• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:A DFT study☆

    2017-06-01 03:31:46YunpengGuoJieFengWenyingLi
    Chinese Journal of Chemical Engineering 2017年10期

    Yunpeng Guo ,Jie Feng ,Wenying Li,*

    1 Key Laboratory of Coal Science and Technology for Ministry of Education and Shanxi Province(Taiyuan University of Technology),Taiyuan 030024,China

    2 Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology,Taiyuan University of Technology,Taiyuan 030024,China

    1.Introduction

    The cheap supported Nicatalystshave high activity and selectivity for CH4/CO2reforming,but it is easily deactivated because of coke deposition[1-4].Based on considerable experimental researches,there was a consensus that the carbon formation could be obviously decreasing with the reduction of Ni particle size in this reaction[5-7].When Ni particle size was smaller than the critical size,the carbon deposition would disappear on the Ni catalyst.However,the value of critical size was still under controversy.Lercheret al.[8]indicated the critical size is 2 nm on the Ni/ZrO2catalyst.Tangetal.[9]and Zhangetal.[6]thought 10 nm should be that size on the Ni/γ-Al2O3and the Ni-Co/MgO,respectively.Kimet al.[10]considered the critical ensemble size was 7 nm on the Ni/Al2O3aerogel catalysts.These different critical size values were supposed to be due to their different supporters and reaction conditions.

    By far,the metal particle size effect had been widely observed in CH4/CO2reforming.Rostrup-Nielsen[11]inferred the reaction of CH4/CO2reforming need 12 adjacent active sites on Ni particles,and CH4deeply dissociation need 16 adjacent active sites at least.Small Ni particles could not prove a large ensemble for the formation of carbon.Zhanget al.[6]believed CH4dissociation occurred on metal particles and CO2decomposition occurred on the supporter surface,C species from CH4dissociation can be oxidized by O species from CO2decomposition at the interfaces of metal particles with the supporters.The smaller Ni particles,the more interfaces for C species oxidation.Liet al.[12]found a similar mechanism that La2O2CO3from CO2adsorption on La2O3would timely participate to eliminate coke on the Ni/La2O3catalyst with a high metal dispersion.Jeonget al.[13]reported MgO shell could destroy Ni ensemble in the MgO-coated Ni catalyst,and the usual 2-D layered carbon deposition would change into the filamentous carbon species in CH4/CO2reforming on this catalyst.Kozlovet al.[14]used DFT method to investigate the process of CH4decomposition on several nanostructured Pd models,and found out the edges of catalysts surface which were more exposed in small Pd particles had higher activity than the steps position.However,the atoms on the edges and steps had same coordination number(7)in this investigation,which was conflicting with the widely accepted opinions that low-coordinated atoms had high catalytic activity[15-17].Therefore,the particle size effect was caused by multiple factors,and the effects of electronic and structural properties in this phenomenon remained elusive[18].

    MgO could form a solid solution structure with NiO by any proportion,so Ni/MgO catalysts were easy to control the Ni particle sizes and widely used in CH4/CO2reforming[19-21].On the other side,the metal-support interaction(MSI)between the Ni particles and MgO supporters was considered to maintain the small sizes and resist the Ni sintering[22,23].However,the Ni electronic structure affected by MgO supporter was rare to discuss in this catalytic system.For nanoparticle supported catalysts,the excellent activity and selectivity derived from its special electronic or/and geometrical structures,which could be in fluence largely by MSI[24-26].Maetal.[27]believed the strengthened interaction between Ni and La in the LaNiAl catalyst could keep the Ni particles in 4-6 nm with high activity and stability in ethanol steam reforming.Valdenetal.[28]found CO was easy to oxidize on the Au particles with only sizes from 2 to 3 nm,and ascribed this to the electronic properties changing of the Au atoms contact with TiO2support.Cargnelloet al.[29]discovered that the turnover frequencies(TOF)of CO oxidation on Ni/CeO2catalysts had an inverse relationship with the perimeter of Ni particles,and the catalytic activities of the Ni atoms in the interface with CeO2were similar to those of noble metals.All of these showed the metal atoms contacting with the supporter performed important roles in the catalytic reaction,especially for the oxidant reactions.These metal atoms were concluded to affect the reaction of CH4/CO2reforming directly,because some researchers believed surface CHxoxidation was the rate-determining step of this reaction[30,31].

    Based on previous experiment investigations,in this work,the Nix/MgO(100)system,in which 1,2,or 3 Ni planes(contain 4 atoms per layer)adsorb on the center of the MgO(100)slabs,is used to model the Ni/MgO(100)catalysts with different Ni particle sizes.The most stable adsorbed structures and the favorable reaction pathways in CH4/CO2reforming on different Nix/MgO(100)have been analyzed,and the regularity between the energy barriers of slow elementary steps and the Ni particles sizes has been found out.By the comparison of the electron transfer during these steps on different Nix/MgO(100),the essence of particle size effect has also been inferred.

    2.DFT Method and Models

    2.1.Computational method

    CO2reforming of CH4on Ni x/MgO(100)is simulated by CASTEP(Cambridge Sequential Total Energy Package)program based on DFT method[32,33].The exchange correlation energy is treated with the Perdew-Burke-Ernzerhof(PBE)function that depended on the generalized gradient approximation(GGA)[34,35].Ultra-soft pseudopotential[36]used to describe the ionic cores and a plane wave basis with a cutoff energy of 400 eV,is devoted to expand the Kohn-Sham one-electron states[37-40].Brillouin zone integration is performed using the Monhorst-Pack scheme(2×2×1)[41].Configurations are optimized until the force,energy,and maximum displacement converged on 0.5 eV·nm-1,2×10-5eV per atom,and 2×10-4nm,respectively.All calculations of the energies and geometric optimizations consider the impact of spin polarization.Complete LST/QST method is used to locate the transition states,and the convergence criterion is set to rootmean-square force on atom is below 2.5 eV·nm-1[42].

    For adsorption configurations,adsorption energy is defined asEads=E[S-Nix/MgO(100)]-E(S)-E[Nix/MgO(100)],whereE[S-Nix/MgO(100)]is the energy of the Nix/MgO(100)with the adsorbed specie,E(S)is the energy of the free species,and E[Nix/MgO(100)]is the energy of the clean Nix/MgO(100).As a result,a negativeEadsmeans the process of the adsorption is favorable thermodynamically.

    2.2.Structure model

    The MgO supporter surface is built in software as a three-layer MgO(100)slab with a p(3×3)super-cell and only the bottom layer of the slab is constrained to their crystal lattice positions.The lattice constant of MgO(100)is optimized to be 0.431 nm,which is consistent with the experimental value,0.424 nm[43].The neighboring slabs are separated in the direction perpendicular to the surface by a vacuum region of 2 nm.

