.Chem.Eng.Data56(3)(2011)658-660.

    [11]X.Yang,X.Wang,C.Ching,Solubility of form α and form γ of glycine in aqueous solutions,J.Chem.Eng.Data53(5)(2008)1133-1137.

    [12]Y.Yin,Y.Bao,Z.Gao,Solubility of cefotaxime sodium in ethanol+water mixtures under acetic acid conditions,Chem.Eng.Data59(6)(2014)1865-1871.

    [13]T.P.Singh,T.N.Bhat,M.Vijayan,Crystallization and crystal data of acetaminophen and metamizol,Curr.Sci.India42(11)(1973)384.

    [14]J.Marrero,R.Gani,Group-contribution based estimation of pure component properties,Fluid Phase Equilib.183(2001)183-208.

    [15]I.M.Smallwood,Handbook of Organic Solvent Properties,Halsted Press,London,1996.

    [16]C.Reichardt,T.Welton,Solvents and Solvent Effects in Organic Chemistry,John Wiley&Sons,New York,2011.

    [17]A.Apelblat,E.Manzurola,Solubilities ofo-acetylsalicylic,4-aminosalicylic,3,5-dinitrosalicylic,andp-toluic acid,and magnesium-DL-aspartate in water fromT=(278 to 348)K,J.Chem.Thermodyn.31(1999)85-91.

    [18]A.Apelblat,E.Manzurola,Solubilities of l-glutamic acid,3-nitrobenzoic acid,p-toluic acid,calcium-l-lactate,calcium gluconate,magnesium-dl-aspartate,and magnesium-l-lactate in water,J.Chem.Thermodyn.34(2002)1127-1136.

    [19]A.Xu,R.Xu,J.Wang,Solubility determination and thermodynamic modelling of terephthaldialdehyde in ten organic solvents fromT=(273.15 to 318.15)K and mixing properties of solutions,J.Chem.Thermodyn.102(2016)188-198.

    [20]J.Xu,S.Han,Y.Cong,Thermodynamic functions of 1-methyl-4-(methylsulfonyl)benzene solubility in nine organic solvents fromT=(278.15 to 318.15)K,J.Chem.Thermodyn.103(2016)234-243.

    [21]H.Renon,J.Prausnitz,Local compositions in thermodynamic excess functions for liquid mixtures,AIChE14(1968)135-144.

    [22]M.A.Ruidiaz,D.R.Delgado,F.Martínez,Y.Marcus,Solubility and preferential solvation of indomethacin in 1,4-dioxane+water solvent mixtures,Fluid Phase Equilib.299(2010)259-265.

    [23]J.M.Smith,H.C.V.Ness,M.M.Abbott,Introduction to Chemical Engineering Thermodynamics,McGraw-Hill,New York,2001.

    [24]S.M.Walas,Phase Equilibria in Chemical Engineering,Butterworth-Heinemann,New York,1985.

    [25]A.J.Q.Parker,The effects of solvation on the properties of anions in dipolar aprotic solvents,Rev.Chem.Soc.16(2)(1962)163-187.

    [26]W.E.Acree Jr,Mathematical representation of thermodynamic properties:Part 2.Derivation of the combined nearly ideal binary solvent(NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model,Thermochim.Acta198(1992)71-79.

    [27]Y.Hu,Y.Kai,Z.Cao,J.Li,W.Yang,Measurement and correlation solubility and mixing properties of dimethyl succinylsuccinate in pure and mixture organic solvents from(278.15 to 333.15)K,Fluid Phase Equilib.354(2013)259-264.

    [28]D.R.Delgado,G.A.Rodríguez,A.R.Holguín,F.Martínez,A.Jouyban,Solubility of sulfapyridine in propylene glycol+water mixtures and correlation with the Jouyban-Acree model,Fluid Phase Equilib.341(2013)86-95.

    [29]K.Kurihara,M.Nakamichi,K.Kojima,Isobaric vapor-liquid equilibria for methanol+ethanol+water and the three constituent binary systems,J.Chem.Eng.Data38(1993)446-449.

    [30]K.Bitchikh,A.H.Meniai,W.Louaer,Measurement and prediction of binary and ternary liquid-solid equilibria of pharmaceutical and food systems,Energy Procedia18(2)(2012)1152-1164.

    [31]J.Wang,Z.Bao,Investigation on vapor-liquid equilibrium for 2-propanol+1-butanol+1-pentanol at 101.3 kPa,Fluid Phase Equilib.341(2013)30-34.

