• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graphene-based membranes for molecular and ionic separations in aqueous environments☆

    2017-05-30 10:51:26ZhuangLiuWeiWangXiaojieJuRuiXieLiangyinChu
    Chinese Journal of Chemical Engineering 2017年11期

    Zhuang Liu ,Wei Wang ,2,Xiaojie Ju ,2,Rui Xie ,2,Liangyin Chu ,2,3,*

    1 School of Chemical Engineering,Sichuan University,Chengdu 610065,China

    2 State Key Laboratory of Polymer Materials Engineering,Sichuan University,Chengdu 610065,China

    3 Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing 211816,China

    1.Introduction

    In recent decades,membrane technologies show great importance for global sustainable development in myriad fields such as solving resource shortage and environmental pollution[1-3].Particularly,to improve the decontamination of water,as well as to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water,membranes and membrane technologies are playing paramount roles[4],because separations based on membranes show fantastic features including no phase change,no additives and low energy consumption in comparison to conventional separation methods[1].However,most of currently commercial membranes are subject to a trade-off between productivity(i.e.,permeability)and efficiency(i.e.,selectivity),known as the Robeson's upper bound[2,5].To address this dilemma,state-of-the-art membrane materials are developed with fantastic ability to distinguish molecules based on size and shape by thickness-reduction approach to maximize their permeability[6,7].

    Graphene is a single atomic plane of graphite[8],which presents excellent mechanical strength,high electrical conductivity,superior thermal conductivity and other fantastic properties because of its sp2hybridized C atoms arranging in a honeycomb lattice.Rationally,the single-atom-thick graphene is considerable for acting as membrane barrier,but it is con firmed being impermeable to atoms,molecules and ions such as helium[9].Fortunately,as the derivative of graphene,graphene oxide(GO)contains pristine regions,oxidized regions,and a small fraction of holes,and has drawn great attention for assembling separation membranes with fantastic separation capabilities due to the distinctive transfer channels[10-16].The passages of the graphene-based membranes for mass transfer are generally built by two approaches.One is stacking the graphene-based sheets to form interlayer spaces,which could connect and form networks of nanocapillaries between the stacked sheets,providing passages for mass transfer.Molecules and ions could diffuse in the direction parallel in the interlayer space from the edge of the stacked sheets.The water molecules can exhibit“hyperlubricity”in the well-de fined channels of the graphene-based membranes,similar to the water-permeation mechanism as previously described for small-diameter carbon nanotubes and hydrophobic nanopores[17].The other one is creating defects on the basal plane of the graphene sheets by ion and electron irradiation[18-21]or chemical routes[10,22-24].The intrinsic defects in graphene form nanopores,which exhibit selective ionic and water transport due to ion hydration and steric effects that are sensitive to the pore size and functional groups lining the pore,analogous to biological ion channels[25-28].Conceivably,graphene-based membranes have a great deal to offer over existing technologies for desalination,ionic or organic molecular separation in the aqueous environments due to their well-defined channels with an assistance of oxygen-containing groups.

    In this review,we will highlight the recent developments of graphene-based membranes for molecular and ionic separations in aqueous environments.The mass-transfer mechanisms of graphenebased membranes in the aqueous solutions and the potential applications for desalination,organic molecular rejection and specific ionic separation are discussed.The discussion is divided into three parts.It is started with the introduction of stacked graphene-based membranes for molecular and ionic sieving and separation.Then,one-atom-thick graphene-based membranes for ionic and molecular separations are introduced.Lastly,an outlook is provided to describe the future challenges in the development and industrial use of graphene-based membranes.

    2.Stacked Graphene-based Membranes for Molecular and Ionic Separation and Sieving

    2.1.The fabrication approaches and mass-transfer mechanisms

    In general,to achieve the stacked structure,the graphene-based membranes could be fabricated by three approaches.One is making the stacked graphene-based membranes by filtration of the graphene sheets through membrane filters.The stacked membranes can be dried in air or vacuum environments,and peeled from the filters[29,30].This filtration method is not only simple and highly reproducible but also allows precise control over the thickness of stacked membranes.Another method to produce the stacked structure is by spray or spin-coating of graphene-based sheets suspensions in water due to the intrinsic repulsive edge-to-edge GO sheet interactions and face-to face attractive capillary forces created by the spin-operation[31].Furthermore,large-area stacked membranes could be prepared using a gravure printing machine with high concentration of graphenebased sheets(e.g.,about 20-60 mg·ml-1of GO sheets),which demonstrates a continuous approach for membrane production[32].

    The stacked inter-layer spacing has been proven to play a significant role in molecular transport.The stacked sheets are usually GO or chemically converted/reduced graphene.For the GO sheets,the pristine region has the similar structure as graphene,while the oxidized region has plentiful of oxygen-containing functional groups such as hydroxyl,epoxy and carboxyl groups[33].When a membrane is stacked with GO[Fig.1(a)],the oxidized groups that tend to cluster and leave large,percolating pristine regions support interlayer spaces considering as nanocapillaries ofca.0.6-0.7 nm under dry conditions[34-36].The oxidized groups could strongly hydrate with water molecules.Accordingly,when the GO membranes are immersed in aquous solution or high humidity environment,the intercalating water molecules prop up a large interlayer space to 1.2-1.3 nm,which has been con firmed by X-ray diffraction(XRD)or neutron scattering[36,37].Considering the GO sheets with a thickness of 0.34 nm,the interlayer space can be considered an empty space of highth of 0.8-1.0 nm[36].Water molecules with~0.3 nm in size can accommodate to form a monolayer or multilayer between pristine-graphene sheets due to the increased space(>0.6 nm)[Fig.1(b)],which are expected to be highly mobile[36,38].While due to hydrogen bonding and a narrower space available for diffusion,water is expected to be less mobile within the oxidized regions,which are unlikely to contribute to water permeation.Because of the network of nanocapillaries that enables to open up in the hydrated state and accept only species that fit in,GO membrane enables to separate the molecules and ions according to their hydrated radius in the aqueous environment.The intercalating water blocks the nanocapillaries,as a result,small species with a hydrated radius of<0.45 nm,such as Na+,K+or Mg2+,could permeate through the membranes with fast rates accompanied by the assistance of intercalating water layer.Whereas,large ions and organic molecules,such as acetone,hexane,ethanol,and propanol,exhibit no detectable permeation[36,39].Thus,the GO membranes presenta kind of valuable material candidates for separation and filtration technologies,e.g.,desalination,organic compounds-containing wastewater treatment,or dewatering.

    With partly or mildly reduced graphene stacking a membrane[40],the mass-transfer mechanism of such membrane is analogous to the GO membrane beacuese of the existence of the oxidized groups on the sheets[36,40].When the GO sheets is reduced under violent condition,the chemically converted graphene(CCG)is corrugated due to the presence of some sp3hybridized carbon atoms and topological defects[41].Thus,stacking of CCG sheets would result in the formation of fuzzy nanochannels through the membrane,making the membrane permeable[Fig.1(c)].The amplitude of corrugation of CCG sheets can be controlled,and they become more corrugated in water simply by hydrothermal treatment at elevated temperatures[41].The water permeation rate increases with increasing the corrugation degree[41,42].