    Valdenetal.[28]believed that the supported Au cluster on TiO2with the thickness of 2 atoms had a suitable electron structure to catalyze CO oxidation,so it is deduced MSI effecting the metal cluster in a small thickness extent.In this paper,each layer of Ni cluster contains 4 Ni atoms locating on a same plane,and the initialNi4,Ni8,and Ni12 cluster has 1,2,and 3 layers,respectively.These structures are similar as Pacchioniet al.'s work[44,45].The Ni4,Ni8,and Ni12 clusters adsorbed on the center of MgO(100)surfaces separately,the optimized geometries are shown in Fig.1.Liuet al.[46]had calculated the deformation energies of Ni4/MgO in CH dissociation,and the numbers are obviously smaller than adsorption energies.So the atomic coordinates of Nix/MgO(100)are fixed during the process of CH4/CO2reforming in order to reduce calculation time cost.

    Fig.1.Structures of Nix Supported on MgO(100)surface.Color-coding:Red,O atoms;Green,Mg atoms;Blue,Ni atoms.

    3.Results and Discussion

    3.1.MgO(100)supported Nix cluster

    As Fig.1 shown,after geometry optimizing,the 4 Ni atoms of one layer are still located on a plane in Ni4/MgO(100)and Ni8/MgO(100).In Ni12/MgO(100),the surface unit has been deformed into a butter fly shape different from the bottom two layers.The structures of adsorbed metalclusters can be influenced by MSI,so it is inferred that the bottom two Ni layers in Ni12/MgO(100)are influenced obviously by MSI,but this interaction becomes weak in the surface Ni layer.

    In order to shed light on the electronic interactions between the Ni clusters and MgO supporters,Hirshfeld charges of Nix are calculated and listed in Table 1.

    Table 1Hirshfeld Charges(e)for Separated Layers of Ni x/MgO(100)

    As can be seen in Table 1,the total charges of the Ni clusters in Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are-0.22,-0.26,and-0.30 e,respectively.As Ni cluster contains several Ni atoms,more charges will transfer from the MgO supporter to the cluster.Nevertheless,the averaged charges of one Ni atom are reducing by the increase of Ni cluster.Herein,4 Ni atoms in one layer are considered as a basic unit,the charges of surface layer in Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are-0.22,-0.10,and 0.01 e,respectively.As a result,only the Ni atoms in the two bottom layers can get charges from the supporter.

    Moreover,the d-band structures of Nix/MgO(100)show in Fig.2,and the d-band center is calculated with the following equation[47,48]:

    Fig.2.The PDOS of d-band for Nix/MgO(100).

    where ρdrepresents the density of states projected onto the Ni atoms'd-band andEis the energy of d-band.The d-band centers of Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are-1.11,-1.51,and-1.65 eV,respectively.The d-band centers of Nix/MgO(100)downshift to the Fermi level with the increase of Ni cluster.Generally,the catalysts with a closer d-band center to the Fermi level could easily donate electron,which was conducive to catalytic activity for reforming reaction[46].Therefore,Ni4/MgO(100)is surmised to have the best activity,followed by Ni8/MgO(100)and Ni12/MgO(100).However,this inference should be further verified by the investigation of CH4/CO2reforming mechanism.

    3.2.CH4/CO2 reforming on Nix/MgO(100)

    As Fig.3 shown,CH4/CO2reforming includes the following elementary reactions:1)CH4adsorbs and sequentially dehydrogenate to CHx(x=0-3)species and atomic H;2)CO2chemisorbs and decomposes to adsorbed CO and atomic O;3)CHx(x=0-3)species oxidizes by atomic O to produce CHxO intermediates,then CHxO decomposes into CO and H.In our calculation,the pathways contain CHxOH formation(CO2reacts with surface H to form COOH then decomposes to CO and OH,which can oxidize CHxand form CHxOH)and dehydrogenation are less favorable to the CHxO pathways on different Nix/MgO(100),so they are not involved in this paper.

    Fig.3.Simplified reaction process of CH4/CO2 reforming.

    The computed adsorption energies of all the reactants,intermediates,and products on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are summarized in Table 2,and the energy barriers and reaction energies of the most favored elementary reactions in CH4/CO2reforming are listed in Table 3.The adsorption configurations and the corresponding transition state structures in CH4/CO2reforming on Nix/MgO(100)are shown in Fig.4.

    Table 2Adsorption energies of reactants,intermediates,and products in CH4/CO2 reforming over Ni x/MgO(100)at different Ni particle sizes

    Table 3Energetics of the most favored elementary steps in CH4/CO2 reforming over Ni x/MgO(100)at different Ni particle sizes

    3.2.1.CH4dissociation at three sizes of Ni particle

    Combining with the data of Table 3,CH4dissociated adsorption is a common kinetic block on all three Nix/MgO(100)surfaces.For each corresponding single step in CH4dissociation,the energy barriers will raise by the increase of Ni particle sizes.The energy barrier of CH2decomposition on Ni8/MgO(100)is strangely high,which is caused by C atom transferring from the bridge site of the surface to the hollow site between two layers,but this step on the other two models is only involved the breaking of the CˉˉH bond.The barriers of CH dissociation on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are 0.47,0.91,and 1.39 eV,and reaction energies are-0.01,0.76,and 0.55 eV,respectively.For Ni4/MgO(100),CH dissociation is kinetically favorable and has no thermodynamics block;For Ni8/MgO(100),the similar energy barrier and reaction endothermicity indicates that even if CH dehydrogenation occurs,the generated C species will be hydrogenated easily;For Ni12/MgO(100),the CH dissociation has highest energy barriers and medium reaction endothermicity.

    As a result,CH4will be easier to dissociate on Nix/MgO(100)with small Ni particle.On Ni4/MgO(100),CH4is favorable to decompose into surface C.If produced C species cannot react with O species timely,it will accumulate rapidly and lead to catalyst deactivation.Comparing with Ni4/MgO(100),the dehydrogenation of CH4on Ni8/MgO(100)is unfavorable.The low energy barrier(0.15 eV)of the reverse reaction of CH dissociation means CH will be the main product of CH4dissociation on Ni8/MgO(100).The CH4dissociated adsorption has highest energy barrier on Ni12/MgO(100),so big Ni cluster will have lower catalytic activity for this reaction.

    Fig.4.Geometries of adsorption configurations and transition states structures in CH4/CO2 on Nix/MgO(100).Color-coding:Red,Oatoms;Green,Mg atoms;Blue,Niatoms;Grey,C atoms;White,H atoms.