    [32]H.Lin,Y.Chou,F.Wu,M.Lee,Solid-liquid equilibria of closely boiling compounds of 4-methoxyphenol and catechol with p-cresol,Fluid Phase Equilib.220(2004)71-76.

    [33]A.Arce,M.Blanco,J.M.Ageitos,I.Vidal,Analysis of the relationship between ternary mixtures and their binary sub-systems as represented by the UNIQUAC and NRTL models,Thermochim.Acta.261(1995)59-68.

    [34]C.Chen,Y.Song,Solubility modeling with a nonrandom two-liquid segment activity coefficient model,Ind.Eng.Chem.Res.43(26)(2004)8354-8362.

    [35]P.B.Kokitkar,E.C.Plocharczyk,C.Chen,Modeling drug molecule solubility to identify optimal solvent systems for crystallization,Org.Process Res.Dev.12(2)(2008)249-256.

    色婷婷av一区二区三区视频| 国产精品亚洲av一区麻豆| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 精品一区二区三卡| 天堂中文最新版在线下载| 日本wwww免费看| 黑人欧美特级aaaaaa片| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 黄色视频,在线免费观看| 免费观看a级毛片全部| 男女高潮啪啪啪动态图| 亚洲专区国产一区二区| 一区二区日韩欧美中文字幕| 最近最新免费中文字幕在线| 中文字幕最新亚洲高清| 777久久人妻少妇嫩草av网站| 亚洲国产毛片av蜜桃av| 久久99一区二区三区| 最新在线观看一区二区三区| 热99国产精品久久久久久7| 精品人妻一区二区三区麻豆| 91成年电影在线观看| 如日韩欧美国产精品一区二区三区| 国产高清videossex| 欧美乱码精品一区二区三区| 搡老岳熟女国产| 国产精品av久久久久免费| 人人妻人人澡人人看| 精品一区二区三区av网在线观看 | 精品国产超薄肉色丝袜足j| 久久久欧美国产精品| 电影成人av| 午夜激情久久久久久久| av免费在线观看网站| 精品视频人人做人人爽| 久久精品成人免费网站| 天堂8中文在线网| 丰满饥渴人妻一区二区三| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 91大片在线观看| 亚洲欧美日韩另类电影网站| 深夜精品福利| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频 | 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 免费一级毛片在线播放高清视频 | 国产一区二区激情短视频 | 国产xxxxx性猛交| 51午夜福利影视在线观看| 久久久久视频综合| 欧美日韩精品网址| 亚洲国产精品999| 久久久久国内视频| 国产99久久九九免费精品| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区av网在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 精品福利永久在线观看| 一级毛片电影观看| 妹子高潮喷水视频| 久久久国产精品麻豆| 日本一区二区免费在线视频| 中文字幕精品免费在线观看视频| avwww免费| 母亲3免费完整高清在线观看| 美女扒开内裤让男人捅视频| 不卡一级毛片| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 午夜福利视频精品| 亚洲伊人色综图| 亚洲人成77777在线视频| 午夜老司机福利片| 老司机亚洲免费影院| 无遮挡黄片免费观看| 免费女性裸体啪啪无遮挡网站| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| tube8黄色片| 永久免费av网站大全| 美女扒开内裤让男人捅视频| 不卡一级毛片| 女人久久www免费人成看片| 热99re8久久精品国产| 精品少妇内射三级| 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 国产精品一二三区在线看| 亚洲国产精品999| 老司机影院成人| 国产在线一区二区三区精| 日韩视频一区二区在线观看| 成人三级做爰电影| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 2018国产大陆天天弄谢| 一边摸一边做爽爽视频免费| 大香蕉久久网| 日韩大片免费观看网站| 不卡av一区二区三区| 在线观看免费视频网站a站| 母亲3免费完整高清在线观看| 国产人伦9x9x在线观看| 成人av一区二区三区在线看 | 国产精品99久久99久久久不卡| 久久毛片免费看一区二区三区| 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久 | 伊人亚洲综合成人网| www.