    2.2.The stability in aqueous solutions and space adjustment

    Fig.1.Schematic diagram for the structures of graphene-based membranes stacked with GO sheets(a,b)and CCG sheets(c)[36,41].

    The stacked GO membranes may suffer from instability in the water due to the high hydrophilicity of GO sheets,and even could disintegrate in water.Recently,Yehet al.[43]investigated the origin of the structural stability of GO membranes in water.They fabricated freestanding GO membranesviavacuum-assisted filtering GO dispersions on anodized aluminum oxide(AAO) filter discs and Teflon micro filters respectively.The stability of the both GO membrane in water is completely different[Fig.2(a)],because the oxidized groups on the GO sheets form hydration with water molecules.When immersed in water,the hydrogen bonding between water and hydroxyl/epoxy groups can provide strong repulsive hydration forces to separate the GO sheets from each other[33,44,45].Furthermore,the carboxyl groups become negatively charged on hydration and could afford electrostatic repulsion among GO sheets to make the GO(Teflon)membranes disintegrated in water.While,with AAO filter disk to prepare GO membranes,a lot of Al3+released from the AAO filters during the filtration can effectively crosslink the GO sheets and strengthen the stability of resultant GO membranes in water[43].Multivalent ions enable to bind readily to oxygen functional groups on GO sheets[Fig.2(b)].For example,Mg2+,Ca2+,Al3+and borate anions could chemically crosslink the GO sheets to enhance the stability of stacked GO membranes[43,46,47].However,these crosslinked Go membranes with metal ions may suffer from instability in acid or base solutions[45].Alternatively,some other molecules such as glutaraldehyde[48],alkylamines[49],1,3,5-benzenetricarbonyl trichloride[50],dopamine[51],benzimidazole[52],diamine[53],polyallylamine[54],poly(vinyl alcohol)and poly(methyl methacrylate)[55],could covalently crosslink adjacent GO nanosheets in the GO membranes[Fig.2(c)].Building interlayer cross-linking between the GO sheetsviamolecules not only enhences the mechanical strength and the water-based stablity but also adjusts the GO spacing through sandwiching appropriately sized spacers between GO nanosheets[56].

    Fig.2.(a)Photographs showing the stability of GO membranes vacuum- filtrated through Te flon and AAO micro filters in water,in which the GO(Teflon)membrane rapidly disintegrates in water,while the GO(AAO)membrane remains intact[43].(b)Scheme of the GO membrane with metalionic bonding,in which connections between GO sheets and metalions enhance the mechanical properties and stability of GO membrane with metal ion binding[46].(c)Scheme of building interlayer cross-linking between the GO sheets with molecules such as 1,3,5-benzenetricarbonyl trichloride[50].

    The approach of increasingπ-π interactions between GO sheets also could significantly improve the stability of stacked GO membranes in aquesous environments[45].By constructing orderly lamellar nanostructure of GO membranes doped with partially reduced graphene oxide(prGO)sheets,the GO membranes are with both extraordinary stabilities in water,acid,and base solutions as well as regularly controllable lamellar spacings[45].The enhencement of stability of GO membranes will expand their application scope and provide better performances in their applications with aqueous solution environments.

    2.3.Applications for separations

    The stacked GO-based membrane is demonstrated as an efficient separation membrane with promise for applications in molecular and ionic separations in aqueous environments.Joshiet al.[39]investigated selective mass transport through the stacked GO membranes preparedviavacuum filtration.Using a U-shaped tube,which was divided into feed and permeation compartments by the GO membrane[Fig.3(a)],they measured permeation rates of different molecules including glycerol,toluene,ethanol,benzene and dimethyl sulfoxide,and no permeation could be detected over a period of many weeks by monitoring liquid levels and using chemical analysis.Then,the feed compartment is filled with various solutions including ions and organic molecules to determine whether any of the solutes could permeate into the deionized water on the other side of the GO membrane.Several salt solutions with different ion sizes are employed to examine the ion permeability through GO membranes as a function of ionic size.As shown in Fig.3(b),the stacked GO membrane blocks all solutes with hydrated radii larger than 0.45 nm.Smaller ions permeate through the membranes at rates thousands of times faster than what is expected for simple diffusion[39].This behavior is caused by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in,which enable precise,superfast sieving of ions and molecules by size,as well as desalination.

    Fig.3.(a)Photograph of a piece of GO membrane covering a 1-cm aperture in copper foil and the setup for molecular sieving experiments.(b)Permeation rates of various solutes through 5 μm-thick GO membranes with 1 mol·L-1 feed solution as a function of the hydrated radii.No permeation could be detected for the solutes in the gray area[39].

    Fig.4.(a)Schematic of hollow fiber GO membrane for selective water permeation of aqueous dimethyl carbonate solution(Inset:SEM image of cross-section of the hollow fiber GO membrane).(b)The water content in permeate showing the separation performance of the GO membrane for dehydration of water-containing dimethyl carbonate solution[57].

    Huang and Jinet al.[57]prepared GO membrane supported on a ceramic hollow fiber by a vacuum suction method to separate water from dimethyl carbonate(DMC)/water mixtures by using a pervaporation process[Fig.4(a)].In this work,three different concentrations of DMC/water mixtures were studied,i.e.,1%,2%,and 2.6%feed water content by mass.The separation performance is improved under higher feed water content.As shown in Fig.4(b),at 25°C and 2.6 wt%feed water content,the permeate water content reaches 95.2 wt%with a high permeation flux(1702 g·m-2·h-1).This GO membrane exhibited excellent water permeation for dimethyl carbonate/water mixtures due to the typical solution-diffusion mechanism.Because of the presence of oxidized groups for hydrogen bonding with water,GO can combine water more preferentially than DMC,and also the diffusivity of water is much faster than that of other molecules.Thus,selective and fast permeation of water is resulted from contributions of both enhanced diffusivity and solubility,making the membranes promising candidates for dehydration applications.

    Hanet al.[40]fabricated ultrathin chemically converted graphene nanofiltration membranes on microporous substrates for water treatment of rejecting organic pollutant such as methyl blue and direct red.Differing from reduced GO synthesized using a strong reduction agent such as hydrazine,the base-re fluxing reduced GO(bRGO)was partially reduced by adding base solution such as NaOH or KOH.The membranes prepared by bRGO showed high retention(>99%)for organic dyes and moderate retention(ca.20%-60%)for ion salts due to the physical sieving and electrostatic interaction.Moreover,oxygen moieties in hydrophilic domains that impede the transport of water due to the strong interaction are decreased,leaving more domains without any oxygen functional groups for the rapid water transport.