    3.2.2.CO2decomposition

    When a CˉˉO bond of CO2is parallel the surface NiˉˉNi bond,the CO2molecule will become bent configurations with theEadsof-1.35,-0.57,and-0.76 eV on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100),respectively.On all three Nix/MgO(100),the processes of CO2chemisorption are exothermic and have low energy barriers,so these steps are easy to occur.CO2decomposition on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)need to overcome barriers of 0.04,1.45,and 0.43 eV,with reaction energies-0.19,0.14,and-0.03 eV,respectively.Comparing with CH4dissociations,CO2adsorptions and decompositions on Nix/MgO(100)are more favorable both kinetically and thermodynamically.On the other side,theEadsof O species are from-2.42 to-3.05 eV,indicating produced O have larger coverage on Nix/MgO(100).As a result,the O species production is not the bottleneck for CH4/CO2reforming.

    3.2.3.Oxidation of CH or C and dissociation of CHO

    As mentioned in Section 3.2.1,CH or C should be the products of CH4dissociation on Nix/MgO(100)models.Therefore,both CH and surface C are taken as the possible species to be oxidized to produce CO at last.

    As shown in Table 3,the energy barriers of CH+O formation into CHO on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are 2.06,1.39,and 3.28 eV,with reaction energies-0.46,-1.04,and 0.44 eV,respectively.Although the formation of CHO on Ni8/MgO(100)is most favorable kinetically,theEadsof CH+O is-8.57 eV,which is 1.10 eV less negative than the value of theEadsof separately adsorbed CH and O(-9.67 eV).It means the formation of CH+O on Ni8/MgO(100)is obviously unfavorable thermodynamically.Comparing with CH dissociation,the oxidant of CH is not favorable kinetically on all three surface.

    Different from other two models,CO produced by surface C oxidation on Ni8/MgO(100)is adsorbed on the bridge site between two layers,and be denoted as CO′.C+O translation into CO(which is CO′on Ni8/MgO(100))need to overcome energy barriers of 1.47,1.66,and 2.24 eV on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100),respectively.The energy barrier of CO′translation into CO on Ni8/MgO(100)is 0.53 eV,with reaction energy of-0.13 eV,so it is very easy to happen.

    As competitive reactions,the formations of CHO are unfavorable than CH decomposition on Nix/MgO.Surface C reacting with O species are the main pathways of CHxoxidation on all three Nix/MgO(100)models.Similar to CHxdissociation,surface carbon oxidation are easier to run on smaller Ni particles.

    3.2.4.Potential energy surface of CH4/CO2reforming on Nix/MgO(100)

    Based on previous calculation results,the favorable reaction pathways of CH4/CO2reforming on Nix/MgO(100)are shown in Fig.5.The energy barriers of rate determining steps of CO2decomposition on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are 0.52,1.45,and 1.15 eV,respectively.Comparing with the processes of CH4sequential dissociation or CHxoxidation,CO2can be easier to adsorb and decompose on Nix/MgO(100).As a result,the generation of surface O would not be the block of CH4/CO2reforming.

    In general,CH4dissociated adsorption is always the RDS of CH4/CO2reforming on Ni catalysts[49,50].The energy barriers of CH4dissociated adsorption on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are 1.96,2.24,and 3.45 eV,respectively.On Ni4/MgO(100)and Ni12/MgO(100),this step is the RDS.On Ni8/MgO(100),although the energy barrier of CH2dissociation is a little higher(0.07 eV),CH4dissociation is still a main obstruction of the whole reaction pathway.As shown in Fig.5,the energy barriers of CH4dissociation raise with the growth of Ni clusters on Nix/MgO(100),so it indicates that the smaller Ni particles are more efficient on supported Ni catalysts for CH4/CO2reforming.

    As the precursor of carbon deposition,the generation of surface C from CH dissociation relates directly to the stability of Ni catalysts.Similar to CH4dissociation,the energy barriers of CH dissociation will raise with the growth of Ni cluster on Nix/MgO(100).On Ni8/MgO(100)and Ni12/MgO(100),this step is obviously endothermic,so the corresponding reverse reaction is more favorable kinetically.On Ni4/MgO(100),even the reaction energy is close to 0 eV,theEadsof C+O is-9.87 eV,which is 1.29 eV more negative than the value of theEadsof separately adsorbed C and H(-8.56 eV),indicating the attractive interaction of the co-adsorb surface C and H.This would be helpful for inhibiting the polymerization of carbon on Ni4/MgO(100).

    It was reported that CHxoxidation to CHxO was also very important for CH4/CO2reforming,which was helpful to reduce the carbon deposition[30,31].Comparing with CH oxidations,surface C oxidations are more favorable on all three Nix/MgO(100).The energy barriers of surface C oxidation Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100)are 1.47,1.66,and 2.24 eV,respectively.Surface C will be easier to react with surface O on small Ni cluster,so supported Ni catalysts with small Ni particles can have better anti-carbon ability.

    3.3.Discussion of charges transfer during key steps

    As shown in Section 3.2,CH4dissociated adsorption has direct relationship with catalytic activity,and CH dissociation and C oxidation jointly decide the Ni catalyst stability,so these three elementary reactions are considered as the key steps of CH4/CO2reforming on Nix/MgO(100).Generally speaking,all three reactions will be easier to occur on Nix/MgO(100)with a smaller Ni cluster.In order to expound the reason of this phenomenon,Hirshfeld charges of Ni clusters and species of reactants and transition states in these three reactions are calculated and listed in Table 4.

    For CH4dissociated adsorption,molecule CH4as reactants nearly do not get any charges from Ni clusters.Hirshfeld charges of CH3+H of transition states are-0.12,-0.20,and-0.14 e on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100),respectively.At the same time,comparing with the clean Nix/MgO(100),the surface layers of Ni clusters lose 0.09,0.15,and 0.12 e on Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100),respectively.In the process of CH4activation,the Ni atoms in surface layer contact with the species directly and prove most electrons in this charge transfer.The rules of the charge transfer in CH dissociation and surface C oxidant are similar to CH4dissociated adsorption.

    Fig.6 shows the relationship between the reduction of Nicharges on the surface layer and the increment of species charges.Because CH adsorbs on the hollow site between two layers on Ni8/MgO(100),it can get charges from both two layers'Ni during its activation.Besides this step,the slop of the fitting line is 0.99 and the corresponding intercept is 0.02.This means the charges transfer during the reactant activation just occurs between adsorbed species and their directly contacted Ni atoms,which are main in the Ni clusters'top-layer.

    Fig.5.Potential energy surfaces of CH4/CO2 reforming over Ni x/MgO(100).