熟女人妻精品国产| 18禁观看日本| 中文字幕人妻丝袜制服| 午夜激情久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 精品国产一区二区三区久久久樱花| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 国产精品99久久99久久久不卡| 久久av网站| 麻豆国产av国片精品| 大片免费播放器 马上看| 亚洲国产毛片av蜜桃av| 亚洲精品久久久久久婷婷小说| 精品国内亚洲2022精品成人 | www日本在线高清视频| 久久精品aⅴ一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 亚洲av日韩在线播放| 国产高清videossex| 美女视频免费永久观看网站| 欧美xxⅹ黑人| av在线播放精品| 亚洲成人免费av在线播放| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 汤姆久久久久久久影院中文字幕| 国产99久久九九免费精品| av在线app专区| cao死你这个sao货| 日日爽夜夜爽网站| 午夜福利一区二区在线看| 久久性视频一级片| 免费日韩欧美在线观看| 十八禁网站网址无遮挡| 久久久国产一区二区| 国产精品国产三级国产专区5o| 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 大片电影免费在线观看免费| 午夜视频精品福利| 亚洲精华国产精华精| 啦啦啦中文免费视频观看日本| 91成人精品电影| 欧美精品人与动牲交sv欧美| 少妇猛男粗大的猛烈进出视频| 国产精品麻豆人妻色哟哟久久| 麻豆av在线久日| 一级毛片女人18水好多| 在线观看免费视频网站a站| 制服诱惑二区| 水蜜桃什么品种好| 俄罗斯特黄特色一大片| 久久久久久久久免费视频了| 国产xxxxx性猛交| 久久九九热精品免费| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| tocl精华| 亚洲欧美精品综合一区二区三区| 国产男女超爽视频在线观看| 精品第一国产精品| 精品亚洲成a人片在线观看| a级毛片在线看网站| 丁香六月欧美| 国产精品国产av在线观看| 波多野结衣一区麻豆| 又黄又粗又硬又大视频| 大香蕉久久网| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲| 中文欧美无线码| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 精品国产超薄肉色丝袜足j| 精品国产一区二区三区久久久樱花| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 亚洲av欧美aⅴ国产| 日日夜夜操网爽| 日韩精品免费视频一区二区三区| 操美女的视频在线观看| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 99国产精品一区二区三区| 亚洲第一青青草原| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 亚洲欧美精品自产自拍| 黄色a级毛片大全视频| 午夜影院在线不卡| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 又大又爽又粗| 男人爽女人下面视频在线观看| 欧美日本中文国产一区发布| 久久久精品94久久精品| 日本五十路高清| 欧美日韩成人在线一区二区| 精品福利观看| 国产亚洲欧美在线一区二区| 黄片播放在线免费| 考比视频在线观看| 一级片'在线观看视频| 亚洲精品国产av蜜桃| 亚洲黑人精品在线| 精品久久久精品久久久| 视频区欧美日本亚洲| 正在播放国产对白刺激| 少妇精品久久久久久久| 极品人妻少妇av视频| 韩国高清视频一区二区三区| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9 | 国产成人a∨麻豆精品| 80岁老熟妇乱子伦牲交| 国产男人的电影天堂91| 女人高潮潮喷娇喘18禁视频| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 国产成人系列免费观看| 国产精品成人在线| av欧美777| 国产欧美日韩综合在线一区二区| 动漫黄色视频在线观看| 中国美女看黄片| 一本综合久久免费| 老司机影院毛片| 91老司机精品| 国产精品香港三级国产av潘金莲| 各种免费的搞黄视频| 每晚都被弄得嗷嗷叫到高潮| 中文欧美无线码| 国产精品久久久久久精品电影小说| 中文字幕人妻丝袜一区二区| 91大片在线观看| 欧美在线黄色| 亚洲成国产人片在线观看| 久久久久久人人人人人| 国产色视频综合| 岛国在线观看网站| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 啦啦啦免费观看视频1| 精品国产一区二区久久| 亚洲专区中文字幕在线| 久9热在线精品视频| 黄色视频在线播放观看不卡| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 国产一区二区激情短视频 | 国产男女超爽视频在线观看| 91精品伊人久久大香线蕉| 日本精品一区二区三区蜜桃| 成人影院久久| 国产xxxxx性猛交| 日韩制服骚丝袜av| 18禁观看日本| 