    3.Atomically Thick Graphene-based Membranes for Ionic Separation

    3.1.Desalination

    Different from that in the stacked graphene-based membranes,the mass transport routes in the atomically thick graphene membranes are the etched nanometer-sized pores.A number of theoretical studies have suggested that the selectivity and permeability of such membranes could be vastly superior to the polymer-based filtration membranes because of its one-atom thickness[58-63].

    Cohen-TanugiandGrossmaninsimulated the transport by classical molecular dynamics and reported that the nanometer-scale pores in a single-layer freestanding graphene can effectively separate salt from waterforuse in desalination systems[Fig.5(a)][60].The computational results indicate that the desalination performance of such single-layer membranes as a function of pore size,chemical functionalization and applied pressure,and the nanoporous graphene membranes'ability to prevent the salt passage depends critically on the pore diameter and properly sized pores allow for flowing water while blocking ions.The hydroxyl groups bonded to the edges of graphene pores can roughly double the water flux due to their hydrophilic characters[Fig.5(b)].The increase in water flux comes at the expense of less consistent salt rejection performance,which is attribute to the ability of hydroxylfunctional groups to substitute for water molecules in the hydration shell of the ions.Compared with the existing reverse osmosis(RO)membranes,the functionalized nanoporous graphene membranes exhibit full salt rejection in theory.As shown in the Fig.5(c),the calculated water permeability of 66 L·cm-2·d-1·MPa-1through the nanoporous graphene is 2-3 orders of magnitude higher than the conventional RO membranes.Theoretical studies indicated that the performance of such nanoporous graphene membranes could be superior to current polymer-based filtration membranes for water purification.

    Fig.5.(a)Hydrogenated(top left)and hydroxylated(top right)graphene pores,and side view(bottom)of the computational system of Cohen-Tanugi and Grossmanin.(b)Computed water permeability for nanoporous graphene functionalized with hydrogen and hydroxyl groups for various pore sizes,in which water permeability scales roughly linearly with the area of hydroxylated or hydrogenated pores.(c)Performance chart for functionalized nanoporous graphene versus existing technologies[60].

    Recently,experimental works has been carried out on the usage of nanoporous graphenes for water desalination[64,65].Surwadeet al.[65]created nanoscale pores in a layer of graphene by oxygen plasma etching in order to validate the effectiveness of graphene-based desalination of water,and the results exhibited both high salt rejection and exceptionally rapid water transport properties.By exposing to oxygen plasma with only 0.5 s,the D peak intensity rose to one-third of that for the G peak indicated by the Raman spectra(ID/IG≈0.333),in which theID/IGratio has been extensively used as a measure of the integrity of graphene for measuring the defects.After a longer exposure of 6 s,the 2D peak completely disappeared and the D and G peaks broadened to resemble those ofa disordered carbon material,indicating significant defect formation[Fig.6(a)].Using aberration corrected scanning transmission electron microscopy(STEM)imaging[Fig.6(b)],the pore density and size of the graphene membrane are con firmed,which correlate the trans-membrane transport properties.The plasma-etched graphene membranes show rapid water passage,with the rate of water transport dependent on the plasma etching time,i.e.,the density and size of the nanopores[Fig.6(c)].Membranes with larger pore densities do not show the asymmetric water flux,pointing to their non-selective nature.It can be rationalized by binding of ions to the nanopores,which effectively block the water flux.While the salt rejection of the low-defect-density membranes is exceptionally high.The selectivity of the porous graphene membrane withID/IG≤0.5 is 105,which corresponds to nearly 100%salt rejection[Fig.6(d)].With the optimum pore size,the membranes exhibit a salt rejection rate of nearly 100%and rapid water transport.In particular,water fluxes of up to 106g·m-2·s-1at40°C are measured using pressure difference as a driving force,while water fluxes measured using osmotic pressure as a driving force does not exceed 700 g·m-2·s-1·MPa-1.To date,both theoretical and experimental works represent the proofs of the effectiveness and potential of atomically thick graphene-based membranes as next-generation materials for desalination applications[66].

    3.2.Specific separations

    Several works have reported that the graphene nanopores could be tuned to selectively transport cations or anions by chemical modifications[59,67].By simulation,the F-N-pore in graphene is terminated by negatively charged nitrogens and fluorines,favoring the passage of cations.The H-pore is terminated by positively charged hydrogens,favoring the passage of anions[59].Rollingset al.performed the cation selectivity of graphene nanopores by experiments[67].The single graphene nanopores with 20 nm in diameter created by electrical pulse method preferentially permit the passage of K+cations over Clanions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations.The K+/Clselectivity can be explained by elevated concentrations of mobile cations near the graphene surface.

    Compared with the separation of cations and anions,the discrimination of the ions with the same charge,similar hydration properties and ionic radii such as Na+and K+is more challenging[68,69].Inspired by the biological protein channels,which have many remarkable properties such as gating,high permeability and selectivity,Heand Corryet al.designed a biomimetic Na+or K+-selective graphene nanopore using molecular dynamics simulations by altering the pore size and the chemical nature of the pore rim[67].Under a transmembrane voltage bias,a nanopore containing four carbonyl groups preferentially conducts K+over Na+due to an ~2.9 kJ·mol-1higher energy barrier of Na+than K+.While the nanopore functionalized by four negatively charged carboxylate groups selectively binds Na+but transports K+over Na+,because of its stronger affinity(by 4.3 kJ·mol-1)for Na+.Interestingly,when the nanopore contains three carboxylate groups,it shows a voltage-dependent selectivity,which can be tuned by changing the magnitude of the applied voltage bias.For such nanopore,under lower voltage bias,it transports ions in a single- file mannerand exhibits Na+selectivity,dictated by the knock-on ion conduction and selective blockage by Na+.While under higher voltage bias,the nanopore is K+-selective,as Na+no longer blocks the pore.Guo and Leeet al.calculated the maximum electrostatic potential of the crown ether embedded in graphene[70].The images of the atomic con figurations of what they calculate to be the most stable oxygen atoms incorporated in graphene are directly obtained using aberration-corrected scanning transmission electron.The calculations indicate that the crown ether con figurations in graphene should exhibit selectivity for different cations depending on the crown ether ring size,a key property of individual crown ether molecules,but have the added property of being rigid and planar,prized features sought in pre-organized receptors for selective ion binding.However,these calculation results still need experimental verifications.

    Fig.6.(a)Raman spectra(514 nm excitation)of suspended graphene after different exposure times to oxygen plasma.(b)Aberration-corrected STEM images of graphene after 1.5 s exposure to oxygen plasma,in which pores with characteristic dimensions of~1 nm are clearly seen.(c)Water loss after 24 h and ionic conductivity through the same porous graphene membranes etched at various exposure times.(d)Water/salt selectivity as a function of I D/I G ratio showing exceptionally high salt rejection rate for optimum etching time[65].

    The experimental performances of both stacked graphene-based membranes and atomically thick graphene-based membranes for ionic separations are summarized in Table 1.The graphene-based membranes show extraordinary permeability and selectivity.However,compared with the calculated results,the experimental performances of the graphene-based membranes for ionic separation still have enormous potential to be enhanced,particularly in the separation of ions with the same charge,and similar hydration properties and ionic radii.