    Table 4Hirshfeld charges for reactants and transition states of CH4 dissociation,CH dissociation and C oxidant over Ni x/MgO(100)

    Based on potential energy surfaces and Hirshfeld charges analyses,the conceptual explanation of different catalytic performances on Nix/MgO(100)with different Ni particle size are shown in Fig.7.In this figure,the border colors of Ni atoms means different electron abundance,red means Ni atoms have most electrons,followed by yellow and light blue.As shown in Fig.7,only Ni atoms in bottom two layers can obtain electrons from the MgO(100)slab.When Ni cluster is smaller,the Niatomsin surface layer will have more electrons.During the reactants and intermediates activation,the charges transfers are occurring between adsorbed species and their directly contacted Ni atoms,which are main in surface layer of the Ni cluster.CH4/CO2reforming will occur easier when these Ni atoms have more negative charges.Surface layer's Ni atoms in the small particle capture more electrons from MgO slab,so Nix/MgO(100)with small Ni particle has better catalytic performance.

    Nowadays,both experimental and theoretical studies paid attention on the special activities of the interface between metal particles and supporters.Liet al.[18]believed a bifunctional mechanism,which oxygenated hydrocarbons activated and transformed on metal surface and CO2or water activated on metal oxide site,prevailed in most reforming reactions.Hence,they deduced that the interface between the two sites was where the reforming reaction could occur.Liet al.[51]reported the Ceria-promoted Ni/SBA-15 catalyst with high Ni-CeO2interface could obviously enhance its catalytic performance and anti-coking ability in ethanol steam reforming.Valdenet al.[34]found that Au cluster on TiO2with the thickness of 2 atoms had high activity for CO oxidant,and it was similar to Ni cluster on MgO(100)in our work.In other words,MSI,which can change metals'electronic structures,is effective just in a distance with a few atoms.It is reported the Ni particle adsorbed on MgO(100)surface as a hemisphere,so only Ni atoms in the perimeters of bottom two layers are exposed and electron-rich,which will have high activity and stability for CH4/CO2reforming[52].If Ni particles are smaller,the proportion of these Ni atoms will be higher,which explains the high catalytic performance of the Ni/MgO catalysts with small Ni metal sizes.

    Fig.6.Relationship between the reduction of the surface layer charges and the increment of the species charges during reactants activation in key steps.Color-coding:Red,CH4 dissociated adsorption;Blue,CH dissociation;Green:C oxidant.Shape coding:△,on Ni4/MgO(100);□,on Ni8/MgO(100);○,on Ni12/MgO(100).

    On the other hand,the shape of noble metal particle will become flat by strong MSI interaction when it adsorbs on reducible supporters,so it can expose more atoms of bottom two layers[53,54].This might be one reason of high activity and stability of supported noble metal catalysts.If Ni particles can be prepared as a flat shape,this supported Ni/MgO catalysts will have better catalytic performance.

    4.Conclusions

    In this work,Ni4/MgO(100),Ni8/MgO(100),and Ni12/MgO(100),in which supports 1,2,and 3 layers of Ni4 plane on the centers of the MgO(100)slabs,respectively,are used to model the Ni/MgO catalysts with different Ni particle sizes.DFT calculations have been used to investigate the mechanism of CH4/CO2reforming on Nix/MgO(100)models.Comparing with the reaction mechanisms of CH4/CO2reforming on different Nix/MgO(100)models,it is found that the energy barriers of CH4dissociated adsorption,CH dissociation,and C oxidation will decrease by fewer layers of Ni cluster in Nix/MgO(100).By the analyses of Hirshfeld charges,electrons can only transfer from MgO supporter to Ni atoms in the bottom two layers,and the electrons transfer during elementary steps mainly occurs between adsorbed species and their directly contacted Ni atoms in the surface layer.The mechanism investigations on different Nix/MgO(100)indicate that CH4/CO2reforming is easier to happen on the electron-rich Ni sites.If Ni particles are small or become flat,electron-rich Ni atoms in the bottom two layers will be easy to expose on the particle surface,this catalyst will have great performance in CH4/CO2reforming.

    Fig.7.Conceptual model of electron transfer between MgOslab,Niatoms and reactants in CH4/CO2 reforming on Ni x/MgO(100).The blue circle means Ni atom.

    [1]T.Inui,Reforming of CH4by CO2,O2,and/or H2O,The Royal Society of Chemistry,Cambridge,2002.

    [2]G.J.Kim,D.S.Cho,K.H.Kim,J.H.Kim,The reaction of CO2with CH4to synthesize H2and CO over nickel-loaded Y-zeolites,Catal.Lett.28(1994)41-52.

    [3]J.R.Rostrup-Nielsen,J.H.B.Hansen,CO2-reforming of methane over transition metals,J.Catal.144(1993)38-49.

    [4]O.Tokunaga,S.Ogasawara,Reduction of carbon dioxide with methane over Ni-catalyst,React.Kinet.Catal.Lett.39(1989)69-74.

    [5]N.Rahemi,M.Haghighi,A.A.Babaluo,M.F.Jafari,P.Estifaee,Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2nanocatalyst preparedviaimpregnation method and treated with non-thermal plasma for CO2reforming of CH4,J.Ind.Eng.Chem.19(2013)1566-1576.

    [6]J.Zhang,H.Wang,A.K.Dalai,Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2reforming of CH4,Appl.Catal.A Gen.339(2008)121-129.

    [7]H.Long,Y.Xu,X.Zhang,S.Hu,S.Shang,Y.Yin,X.Dai,Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane,J.Energy Chem.22(2013)733-739.

    [8]J.A.Lercher,J.H.Bitter,W.Hally,W.Niessen,K.Seshan,Design of stable catalysts for methane-carbon dioxide reforming,Stud.Surf.Sci.Catal.101(1996)463-472.

    [9]S.Tang,L.Ji,J.Lin,H.C.Zeng,K.L.Tan,K.Li,CO2reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3catalysts from organometallic precursors,J.Catal.194(2000)424-430.

    [10]J.H.Kim,D.J.Suh,T.J.Park,K.L.Kim,Effect of metal particle size on coking during CO2reforming of CH4over Ni-alumina aerogel catalysts,Appl.Catal.A Gen.197(2000)191-200.

    [11]J.R.Rostrup-Nielsen,Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane,J.Catal.85(1984)31-43.

    [12]X.Y.Li,D.Li,H.Tian,L.Zeng,Z.J.Zhao,J.L.Gong,Dry reforming of methane over Ni/La2O3nanorod catalysts with stabilized Ni nanoparticles,Appl.Catal.B Environ.202(2017)683-694.