99热国产这里只有精品6| 麻豆乱淫一区二区| 最新的欧美精品一区二区| www日本在线高清视频| 久久国产精品大桥未久av| 我的亚洲天堂| 久久av网站| 亚洲欧洲日产国产| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面 | 亚洲精品美女久久av网站| 夫妻午夜视频| 久久精品熟女亚洲av麻豆精品| 亚洲免费av在线视频| 亚洲精品国产av蜜桃| 亚洲美女黄色视频免费看| 久热爱精品视频在线9| 欧美xxⅹ黑人| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 久久青草综合色| 黄片小视频在线播放| 国产精品欧美亚洲77777| tube8黄色片| 国产一区二区在线观看av| 国产成人欧美| 男人操女人黄网站| 蜜桃国产av成人99| 波多野结衣一区麻豆| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 中亚洲国语对白在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 91精品伊人久久大香线蕉| 久久久久精品人妻al黑| 男女高潮啪啪啪动态图| 精品亚洲乱码少妇综合久久| 午夜福利在线观看吧| 黄色视频不卡| 欧美日韩一级在线毛片| 亚洲va日本ⅴa欧美va伊人久久 | 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 午夜91福利影院| 国产伦理片在线播放av一区| 久久人妻福利社区极品人妻图片| 欧美 亚洲 国产 日韩一| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 蜜桃在线观看..| 男人操女人黄网站| 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 亚洲黑人精品在线| 窝窝影院91人妻| 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 午夜福利影视在线免费观看| 久久久欧美国产精品| 久久这里只有精品19| 狂野欧美激情性bbbbbb| 女人久久www免费人成看片| 欧美另类亚洲清纯唯美| 美女视频免费永久观看网站| 在线看a的网站| xxxhd国产人妻xxx| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频 | 少妇裸体淫交视频免费看高清 | 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 免费日韩欧美在线观看| 伊人亚洲综合成人网| 久久久久网色| 老鸭窝网址在线观看| 9热在线视频观看99| 国产福利在线免费观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 超碰成人久久| 久久99一区二区三区| 国产老妇伦熟女老妇高清| 国产成人精品无人区| a级毛片黄视频| 亚洲av欧美aⅴ国产| 国产精品一区二区精品视频观看| 亚洲精品久久久久久婷婷小说| 午夜两性在线视频| 中文欧美无线码| 国产一级毛片在线| 久久久精品国产亚洲av高清涩受| 国产亚洲av片在线观看秒播厂| e午夜精品久久久久久久| 国产野战对白在线观看| 亚洲第一欧美日韩一区二区三区 | 精品少妇黑人巨大在线播放| 国产av国产精品国产| 美女高潮到喷水免费观看| 久久 成人 亚洲| 人人妻人人澡人人爽人人夜夜| 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区 | 午夜福利一区二区在线看| 高清在线国产一区| 亚洲久久久国产精品| 脱女人内裤的视频| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 亚洲七黄色美女视频| www日本在线高清视频| cao死你这个sao货| 亚洲熟女毛片儿| 久久九九热精品免费| 悠悠久久av| 国产成人av教育| 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 国产精品香港三级国产av潘金莲| 国产高清国产精品国产三级| 久久久水蜜桃国产精品网| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区在线臀色熟女 | 精品免费久久久久久久清纯 | 99re6热这里在线精品视频| 国产区一区二久久| 啦啦啦啦在线视频资源| 亚洲激情五月婷婷啪啪| 欧美亚洲日本最大视频资源| 黄色片一级片一级黄色片| 国产深夜福利视频在线观看| 大码成人一级视频| 久久久久久亚洲精品国产蜜桃av| 欧美精品高潮呻吟av久久| 一级片'在线观看视频| 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 欧美乱码精品一区二区三区| 亚洲黑人精品在线| 另类精品久久| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲成国产av| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 人人妻人人添人人爽欧美一区卜| 一个人免费在线观看的高清视频 | 成人亚洲精品一区在线观看| 欧美国产精品va在线观看不卡| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 日韩欧美国产一区二区入口| 国产精品亚洲av一区麻豆| 