    Table 1Experimental performances of graphene-based membranes for ionic separations

    4.Conclusions and Outlook

    In summary,membrane-based separations have been increasingly applied to address the global challenges such water scarcity and the pollution of aquatic environments.High permeability and selectivity of separations are the keys to membranes suitable for applications.At this point,graphene and its functionalized analogue,GO,CCG,prGO are attractive materials for next-generation membranes due to the atomic thickness,mechanical strength and chemical stability.By fantastic creation of the channel for mass transfer,i.e.,stacking the graphene-based sheets to form interlayer spaces,or generating defects on the basal plane of the graphene sheets,the graphene-based membranes can separate molecules and ions with high precision in aqueous environments.However,there are still several important issues need to be solved before large-scale applications.(1)One of the key challenges in the development of graphene-based membranes is how to achieve controllable and industrial-scale productions.For the stacked graphene-based membranes,although some technologies such as filtration method,coating approach and printing strategy have been developed,industrial manufacture techniques are still challenging.The fabricating equipment for graphene-based membranes is different from existing ones,and thus should be re-developed.For the atomically thick graphene-based membranes,the difficulty lies in the fabrication of pores with precise dimensions and featured functional group.(2)Moreover,the separation mechanism of the atomically thick graphene-based membranes has to be studied more intensely.Although simulation is used to explore the mechanism of molecular permeation and various theories have been put forward,certain discrepancies still exist between theoretical and experimental results,and some theoretical works should be verified by experimental results[68-70].(3)Further studies to understand the evolution of membrane performance for long-term use in water under some harsh operation conditions should also be carried out before practical applications.

    [1]W.J.Koros,Evolving beyond the thermal age of separation processes:Membranes can lead the way,AIChE J.50(10)(2004)2326-2334.

    [2]D.L.Gin,R.D.Noble,Designing the next generation of chemical separation membranes,Science332(6030)(2011)674-676.

    [3]B.E.Logan,M.Elimelech,Membrane-based processes for sustainable power generation using water,Nature488(7411)(2012)313-319.

    [4]M.A.Shannon,P.W.Bohn,M.Elimelech,J.G.Georgiadis,B.J.Marinas,A.M.Mayes,Science and technology for water purification in the coming decades,Nature452(7185)(2008)301-310.

    [5]L.M.Robeson,The upper bound revisited,J.Membr.Sci.320(1)(2008)390-400.

    [6]S.Karan,Z.Jiang,A.G.Livingston,Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation,Science348(6241)(2015)1347-1351.

    [7]G.P.Liu,W.Q.Jin,N.P.Xu,Two-dimensional-material membranes:A new family of high-performance separation membranes,Angew.Chem.Int.Ed.55(2016)2-16.

    [8]A.K.Geim,Graphene:Status and prospects,Science324(5934)(2009)1530-1534.

    [9]J.S.Bunch,S.S.Verbridge,J.S.Alden,A.M.Van Der Zande,J.M.Parpia,H.G.Craighead,P.L.McEuen,Impermeable atomic membranes from graphene sheets,Nano Lett.8(8)(2008)2458-2462.

    [10]W.Yuan,J.Chen,G.Shi,Nanoporous graphene materials,Mater.Today17(2)(2014)77-85.

    [11]G.Liu,W.Jin,N.Xu,Graphene-based membranes,Chem.Soc.Rev.44(15)(2015)5016-5030.

    [12]C.Sun,B.Wen,B.Bai,Recent advances in nanoporous graphene membrane for gas separation and water purification,Sci.Bull.60(21)(2015)1807-1823.

    [13]D.An,L.Yang,T.J.Wang,B.Liu,Separation performance of graphene oxide membrane in aqueous solution,Ind.Eng.Chem.Res.55(17)(2016)4803-4810.

    [14]Q.Xu,H.Xu,J.Chen,Y.Lv,Dong C.Sreeprasad,T.S.,Graphene and graphene oxide:Advanced membranes for gas separation and water purification,Inorg.Chem.Front.2(5)(2015)417-424.

    [15]M.Miculescu,V.K.Thakur,F.Miculescu,S.I.Voicu,Graphene-based polymer nanocomposite membranes:A review,Polym.Adv.Technol.27(2016)844-859.

    [16]P.Sun,K.Wang,H.Zhu,Recent developments in graphene-based membranes:Structure,mass-transport mechanism and potential applications,Adv.Mater.28(2016)2287-2310.

    [17]A.Alexiadis,S.Kassinos,Molecular simulation of water in carbon nanotubes,Chem.Rev.108(12)(2008)5014-5034.

    [18]M.Krueger,S.Berg,D.A.Stone,E.Strelcov,D.A.Dikin,J.Kim,L.J.Cote,J.X.Huang,A.Kolmakov,Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples,ACS Nano5(12)(2011)10047-10054.

    [19]C.J.Russo,J.A.Golovchenko,Atom-by-atom nucleation and growth of graphene nanopores,Proc.Natl.Acad.Sci.U.S.A.109(16)(2012)5953-5957.

    [20]D.Zhou,Y.Cui,P.W.Xiao,M.Y.Jiang,B.H.Han,A general and scalable synthesis approach to porous graphene,Nat.Commun.5(2014)4716.

    [21]R.C.Rollings,A.T.Kuan,J.A.Golovchenko,Ion selectivity of graphene nanopores,Nat.Commun.7(2016)11408.

    [22]X.Zhao,C.M.Hayner,M.C.Kung,H.H.Kung,Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications,ACS Nano5(11)(2011)8739-8749.

    [23]Y.Yamada,K.Murota,R.Fujita,J.Kim,A.Watanabe,M.Nakamura,S.Sato,K.Hata,P.Ercius,J.Ciston,C.Y.Song,K.Kim,W.Regan,W.Gannett,A.Zettl,Subnanometer vacancy defects introduced on graphene by oxygen gas,J.Am.Chem.Soc.136(6)(2014)2232-2235.

    [24]Y.Xu,Z.Lin,X.Zhong,X.Huang,N.O.Weiss,Y.Huang,X.Duan,Holey graphene frameworks for highly efficient capacitive energy storage,Nat.Commun.5(2014)4554.

    [25]K.Sint,B.Wang,P.Král,Selective ion passage through functionalized graphene nanopores,J.Am.Chem.Soc.130(49)(2008)16448-16449.

    [26]Z.He,J.Zhou,X.Lu,B.Corry,Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+and K+,ACS Nano7(11)(2013)10148-10157.

    [27]S.Zhao,J.Xue,W.Kang,Ion selection of charge-modified large nanopores in a graphene sheet,J.Chem.Phys.139(11)(2013)114702.

    [28]S.C.O'Hern,M.S.Boutilier,J.C.Idrobo,Y.Song,J.Kong,T.Laoui,M.Atieh,R.Karnik,Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes,Nano Lett.14(3)(2014)1234-1241.