    [13]M.G.Jeong,S.Y.Kim,D.H.Kim,S.W.Han,I.H.Kim,M.Lee,Y.K.Hwang,Y.D.Kim,High-performing and durable MgO/Ni catalystsviaatomic layer deposition for CO2reforming of methane(CRM),Appl.Catal.A Gen.515(2016)45-50.

    [14]S.M.Kozlov,K.M.Neyman,Insights from methane decomposition on nanostructured palladium,J.Catal.337(2016)111-121.

    [15]S.Mostafa,F.Behafarid,J.R.Croy,L.K.Ono,L.Li,J.C.Yang,A.I.Frenkel,B.R.Cuenya,Shape-dependent catalytic properties of Pt nanoparticles,J.Am.Chem.Soc.132(2010)15714-15719.

    [16]X.Y.Quek,I.A.W.Filot,R.Pestman,R.A.van Santen,V.Petkov,E.J.M.Hensen,Correlating Fischer-Tropsch activity to Ru nanoparticle surface structure as probed by high-energy X-ray diffraction,Chem.Commun.50(2014)6005-6008.

    [17]F.Vi?es,Y.Lykhach,T.Staudt,M.P.A.Lorenz,C.Papp,H.P.Steinrück,J.Libuda,K.M.Neyman,A.G?rling,Methane activation by platinum:Critical role of edge and corner sites of metal nanoparticles,Chem.Eur.J.16(2010)6530-6539.

    [18]D.Li,X.Y.Li,J.L.Gong,Catalytic reforming of oxygenates:State of the art and future prospects,Chem.Rev.116(2016)11529-11653.

    [19]Y.H.Hu,Solid-solution catalysts for CO2reforming of methane,Catal.Today148(2009)206-211.

    [20]Y.H.Hu,E.Ruckenstein,The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2reforming of CH4,Catal.Lett.43(1997)71-77.

    [21]L.Zhang,Q.Zhang,Y.Liu,Y.Zhang,Dry reforming of methane over Ni/MgO-Al2O3catalysts prepared by two-step hydrothermal method,Appl.Surf.Sci.389(2016)25-33.

    [22]M.A.Naeem,A.S.Al-Fatesh,A.E.Abasaeed,A.H.Fakeeha,Activities of Ni-based nano catalysts for CO2-CH4reforming prepared by polyol process,Fuel Process.Technol.122(2014)141-152.

    [23]S.B.Wang,G.Q.M.Lu,CO2reforming of methane on Ni catalysts:Effects of the support phase and preparation technique,Appl.Catal.B Environ.16(1998)269-277.

    [24]A.T.Bell,The impact of nanoscience on heterogeneous catalysis,Science299(2003)1688-1691.

    [25]G.A.Somorjai,Y.Li,Major successes of theory-and-experiment-combined studies in surface chemistry and heterogeneous catalysis,Top.Catal.53(2010)311-325.

    [26]S.J.Tauster,S.C.Fung,Strong metal-support interactions:Occurrence among the binary oxides of groups IIA-VB,J.Catal.55(1978)29-35.

    [27]H.Ma,L.Zeng,H.Tian,D.Li,X.Wang,X.Li,J.Gong,Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts,Appl.Catal.B Environ.181(2016)321-331.

    [28]M.Valden,X.Lai,D.W.Goodman,Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,Science281(1998)1647-1650.

    [29]M.Cargnello,V.V.T.Doan-Nguyen,T.R.Gordon,R.E.Diaz,E.A.Stach,R.J.Gorte,P.Fornasiero,C.B.Murray,Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts,Science341(2013)771-773.

    [30]J.S.Chang,S.E.Park,J.W.Yoo,J.N.Park,Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane,J.Catal.195(2000)1-11.

    [31]Y.Cui,H.Zhang,H.Xu,W.Li,Kinetic study of the catalytic reforming ofCH4with CO2to syngas over Ni/α-Al2O3catalyst:The effect of temperature on the reforming mechanism,Appl.Catal.A Gen.318(2007)79-88.

    [32]V.Milman,B.Winkler,J.A.White,C.J.Pickard,M.C.Payne,E.V.Akhmatskaya,R.H.Nobes,Electronic structure,properties,and phase stability of inorganic crystals:A pseudopotential plane-wave study,Int.J.Quantum Chem.77(2000)895-910.

    [33]M.C.Payne,M.P.Teter,D.C.Allan,T.A.Arias,J.D.Joannopoulos,Iterative minimization techniques for ab initio total-energy calculations:Molecular dynamics and conjugate gradients,Rev.Mod.Phys.64(1992)1045-1097.

    [34]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson,D.J.Singh,C.Fiolhais,Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation,Phys.Rev.B46(1992)6671-6687.

    [35]J.P.Perdew,A.Zunger,Self-interaction correction to density-functional approximations for many-electron systems,Phys.Rev.B23(1981)5048-5079.

    [36]D.Vanderbilt,Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,Phys.Rev.B41(1990)7892-7895.

    [37]G.Kresse,J.Furthmüller,Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,Comput.Mater.Sci.6(1996)15-50.

    [38]G.Kresse,J.Furthmüller,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,Phys.Rev.B54(1996)11169-11186.

    [39]G.Kresse,J.Hafner,Ab initio molecular dynamics for liquid metals,Phys.Rev.B47(1993)558-561.

    [40]G.Kresse,J.Hafner,Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium,Phys.Rev.B49(1994)14251-14269.

    [41]H.J.Monkhorst,J.D.Pack,Special points for Brillouin-zone integrations,Phys.Rev.B13(1976)5188-5192.

    [42]T.A.Halgrena,W.N.Lipscomb,The synchronous-transit method for determining reaction pathways and locating molecular transition states,Chem.Phys.Lett.49(1977)225-232.

    [43]S.Speziale,C.S.Zha,T.S.Duffy,R.J.Hemley,H.K.Mao,Quasi-hydrostatic compression of magnesium oxide to 52 GPa:Implications for the pressure-volume-temperature equation of state,J.Geophys.Res.106(2001)515-528.

    [44]C.Di Valentin,L.Giordano,G.Pacchioni,N.R?sch,Nucleation and growth of Ni clusters on regular sites and F centers on the MgO(001)surface,Surf.Sci.522(2003)175-184.

    [45]A.D.Vitto,L.Giordano,G.Pacchioni,N.R?sch,CO adsorption on Ni4 and Ni8 clusters deposited on regular and defect sites of the MgO(001)surface,Surf.Sci.575(2005)103-114.