久久精品熟女亚洲av麻豆精品| 制服人妻中文乱码| 黄色视频不卡| 超碰成人久久| 国产成人影院久久av| 婷婷成人精品国产| 桃花免费在线播放| 在线观看免费视频网站a站| 成人18禁高潮啪啪吃奶动态图| 19禁男女啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 国产福利在线免费观看视频| 国产精品1区2区在线观看. | 成人免费观看视频高清| 免费在线观看视频国产中文字幕亚洲 | 久久久久精品国产欧美久久久 | 多毛熟女@视频| 老熟女久久久| 精品欧美一区二区三区在线| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 亚洲精品一卡2卡三卡4卡5卡 | 久久人人爽人人片av| 久久香蕉激情| av在线老鸭窝| www.熟女人妻精品国产| 亚洲中文av在线| 午夜日韩欧美国产| 亚洲av欧美aⅴ国产| 国产无遮挡羞羞视频在线观看| 黄色片一级片一级黄色片| 国产在线观看jvid| 黑人欧美特级aaaaaa片| 国产精品一区二区在线观看99| 老司机亚洲免费影院| 一区二区三区精品91| 黑人巨大精品欧美一区二区mp4| 交换朋友夫妻互换小说| 久久青草综合色| 岛国在线观看网站| 99国产综合亚洲精品| 色播在线永久视频| 女人久久www免费人成看片| 久久ye,这里只有精品| 日本五十路高清| 女警被强在线播放| 免费在线观看影片大全网站| 成人黄色视频免费在线看| 飞空精品影院首页| 三级毛片av免费| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 久久久久久人人人人人| 亚洲熟女精品中文字幕| 国产精品国产三级国产专区5o| 日韩人妻精品一区2区三区| 日韩一区二区三区影片| tocl精华| 男人舔女人的私密视频| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人| 超碰成人久久| 男女边摸边吃奶| 激情视频va一区二区三区| 午夜精品久久久久久毛片777| 国产高清视频在线播放一区 | 高潮久久久久久久久久久不卡| 亚洲精品粉嫩美女一区| 在线观看舔阴道视频| 精品久久久久久久毛片微露脸 | 国产精品影院久久| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频网站a站| 波多野结衣一区麻豆| 日韩制服丝袜自拍偷拍| 亚洲欧美成人综合另类久久久| 天天躁夜夜躁狠狠躁躁| 国产色视频综合| 日韩免费高清中文字幕av| 在线看a的网站| 欧美精品亚洲一区二区| 免费人妻精品一区二区三区视频| 性色av一级| 别揉我奶头~嗯~啊~动态视频 | 亚洲一区二区三区欧美精品| 精品少妇一区二区三区视频日本电影| 香蕉丝袜av| 免费日韩欧美在线观看| 国产精品久久久久久人妻精品电影 | 操出白浆在线播放| 日本欧美视频一区| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 亚洲国产欧美日韩在线播放| 一级片'在线观看视频| 黄色视频不卡| 777久久人妻少妇嫩草av网站| bbb黄色大片| 考比视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲一区二区三区欧美精品| 女人高潮潮喷娇喘18禁视频| 丰满迷人的少妇在线观看| 91av网站免费观看| 国产精品久久久久久精品古装| 少妇的丰满在线观看| 91精品三级在线观看| 在线 av 中文字幕| 一进一出抽搐动态| 日韩欧美一区二区三区在线观看 | 日韩制服骚丝袜av| 18禁国产床啪视频网站| 一本大道久久a久久精品| tocl精华| avwww免费| 亚洲中文日韩欧美视频| 1024视频免费在线观看| 国产亚洲av片在线观看秒播厂| 精品一区二区三区av网在线观看 | 18在线观看网站| 国产亚洲av片在线观看秒播厂| 青青草视频在线视频观看| 男女免费视频国产| 亚洲专区中文字幕在线| 国产片内射在线| 精品国产一区二区三区久久久樱花| 丰满饥渴人妻一区二区三| 一本色道久久久久久精品综合| 亚洲精品美女久久久久99蜜臀| 亚洲一区中文字幕在线| 99热国产这里只有精品6| 久久毛片免费看一区二区三区| 国产亚洲精品一区二区www | 亚洲精品久久久久久婷婷小说| 精品亚洲成国产av| av国产精品久久久久影院| 日韩人妻精品一区2区三区| 人人妻,人人澡人人爽秒播| 久久天躁狠狠躁夜夜2o2o| 97在线人人人人妻| 黄色怎么调成土黄色| 伊人亚洲综合成人网| 97在线人人人人妻| 精品国产乱子伦一区二区三区 | 每晚都被弄得嗷嗷叫到高潮| 国产成人啪精品午夜网站| 成人亚洲精品一区在线观看| 国产亚洲一区二区精品| 亚洲综合色网址| 成人亚洲精品一区在线观看| 黄网站色视频无遮挡免费观看| 精品欧美一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区 | 黑人欧美特级aaaaaa片| 视频区欧美日本亚洲| 一本综合久久免费| 人成视频在线观看免费观看| 日韩一区二区三区影片| 男人操女人黄网站| videos熟女内射| 亚洲国产欧美在线一区| 国产真人三级小视频在线观看| 国产精品免费大片| 免费在线观看完整版高清| 精品国内亚洲2022精品成人 | 欧美激情高清一区二区三区| 午夜两性在线视频| 国产一区二区在线观看av| 精品人妻在线不人妻| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 亚洲精品一卡2卡三卡4卡5卡 |