    [29]D.A.Dikin,S.Stankovich,E.J.Zimney,R.D.Piner,G.H.Dommett,G.Evmenenko,S.T.Nguyen,R.S.Ruoff,Preparation and characterization of graphene oxide paper,Nature448(7152)(2007)457-460.

    [30]L.Qiu,X.Zhang,W.Yang,Y.Wang,G.P.Simon,D.Li,Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration,Chem.Commun.47(20)(2011)5810-5812.

    [31]H.W.Kim,H.W.Yoon,S.M.Yoon,B.M.Yoo,B.K.Ahn,Y.H.Cho,H.J.Shin,H.Yang,U.Paik,S.Kwon,J.Y.Choi,H.B.Park,Selective gas transport through few-layered graphene and graphene oxide membranes,Science342(6154)(2013)91-95.

    [32]A.Akbari,P.Sheath,S.T.Martin,D.B.Shinde,M.Shaibani,P.C.Banerjee,R.Tkacz,D.Bhattacharyya,M.Majumder,Large-area graphene-based nano filtration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide,Nat.Commun.7(2016)10891.

    [33]D.R.Dreyer,S.Park,C.W.Bielawski,R.S.Ruoff,The chemistry of graphene oxide,Chem.Soc.Rev.39(1)(2010)228-240.

    [34]N.R.Wilson,P.A.Pandey,R.Beanland,R.J.Young,I.A.Kinloch,L.Gong,Z.Liu,K.Suenaga,J.P.Rourke,S.J.York,J.Sloan,Graphene oxide:Structural analysis and application as a highly transparent support for electron microscopy,ACS Nano3(9)(2009)2547-2556.

    [35]G.Eda,M.Chhowalla,Chemically derived graphene oxide:Towards large-area thinfilm electronics and optoelectronics,Adv.Mater.22(22)(2010)2392-2415.

    [36]R.R.Nair,H.A.Wu,P.N.Jayaram,I.V.Grigorieva,A.K.Geim,Unimpeded permeation of water through helium-leak-tight graphene-based membranes,Science335(6067)(2012)442-444.

    [37]A.Buchsteiner,A.Lerf,J.Pieper,Water dynamics in graphite oxide investigated with neutron scattering,J.Phys.Chem.B110(45)(2006)22328-22338.

    [38]N.Giovambattista,P.J.Rossky,P.G.Debenedetti,Phase transitions induced by nanoconfinement in liquid water,Phys.Rev.Lett.102(5)(2009),050603.

    [39]R.K.Joshi,P.Carbone,F.C.Wang,V.G.Kravets,Y.Su,I.V.Grigorieva,H.A.Wu,A.K.Geim,R.R.Nair,Precise and ultrafast molecular sieving through graphene oxide membranes,Science343(6172)(2014)752-754.

    [40]Y.Han,Z.Xu,C.Gao,Ultrathin graphene nanofiltration membrane for water purification,Adv.Funct.Mater.23(29)(2013)3693-3700.

    [41]L.Qiu,X.Zhang,W.Yang,Y.Wang,G.P.Simon,D.Li,Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration,Chem.Commun.47(20)(2011)5810-5812.

    [42]H.Liu,H.Wang,X.Zhang,Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification,Adv.Mater.27(2)(2015)249-254.

    [43]C.N.Yeh,K.Raidongia,J.Shao,Q.H.Yang,J.Huang,On the origin of the stability of graphene oxide membranes in water,Nat.Chem.7(2)(2015)166-170.

    [44]Y.Liang,H.Hilal,P.Langston,V.Starov,Interaction forces between colloidal particles in liquid:Theory and experiment,Adv.Colloid Interf.Sci.134-135(2007)151-166.

    [45]Y.H.Xi,J.Q.Hu,Z.Liu,R.Xie,X.J.Ju,W.Wang,L.Y.Chu,Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing,ACS Appl.Mater.Interfaces8(24)(2016)15557-15566.

    [46]S.Park,K.S.Lee,G.Bozoklu,W.Cai,S.T.Nguyen,R.S.Ruoff,Graphene oxide papers modified by divalent ions-enhancing mechanical propertiesviachemical crosslinking,ACS Nano2(3)(2008)572-578.

    [47]Z.An,O.C.Compton,K.W.Putz,L.C.Brinson,S.T.Nguyen,Bio-inspired borate crosslinking in ultra-stiff graphene oxide thin films,Adv.Mater.23(33)(2011)3842-3846.

    [48]Y.Gao,L.Q.Liu,S.Z.Zu,K.Peng,D.Zhou,B.H.Han,Z.Zhang,The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers,ACS Nano5(3)(2011)2134-2141.

    [49]S.Stankovich,D.A.Dikin,O.C.Compton,G.H.B.Dommett,R.S.Ruoff,S.T.Nguyen,Systematic post-assembly modification of graphene oxide paper with primary alkylamines,Chem.Mater.22(14)(2010)4153-4157.

    [50]M.Hu,B.X.Mi,Enabling graphene oxide nanosheets as water separation membranes,Environ.Sci.Technol.47(8)(2013)3715-3723.

    [51]Y.Tian,Y.Cao,Y.Wang,W.Yang,J.Feng,Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers,Adv.Mater.25(21)(2013)2980-2983.

    [52]Y.Cui,Q.Y.Cheng,H.Wu,Z.Wei,B.H.Han,Graphene oxide-based benzimidazolecrosslinked networks for high-performance super capacitors,Nanoscale5(18)(2013)8367-8374.

    [53]W.S.Hung,C.H.Tsou,M.De Guzman,Q.F.An,Y.L.Liu,Y.M.Zhang,C.C.Hu,K.R.Lee,J.Y.Lai,Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varyingd-spacing,Chem.Mater.26(9)(2014)2983-2990.

    [54]S.Park,D.A.Dikin,S.T.Nguyen,R.S.Ruoff,Graphene oxide sheets chemically crosslinked by polyallylamine,J.Phys.Chem.C113(36)(2009)15801-15804.

    [55]K.W.Putz,O.C.Compton,M.J.Palmeri,S.T.Nguyen,L.C.Brinson,High-nano filler content graphene oxide-polymer nanocomposites via vacuum-assisted selfassembly,Adv.Funct.Mater.20(19)(2010)3322-3329.

    [56]B.Mi,Graphene oxide membranes for ionic and molecular sieving,Science343(6172)(2014)740-742.

    [57]K.Huang,G.Liu,Y.Lou,Z.Dong,J.Shen,W.Jin,A graphene oxide membrane with highly selective molecular separation of aqueous organic solution,Angew.Chem.Int.Ed.53(27)(2014)6929-6932.

    [58]Anonymous,Graphene opens up to new applications,Nat.Nanotechnol.10(5)(2015)381.

    [59]K.Sint,B.Wang,P.Král,Selective ion passage through functionalized graphene nanopores,J.Am.Chem.Soc.130(49)(2008)16448-16449.