    [46]H.Y.Liu,B.T.Teng,M.H.Fan,B.J.Wang,Y.L.Zhang,H.G.Harris,CH4dissociation on the perfect and defective MgO(001)supported Ni4,Fuel123(2014)285-292.

    [47]B.Hammer,J.K.N?rskov,Electronic factors determining the reactivity of metal surfaces,Surf.Sci.343(1995)211-220.

    [48]M.Mavrikakis,B.Hammer,J.K.N?rskov,Effect of strain on the reactivity of metal surfaces,Phys.Rev.Lett.81(1998)2819-2822.

    [49]M.C.J.Bradford,M.A.Vannice,Catalytic reforming of methane with carbon dioxide over nickel catalysts II.Reaction kinetics,Appl.Catal.A Gen.142(1996)97-122.

    [50]J.Wei,E.Iglesia,Isotopic and kinetic assessment of the mechanism of reactions of CH4with CO2or H2O to form synthesis gas and carbon on nickel catalysts,J.Catal.224(2004)370-383.

    [51]D.Li,L.Zeng,X.Y.Li,X.Wang,H.Y.Ma,S.Assabumrungrat,J.L.Gong,Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation,Appl.Catal.B Environ.176-177(2015)532-541.

    [52]S.Sao-Joao,S.Giorgio,C.Mottet,J.Goniakowski,C.R.Henry,Interface structure of Ni nanoparticles on MgO(100):A combined HRTEM and molecular dynamic study,Surf.Sci.600(2006)L86-L90.

    [53]S.J.Tauster,Strong metal-support interactions,Acc.Chem.Res.20(1987)389-394.

    [54]Y.P.Guo,W.Y.Li,J.Feng,Reaction pathway of CH4/CO2reforming over Ni8/MgO(100),Surf.Sci.660(2017)22-30.