    [60]D.Cohen-Tanugi,J.C.Grossman,Water desalination across nanoporous graphene,Nano Lett.12(7)(2012)3602-3608.

    [61]D.Konatham,J.Yu,T.A.Ho,A.Striolo,Simulation insights for graphene-based water desalination membranes,Langmuir29(38)(2013)11884-11897.

    [62]D.Cohen-Tanugi,R.K.McGovern,S.H.Dave,J.H.Lienhard,J.C.Grossman,Quantifying the potential of ultra-permeable membranes for water desalination,Energy Environ.Sci.7(3)(2014)1134-1141.

    [63]D.Cohen-Tanugi,J.C.Grossman,Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination,J.Chem.Phys.141(7)(2014),074704.

    [64]S.C.O'Hern,M.S.Boutilier,J.C.Idrobo,Y.Song,J.Kong,T.Laoui,M.Atieh,R.Karnik,Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes,Nano Lett.14(3)(2014)1234-1241.

    [65]S.P.Surwade,S.N.Smirnov,I.V.Vlassiouk,R.R.Unocic,G.M.Veith,S.Dai,S.M.Mahurin,Water desalination using nanoporous single-layer graphene,Nat.Nanotechnol.10(5)(2015)459-464.

    [66]J.R.Werber,C.O.Osuji,M.Elimelech,Materials for next-generation desalination and water purification membranes,Nat.Rev.Mater.1(5)(2016)16018.

    [67]R.C.Rollings,A.T.Kuan,J.A.Golovchenko,Ion selectivity of graphene nanopores,Nat.Commun.7(2016)11408.

    [68]Z.He,J.Zhou,X.Lu,B.Corry,Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+and K+,ACS Nano7(11)(2013)10148-10157.

    [69]Y.Kang,Z.Zhang,H.Shi,J.Zhang,L.Liang,Q.Wang,H.Agren,Y.Tu,Na+and K+ion selectivity by size-controlled biomimetic graphene nanopores,Nanoscale6(18)(2014)10666-10672.

    [70]J.Guo,J.Lee,C.I.Contescu,N.C.Gallego,S.T.Pantelides,S.J.Pennycook,B.A.Moyer,M.F.Chisholm,Crown ethers in graphene,Nat.Commun.5(2014)5389.

    [71]Z.Jia,W.Shi,Tailoring permeation channels of graphene oxide membranes for precise ion separation,Carbon101(2016)290.

    [72]Z.Li,Y.Liu,Y.Zhao,X.Zhang,L.Qian,L.Tian,J.Bai,W.Qi,H.Yao,B.Gao,J.Liu,W.Wu,H.Qiu,Selective separation of metal ions via monolayer nanoporous graphene with carboxyl groups,Anal.Chem.88(2016)10002.

    [73]M.Y.Lim,Y.S.Choi,J.Kim,K.Kim,H.Shin,J.J.Kim,D.M.Shin,J.C.Lee,Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine,J.Membr.Sci.521(2017)1.

    [74]P.Sun,H.Liu,K.Wang,M.Zhong,D.Wu,H.Zhu,Selective ion transport through functionalized graphene membranes based on delicate ion-graphene interactions,J.Phys.Chem.C118(2014)19396.

    汤姆久久久久久久影院中文字幕| 亚洲精品色激情综合| 三上悠亚av全集在线观看| 视频区图区小说| 波多野结衣一区麻豆| 亚洲美女黄色视频免费看| 视频在线观看一区二区三区| 欧美xxⅹ黑人| 黑丝袜美女国产一区| 两个人免费观看高清视频| 精品一区二区三卡| 欧美变态另类bdsm刘玥| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区二区三区精品91| 亚洲熟女精品中文字幕| 日韩伦理黄色片| 日韩三级伦理在线观看| 黑人欧美特级aaaaaa片| 亚洲国产精品一区三区| 亚洲成人手机| 午夜激情久久久久久久| 在线看a的网站| 国产精品成人在线| 女人精品久久久久毛片| 日韩不卡一区二区三区视频在线| 中文字幕人妻丝袜制服| 久久免费观看电影| 99香蕉大伊视频| 丝袜人妻中文字幕| av免费观看日本| 亚洲精品久久久久久婷婷小说| 国产福利在线免费观看视频| 国产 一区精品| 高清av免费在线| 在线观看美女被高潮喷水网站| 2021少妇久久久久久久久久久| 欧美成人午夜精品| av线在线观看网站| 精品一品国产午夜福利视频| 伦精品一区二区三区| 成人亚洲精品一区在线观看| 免费av不卡在线播放| 纵有疾风起免费观看全集完整版| 熟女电影av网| 天天操日日干夜夜撸| 插逼视频在线观看| 精品福利永久在线观看| 午夜日本视频在线| 一区二区三区精品91| 成人国产麻豆网| 免费不卡的大黄色大毛片视频在线观看| av又黄又爽大尺度在线免费看| 九色成人免费人妻av| 青春草亚洲视频在线观看| 久久97久久精品| 少妇猛男粗大的猛烈进出视频| 国产免费一区二区三区四区乱码| av电影中文网址| 一二三四在线观看免费中文在 | 在线观看www视频免费| 国产在线一区二区三区精| 午夜免费观看性视频| 国产成人午夜福利电影在线观看| 人人妻人人爽人人添夜夜欢视频| videosex国产| 国产女主播在线喷水免费视频网站| 男女啪啪激烈高潮av片| 日韩精品有码人妻一区| 午夜福利影视在线免费观看| 秋霞伦理黄片| 日韩av不卡免费在线播放| 精品久久国产蜜桃| 另类精品久久| 欧美变态另类bdsm刘玥| 免费女性裸体啪啪无遮挡网站| 日韩欧美一区视频在线观看| 秋霞在线观看毛片| 女的被弄到高潮叫床怎么办| 狠狠精品人妻久久久久久综合| 自线自在国产av| 91成人精品电影| 考比视频在线观看| 夫妻性生交免费视频一级片| 在线看a的网站| 免费在线观看黄色视频的| 99热网站在线观看| 国产男人的电影天堂91| 久久午夜综合久久蜜桃| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕在线视频| 九九爱精品视频在线观看| 亚洲少妇的诱惑av| 国产xxxxx性猛交| 伦精品一区二区三区| 亚洲精华国产精华液的使用体验| 少妇的逼水好多| 久久国产亚洲av麻豆专区| videosex国产| 中文天堂在线官网| 免费播放大片免费观看视频在线观看| 国国产精品蜜臀av免费| 黄片播放在线免费| 久久午夜综合久久蜜桃| av有码第一页| 99视频精品全部免费 在线| 国产免费一级a男人的天堂| 最新的欧美精品一区二区| 婷婷色综合大香蕉| 亚洲一级一片aⅴ在线观看| 丰满乱子伦码专区| 国产免费一区二区三区四区乱码| 91精品伊人久久大香线蕉| 97精品久久久久久久久久精品| 亚洲图色成人| 精品人妻一区二区三区麻豆| 男男h啪啪无遮挡| 欧美 亚洲 国产 日韩一| 美女内射精品一级片tv| 五月天丁香电影| 国产色爽女视频免费观看| 色94色欧美一区二区| 91aial.com中文字幕在线观看| 国产国拍精品亚洲av在线观看| 热re99久久国产66热| 亚洲成人一二三区av| 欧美激情 高清一区二区三区| 中文字幕人妻丝袜制服| 中文字幕人妻熟女乱码| 免费av不卡在线播放| 在线观看一区二区三区激情| 久久久欧美国产精品| 久久精品国产亚洲av涩爱| 国产精品国产av在线观看| 97在线人人人人妻| 精品视频人人做人人爽| 亚洲国产精品999| 久久久亚洲精品成人影院| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 亚洲第一av免费看| 九草在线视频观看| 国产免费福利视频在线观看| 少妇被粗大猛烈的视频| 大码成人一级视频| 国产成人av激情在线播放| 大香蕉97超碰在线| 国产欧美日韩一区二区三区在线| 亚洲欧美色中文字幕在线| 成人免费观看视频高清| 国产熟女午夜一区二区三区| 免费av中文字幕在线| 人人澡人人妻人| 国产免费视频播放在线视频| 2021少妇久久久久久久久久久| 在线观看www视频免费| 国产色婷婷99| 亚洲国产日韩一区二区| 国产女主播在线喷水免费视频网站| 久久久久精品久久久久真实原创| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 成人二区视频| 最近中文字幕高清免费大全6| 51国产日韩欧美| 在线观看免费视频网站a站| 大陆偷拍与自拍| 亚洲av成人精品一二三区| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 宅男免费午夜| 免费高清在线观看视频在线观看| 一区二区av电影网| 高清不卡的av网站| 999精品在线视频| 热99久久久久精品小说推荐| 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 咕卡用的链子| 成年av动漫网址| 精品酒店卫生间| 免费人妻精品一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 黑丝袜美女国产一区| 国产黄频视频在线观看| 激情五月婷婷亚洲| 水蜜桃什么品种好| 久久久精品免费免费高清| 国产成人精品在线电影| 国产精品国产三级专区第一集| 亚洲内射少妇av| 久久ye,这里只有精品| 国产精品国产三级专区第一集| 久久精品国产自在天天线| 国产精品国产三级国产av玫瑰| 在线观看美女被高潮喷水网站| 亚洲精品456在线播放app| 国产精品国产av在线观看| 欧美精品一区二区大全| 欧美精品国产亚洲| 好男人视频免费观看在线| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| videossex国产| 另类精品久久| 尾随美女入室| 亚洲欧美一区二区三区黑人 | 18+在线观看网站| 亚洲美女搞黄在线观看| 欧美激情 高清一区二区三区| 男的添女的下面高潮视频| 观看av在线不卡| 巨乳人妻的诱惑在线观看| 国产日韩欧美在线精品| 少妇高潮的动态图| 最黄视频免费看| 亚洲精品日韩在线中文字幕| 在线精品无人区一区二区三| 只有这里有精品99| 亚洲国产av影院在线观看| 国产精品一区二区在线观看99| 国产免费福利视频在线观看| 久久精品国产自在天天线| 日本av手机在线免费观看| 少妇熟女欧美另类| 少妇被粗大的猛进出69影院 | 久久99蜜桃精品久久| 欧美精品av麻豆av| 欧美精品亚洲一区二区| 黄色一级大片看看| 两个人看的免费小视频| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 亚洲 欧美一区二区三区| 国产色婷婷99| 国产欧美日韩综合在线一区二区| 在线观看www视频免费| 中文字幕人妻丝袜制服| 午夜免费鲁丝| 久久狼人影院| 搡女人真爽免费视频火全软件| 久久精品夜色国产| videosex国产| 看免费av毛片| 国产毛片在线视频| 欧美国产精品一级二级三级| 久久精品国产鲁丝片午夜精品| 只有这里有精品99| 一二三四在线观看免费中文在 | 欧美少妇被猛烈插入视频| 最近的中文字幕免费完整| 亚洲国产精品999| 肉色欧美久久久久久久蜜桃| 国产国语露脸激情在线看| 国产片内射在线| 国产成人aa在线观看| 免费人成在线观看视频色| 天天操日日干夜夜撸| 免费不卡的大黄色大毛片视频在线观看| 亚洲综合精品二区| 亚洲丝袜综合中文字幕| 欧美日韩综合久久久久久| 久久久精品免费免费高清| 熟女电影av网| 亚洲美女视频黄频| 亚洲精品久久午夜乱码| 国产精品99久久99久久久不卡 | 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 国产在线一区二区三区精| 老司机影院毛片| 桃花免费在线播放| 老司机亚洲免费影院| 亚洲三级黄色毛片| 欧美日韩一区二区视频在线观看视频在线| 精品一区二区三区四区五区乱码 | 一区在线观看完整版| 亚洲国产精品一区三区| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验| 久久99蜜桃精品久久| 日本av手机在线免费观看| 欧美97在线视频| 亚洲国产精品专区欧美| 久久久久久久大尺度免费视频| 22中文网久久字幕| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| 乱码一卡2卡4卡精品| av福利片在线| 久热久热在线精品观看| 如日韩欧美国产精品一区二区三区| 国产 精品1| 中文字幕另类日韩欧美亚洲嫩草| 成人无遮挡网站| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频 | 国产日韩欧美亚洲二区| 成人毛片60女人毛片免费| 高清av免费在线| 精品久久久精品久久久| videos熟女内射| 熟女电影av网| 