    a 毛片基地| 新久久久久国产一级毛片| 国产伦精品一区二区三区视频9| 看十八女毛片水多多多| 少妇的逼水好多| 国产一区有黄有色的免费视频| 老司机亚洲免费影院| 欧美日韩精品成人综合77777| 97超碰精品成人国产| 一个人免费看片子| 亚洲av综合色区一区| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 女人精品久久久久毛片| 波野结衣二区三区在线| 大又大粗又爽又黄少妇毛片口| 久久精品国产a三级三级三级| 亚洲欧美精品专区久久| 亚洲va在线va天堂va国产| 国产一区二区在线观看日韩| 久久久久国产网址| 国产亚洲精品久久久com| 丰满乱子伦码专区| 日韩中文字幕视频在线看片| 久久精品久久久久久噜噜老黄| 人人妻人人爽人人添夜夜欢视频 | 欧美成人午夜免费资源| 久久久久人妻精品一区果冻| 日本wwww免费看| 精品久久久久久久久亚洲| 男人舔奶头视频| 在线天堂最新版资源| 久久av网站| 国产乱来视频区| 日韩强制内射视频| 男女啪啪激烈高潮av片| 在线播放无遮挡| 丰满饥渴人妻一区二区三| 国产精品女同一区二区软件| freevideosex欧美| 伊人久久精品亚洲午夜| 欧美 日韩 精品 国产| 好男人视频免费观看在线| 一本色道久久久久久精品综合| 精品熟女少妇av免费看| 精品一品国产午夜福利视频| 国产乱来视频区| 亚洲欧美日韩卡通动漫| 99久久精品热视频| 九九在线视频观看精品| 国产色爽女视频免费观看| 简卡轻食公司| 色视频在线一区二区三区| 色婷婷av一区二区三区视频| 大话2 男鬼变身卡| 久久鲁丝午夜福利片| 夜夜爽夜夜爽视频| 十八禁高潮呻吟视频 | 成年女人在线观看亚洲视频| 99热全是精品| 精品少妇内射三级| 啦啦啦中文免费视频观看日本| 免费观看性生交大片5| 国产亚洲最大av| 日韩av在线免费看完整版不卡| 久久鲁丝午夜福利片| 国产在线男女| 国产精品一二三区在线看| 女性被躁到高潮视频| 久久6这里有精品| 色哟哟·www| 搡女人真爽免费视频火全软件| 91久久精品电影网| 亚洲第一区二区三区不卡| 亚洲av二区三区四区| h视频一区二区三区| 精品亚洲成国产av| 嘟嘟电影网在线观看| 亚洲av免费高清在线观看| 久久影院123| 有码 亚洲区| 精品午夜福利在线看| 欧美精品一区二区免费开放| 不卡视频在线观看欧美| 国产爽快片一区二区三区| 一区二区三区免费毛片| 午夜激情久久久久久久| 国产午夜精品久久久久久一区二区三区| 女人久久www免费人成看片| 久久久国产欧美日韩av| 久久久久国产精品人妻一区二区| 久久99热这里只频精品6学生| 各种免费的搞黄视频| 国产精品福利在线免费观看| 国产av精品麻豆| 熟女av电影| 伊人久久国产一区二区| 男人爽女人下面视频在线观看| 国产精品一区二区在线不卡| 亚洲欧美成人综合另类久久久| 欧美三级亚洲精品| 国产黄色免费在线视频| 三级经典国产精品| 免费黄频网站在线观看国产| 亚洲精品第二区| 国产亚洲精品久久久com| 久久综合国产亚洲精品| 亚洲av男天堂| 免费人妻精品一区二区三区视频| 欧美精品一区二区大全| 看免费成人av毛片| 久久精品熟女亚洲av麻豆精品| 高清毛片免费看| 嘟嘟电影网在线观看| 日韩 亚洲 欧美在线| av女优亚洲男人天堂| 国产片特级美女逼逼视频| 国产淫片久久久久久久久| 嫩草影院新地址| 日本午夜av视频| 国产亚洲5aaaaa淫片| 国产永久视频网站| 国产亚洲5aaaaa淫片| 少妇丰满av| 亚洲怡红院男人天堂| 欧美日韩精品成人综合77777| 在线看a的网站| 人妻夜夜爽99麻豆av| 国产成人精品无人区| 欧美激情极品国产一区二区三区 | 国产黄色免费在线视频| 中文字幕人妻丝袜制服| 久久久久久久久久人人人人人人| 久久精品国产亚洲av涩爱| 久久精品熟女亚洲av麻豆精品| 成人午夜精彩视频在线观看| 国产在线男女| 少妇精品久久久久久久| 精品亚洲成国产av| 涩涩av久久男人的天堂| 黄色欧美视频在线观看| 国产伦精品一区二区三区四那| a级一级毛片免费在线观看| 丁香六月天网| 免费在线观看成人毛片| 18禁在线无遮挡免费观看视频| 成人漫画全彩无遮挡| 在线观看三级黄色| 亚洲国产av新网站| 国产精品偷伦视频观看了| 精品熟女少妇av免费看| 亚洲经典国产精华液单| 久久婷婷青草| 狠狠精品人妻久久久久久综合| 韩国av在线不卡| 日韩亚洲欧美综合| 99九九在线精品视频 | 国产乱人偷精品视频| 91成人精品电影| 国产色婷婷99| 婷婷色av中文字幕| 欧美日韩av久久| 国产亚洲精品久久久com| 精品卡一卡二卡四卡免费| 男男h啪啪无遮挡| videossex国产| 下体分泌物呈黄色| 三级国产精品片| a 毛片基地| 国产精品一区www在线观看| 啦啦啦啦在线视频资源| 三级国产精品片| 晚上一个人看的免费电影| 丝瓜视频免费看黄片| 精品一区二区三卡| 丁香六月天网| 一级毛片aaaaaa免费看小| 在线播放无遮挡| 人人妻人人爽人人添夜夜欢视频 | 国产伦在线观看视频一区| 亚洲中文av在线| 伦理电影大哥的女人| 欧美日本中文国产一区发布| 亚洲成色77777| 国产女主播在线喷水免费视频网站| 如日韩欧美国产精品一区二区三区 | 免费观看a级毛片全部| 久久国产精品大桥未久av | 一区二区av电影网| 久久国产乱子免费精品| 男人舔奶头视频| 久久99一区二区三区| 国产免费福利视频在线观看| 欧美日韩av久久| av国产精品久久久久影院| 久久影院123| 我要看日韩黄色一级片| 亚洲精品国产色婷婷电影| 一级毛片电影观看| 有码 亚洲区| 一边亲一边摸免费视频| 一级片'在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲av.av天堂| 成人国产麻豆网| 欧美日韩在线观看h| 亚洲欧美精品专区久久| 欧美精品一区二区免费开放| av在线观看视频网站免费| 在线观看免费日韩欧美大片 | 亚洲欧美日韩东京热| 国产精品99久久久久久久久| 亚洲av二区三区四区| 亚洲av中文av极速乱| 日韩欧美 国产精品| 男的添女的下面高潮视频| 精华霜和精华液先用哪个| 国产黄频视频在线观看| 亚洲国产日韩一区二区| 免费黄网站久久成人精品| 精品人妻一区二区三区麻豆| 国产色婷婷99| 国产男女超爽视频在线观看| 2022亚洲国产成人精品| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 午夜免费鲁丝| 久久青草综合色| 99九九在线精品视频 | 国产精品.久久久| 美女脱内裤让男人舔精品视频| 你懂的网址亚洲精品在线观看| 日韩人妻高清精品专区| 日日撸夜夜添| 日韩强制内射视频| 国产亚洲91精品色在线| 国产视频首页在线观看| 亚洲国产最新在线播放| 熟女人妻精品中文字幕| 99热6这里只有精品| 九九爱精品视频在线观看| 两个人免费观看高清视频 | 婷婷色麻豆天堂久久| 久久久久精品久久久久真实原创| 少妇的逼好多水| 日日摸夜夜添夜夜爱| 亚洲人与动物交配视频| 久久国产精品男人的天堂亚洲 | 91精品国产九色| 99久久精品热视频| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 最新中文字幕久久久久| 99热6这里只有精品| 女人久久www免费人成看片| 亚洲精品色激情综合| 国产中年淑女户外野战色| 国产精品.久久久| 高清av免费在线| 极品教师在线视频| 午夜福利网站1000一区二区三区| 亚洲精品久久午夜乱码| 中文字幕久久专区| 欧美日韩精品成人综合77777| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 少妇的逼好多水| 久久久久久久大尺度免费视频| 精品国产露脸久久av麻豆| 国产精品一区二区在线不卡| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 亚洲精品成人av观看孕妇| 伦理电影大哥的女人| 高清av免费在线| 国产欧美日韩一区二区三区在线 | 国产成人精品久久久久久| 精品一区在线观看国产| 国产成人精品一,二区| 国产 一区精品| 成年人午夜在线观看视频| √禁漫天堂资源中文www| 麻豆精品久久久久久蜜桃| 色网站视频免费| 一级a做视频免费观看| 免费黄网站久久成人精品| 男女边摸边吃奶| 能在线免费看毛片的网站| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看| 99热这里只有精品一区| 欧美亚洲 丝袜 人妻 在线| 日韩免费高清中文字幕av| 在线播放无遮挡| 免费人妻精品一区二区三区视频| 一本久久精品| 成年人免费黄色播放视频 | 成人二区视频| 久久久午夜欧美精品| 春色校园在线视频观看| h日本视频在线播放| 国产日韩一区二区三区精品不卡 | 老女人水多毛片| 国产亚洲5aaaaa淫片| 一本一本综合久久| 国产有黄有色有爽视频| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 国产精品一区二区在线不卡| 在线观看免费视频网站a站| 亚洲国产精品专区欧美| 18禁动态无遮挡网站| 