国产极品粉嫩免费观看在线| 午夜老司机福利剧场| 国产一区有黄有色的免费视频| 人成视频在线观看免费观看| 亚洲国产欧美在线一区| 在现免费观看毛片| 老司机影院毛片| 9色porny在线观看| av女优亚洲男人天堂| 国产亚洲精品第一综合不卡 | 日本av免费视频播放| 亚洲内射少妇av| 人妻系列 视频| 女人久久www免费人成看片| 国产成人免费观看mmmm| 女性被躁到高潮视频| 人妻 亚洲 视频| 视频区图区小说| 国产老妇伦熟女老妇高清| 国产毛片在线视频| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 免费看av在线观看网站| 丰满饥渴人妻一区二区三| 国产毛片在线视频| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 韩国高清视频一区二区三区| 欧美xxⅹ黑人| 少妇猛男粗大的猛烈进出视频| 国产色爽女视频免费观看| 欧美精品一区二区大全| 人人澡人人妻人| 超碰97精品在线观看| 在线天堂中文资源库| av福利片在线| 丝袜脚勾引网站| 国产午夜精品一二区理论片| 午夜福利乱码中文字幕| freevideosex欧美| 青青草视频在线视频观看| 热re99久久精品国产66热6| 国产成人精品福利久久| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| av.在线天堂| 国产国拍精品亚洲av在线观看| 超碰97精品在线观看| 亚洲成人av在线免费| 中国国产av一级| 日本91视频免费播放| 波多野结衣一区麻豆| 国内精品宾馆在线| 欧美+日韩+精品| av免费在线看不卡| 日本欧美国产在线视频| 美女中出高潮动态图| 国产精品成人在线| 国产1区2区3区精品| 欧美97在线视频| 成人手机av| 卡戴珊不雅视频在线播放| 一个人免费看片子| 最近最新中文字幕免费大全7| av线在线观看网站| 桃花免费在线播放| 亚洲第一av免费看| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av涩爱| 人人妻人人添人人爽欧美一区卜| 看免费成人av毛片| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱| 日韩成人av中文字幕在线观看| 亚洲,欧美精品.| 色吧在线观看| 欧美日韩亚洲高清精品| 一区二区av电影网| 亚洲伊人色综图| 最新的欧美精品一区二区| 最近手机中文字幕大全| 满18在线观看网站| 久久精品夜色国产| av播播在线观看一区| 欧美丝袜亚洲另类| 欧美bdsm另类| av在线app专区| 十分钟在线观看高清视频www| 日本91视频免费播放| 一本色道久久久久久精品综合| 少妇精品久久久久久久| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 高清av免费在线| 一区二区日韩欧美中文字幕 | 久久影院123| 国产成人一区二区在线| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 久久99一区二区三区| 亚洲国产色片| 免费高清在线观看视频在线观看| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 在线观看国产h片| 99国产精品免费福利视频| 国产av国产精品国产| 久久女婷五月综合色啪小说| 最后的刺客免费高清国语| 在线天堂最新版资源| 亚洲四区av| 欧美精品人与动牲交sv欧美| 三级国产精品片| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 视频在线观看一区二区三区| 国产在视频线精品| 国产在线视频一区二区| av免费在线看不卡| 免费日韩欧美在线观看| 亚洲久久久国产精品| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| 男的添女的下面高潮视频| 国产成人免费无遮挡视频| 熟女av电影| 一边亲一边摸免费视频| 伊人久久国产一区二区| 香蕉国产在线看| 欧美日韩av久久| 欧美精品一区二区大全| 日本欧美国产在线视频| 久久女婷五月综合色啪小说| 99热全是精品| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久影院| 国产在线一区二区三区精| 99热国产这里只有精品6| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 极品人妻少妇av视频| 九九爱精品视频在线观看| 久久精品aⅴ一区二区三区四区 | 日韩成人伦理影院| 在线观看三级黄色| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 亚洲精品中文字幕在线视频| 亚洲精品,欧美精品| 99热这里只有是精品在线观看| 日韩av不卡免费在线播放| 老司机亚洲免费影院| 国产福利在线免费观看视频| 一本久久精品| 成人亚洲欧美一区二区av| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 我的女老师完整版在线观看| 亚洲美女搞黄在线观看| 久久这里只有精品19| 国产乱人偷精品视频| 亚洲欧洲国产日韩| 欧美成人午夜免费资源| 久久久久精品人妻al黑| 男女边吃奶边做爰视频| 日韩视频在线欧美| 一边亲一边摸免费视频| 成年动漫av网址| 我的女老师完整版在线观看| 国产在线一区二区三区精| 99热网站在线观看| 亚洲少妇的诱惑av| 精品国产一区二区久久| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 国产精品无大码| 久久99热6这里只有精品| 97超碰精品成人国产| 精品福利永久在线观看| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 久久97久久精品| 三级国产精品片| a 毛片基地| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 免费看不卡的av| 日韩av免费高清视频| 亚洲av在线观看美女高潮| 又大又黄又爽视频免费| 在线亚洲精品国产二区图片欧美| 亚洲天堂av无毛| 国产精品久久久久久精品古装| 91国产中文字幕| 欧美3d第一页| 大香蕉久久成人网| 国产69精品久久久久777片| 久久99精品国语久久久| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 妹子高潮喷水视频| 69精品国产乱码久久久| 欧美 日韩 精品 国产| 久久久久精品久久久久真实原创| 欧美日韩亚洲高清精品| 少妇人妻 视频| 一级毛片电影观看| 青春草视频在线免费观看| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| a级片在线免费高清观看视频| 国产男女内射视频| 久久这里有精品视频免费| 久久久精品94久久精品| 国产成人午夜福利电影在线观看| 中文字幕最新亚洲高清| 国产探花极品一区二区| 亚洲av电影在线观看一区二区三区| 深夜精品福利| 91精品伊人久久大香线蕉| 欧美日韩一区二区视频在线观看视频在线| 国产精品嫩草影院av在线观看| 边亲边吃奶的免费视频| 亚洲五月色婷婷综合| 美女大奶头黄色视频| 天堂俺去俺来也www色官网| 最新中文字幕久久久久| 如何舔出高潮| 一区二区av电影网| 国产成人精品一,二区| 国产男人的电影天堂91| 极品少妇高潮喷水抽搐| 高清av免费在线| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区| 欧美激情国产日韩精品一区| 五月玫瑰六月丁香| 久久人人爽av亚洲精品天堂| 赤兔流量卡办理| 男女国产视频网站| 日韩在线高清观看一区二区三区| 久久人人爽av亚洲精品天堂| 精品少妇黑人巨大在线播放| 看免费av毛片| 久久女婷五月综合色啪小说| 亚洲成人手机| 精品酒店卫生间| 咕卡用的链子| 在线看a的网站| 久久精品夜色国产| 91aial.com中文字幕在线观看| 欧美 日韩 精品 国产| 日韩制服骚丝袜av| 巨乳人妻的诱惑在线观看| 欧美国产精品一级二级三级| 人妻一区二区av| av国产精品久久久久影院| 波野结衣二区三区在线| 又黄又粗又硬又大视频| av网站免费在线观看视频| 少妇熟女欧美另类| 国产精品无大码| 中文字幕亚洲精品专区| 视频区图区小说| 极品少妇高潮喷水抽搐| 99久久中文字幕三级久久日本| 一级爰片在线观看| 高清av免费在线| 国产精品不卡视频一区二区| 看免费av毛片| 黑丝袜美女国产一区| 五月天丁香电影| av在线观看视频网站免费| 纯流量卡能插随身wifi吗| 成人国语在线视频| 国产av一区二区精品久久| 视频中文字幕在线观看| 精品酒店卫生间| 国产精品久久久久成人av| a级毛片在线看网站| 热re99久久精品国产66热6| 亚洲欧洲国产日韩| 免费大片18禁| 久久久国产欧美日韩av| 亚洲精品色激情综合| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久| 国产精品三级大全| 不卡视频在线观看欧美| 99九九在线精品视频| 伊人亚洲综合成人网| 性色av一级| 日韩制服骚丝袜av| 亚洲国产看品久久| 狂野欧美激情性xxxx在线观看|