亚洲av国产av综合av卡| 日本欧美国产在线视频| 国产av码专区亚洲av| 久久青草综合色| 少妇被粗大的猛进出69影院 | 欧美高清成人免费视频www| 99久久中文字幕三级久久日本| 国产精品久久久久久久久免| 男人舔奶头视频| 热99国产精品久久久久久7| h日本视频在线播放| 青青草视频在线视频观看| 久久这里有精品视频免费| 美女国产视频在线观看| 亚洲图色成人| 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 边亲边吃奶的免费视频| 日韩欧美精品免费久久| 大香蕉久久网| 亚洲色图综合在线观看| 在线播放无遮挡| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲 | 亚洲电影在线观看av| 啦啦啦中文免费视频观看日本| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃 | 插逼视频在线观看| 丰满少妇做爰视频| 大陆偷拍与自拍| 免费观看无遮挡的男女| 黄色一级大片看看| 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 国产高清有码在线观看视频| 国产一区二区三区综合在线观看 | 草草在线视频免费看| 嘟嘟电影网在线观看| 一区二区三区精品91| 狂野欧美白嫩少妇大欣赏| 在线看a的网站| 午夜福利影视在线免费观看| 国产精品一区二区在线观看99| 国产av国产精品国产| 国产伦在线观看视频一区| 亚洲精品国产色婷婷电影| 日韩精品免费视频一区二区三区 | 国产精品一区二区三区四区免费观看| 啦啦啦中文免费视频观看日本| 亚洲无线观看免费| 成人影院久久| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久| h视频一区二区三区| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频 | 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 99热国产这里只有精品6| 日本猛色少妇xxxxx猛交久久| 亚洲第一av免费看| 日韩av免费高清视频| 亚洲国产毛片av蜜桃av| 日本午夜av视频| 国产老妇伦熟女老妇高清| 欧美+日韩+精品| 又粗又硬又长又爽又黄的视频| 丝袜脚勾引网站| 一个人看视频在线观看www免费| 日韩精品有码人妻一区| 99久国产av精品国产电影| 国产探花极品一区二区| 国产成人免费观看mmmm| 成人无遮挡网站| 热re99久久国产66热| av线在线观看网站| 国内少妇人妻偷人精品xxx网站| 国精品久久久久久国模美| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 啦啦啦在线观看免费高清www| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 另类精品久久| 国产女主播在线喷水免费视频网站| 国产精品一区二区在线不卡| 纯流量卡能插随身wifi吗| 夜夜看夜夜爽夜夜摸| 免费久久久久久久精品成人欧美视频 | 亚洲精品乱久久久久久| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 成人影院久久| 丝袜喷水一区| 日韩中字成人| 秋霞在线观看毛片| 婷婷色av中文字幕| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 黄色欧美视频在线观看| 成人国产麻豆网| 国产无遮挡羞羞视频在线观看| 国产永久视频网站| 日本-黄色视频高清免费观看| 观看美女的网站| av专区在线播放| 极品人妻少妇av视频| 国产精品熟女久久久久浪| 大陆偷拍与自拍| av免费观看日本| 色婷婷久久久亚洲欧美| 麻豆成人av视频| 一级a做视频免费观看| 日本91视频免费播放| 日本与韩国留学比较| 亚洲精品日本国产第一区| 久久国产精品大桥未久av | 我要看黄色一级片免费的| av女优亚洲男人天堂| 九草在线视频观看| 国产一区亚洲一区在线观看| 亚洲国产欧美日韩在线播放 | 亚洲欧美成人综合另类久久久| 在线 av 中文字幕| 亚洲成色77777| 国产男人的电影天堂91| 免费看日本二区| 男女边摸边吃奶| 一区二区三区免费毛片| 青春草视频在线免费观看| 91aial.com中文字幕在线观看| 亚洲美女搞黄在线观看| 日日撸夜夜添| 日韩亚洲欧美综合| 国产在线免费精品| 欧美精品国产亚洲| 纯流量卡能插随身wifi吗| 亚洲激情五月婷婷啪啪| 亚洲成人手机| 伦精品一区二区三区| 日韩av免费高清视频| av在线app专区| 国产极品粉嫩免费观看在线 | av线在线观看网站| 一级,二级,三级黄色视频| 午夜91福利影院| 在线播放无遮挡| 高清av免费在线| 精品亚洲成a人片在线观看| 日本与韩国留学比较| 99久国产av精品国产电影| 欧美激情极品国产一区二区三区 | 国产爽快片一区二区三区| 在线看a的网站| 毛片一级片免费看久久久久| 91精品一卡2卡3卡4卡| 亚洲精品乱久久久久久| 久久久久久久国产电影| 久久99精品国语久久久| 国产精品嫩草影院av在线观看| 人人妻人人澡人人爽人人夜夜| 人人澡人人妻人| 久久婷婷青草| 丰满人妻一区二区三区视频av| 中文字幕亚洲精品专区| 在线观看免费日韩欧美大片 | 日韩 亚洲 欧美在线| 寂寞人妻少妇视频99o| 91精品国产国语对白视频| 亚洲在久久综合| 欧美国产精品一级二级三级 | 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| av国产久精品久网站免费入址| a级片在线免费高清观看视频| 一边亲一边摸免费视频| av在线app专区| 亚洲av成人精品一二三区| 国产精品伦人一区二区| 汤姆久久久久久久影院中文字幕| 国产精品熟女久久久久浪| 99视频精品全部免费 在线| 免费观看性生交大片5| 日日摸夜夜添夜夜添av毛片| 国国产精品蜜臀av免费| 男女无遮挡免费网站观看| 少妇人妻久久综合中文| 午夜精品国产一区二区电影| 国产亚洲5aaaaa淫片| 狂野欧美激情性bbbbbb| 男女免费视频国产| 性色avwww在线观看| 国产欧美亚洲国产| 搡老乐熟女国产| 青春草视频在线免费观看| 十分钟在线观看高清视频www | 九九爱精品视频在线观看| 最新的欧美精品一区二区| 国产精品久久久久久精品电影小说| 熟女电影av网| 免费观看的影片在线观看| 最近中文字幕2019免费版| 美女福利国产在线| 女性生殖器流出的白浆| 最近中文字幕高清免费大全6| 国产伦理片在线播放av一区| 中国国产av一级| 日韩成人伦理影院| 一级二级三级毛片免费看| 国产伦理片在线播放av一区| 美女xxoo啪啪120秒动态图| 国产毛片在线视频| 天美传媒精品一区二区| 亚洲欧美日韩东京热| 一区二区三区四区激情视频| 十八禁网站网址无遮挡 | 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 国产免费视频播放在线视频| 色94色欧美一区二区| 日韩成人av中文字幕在线观看| 人妻 亚洲 视频| 黑人猛操日本美女一级片| 丝袜喷水一区| 大码成人一级视频| 成人美女网站在线观看视频| 欧美精品国产亚洲| 久久婷婷青草| 国产视频首页在线观看| 熟女av电影| 天美传媒精品一区二区| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜| 最后的刺客免费高清国语| 九九在线视频观看精品| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 色视频在线一区二区三区| 99re6热这里在线精品视频| 人妻人人澡人人爽人人| 国产精品一区二区三区四区免费观看| 久久影院123| 久久久欧美国产精品| 国产视频首页在线观看| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱| 最近中文字幕高清免费大全6| 看免费成人av毛片| 91精品国产国语对白视频| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 最近手机中文字幕大全| 大陆偷拍与自拍| 最近中文字幕高清免费大全6| 国产av一区二区精品久久| a级毛片免费高清观看在线播放| 国产精品人妻久久久久久| 一级毛片电影观看| 熟女av电影| 日韩成人av中文字幕在线观看| 伦精品一区二区三区| 日日爽夜夜爽网站| 亚洲性久久影院| 国产高清国产精品国产三级| 91精品一卡2卡3卡4卡| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 嫩草影院新地址| 九草在线视频观看| 久久国产亚洲av麻豆专区| 黄色日韩在线| 最近手机中文字幕大全| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 亚洲精品亚洲一区二区| 热re99久久精品国产66热6| 视频区图区小说| 少妇精品久久久久久久| 国产精品欧美亚洲77777| 一个人看视频在线观看www免费|