• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation☆

    2017-05-28 19:46:08DongyanLiChenGuFengHanZhaoxiangZhongWeihongXing
    Chinese Journal of Chemical Engineering 2017年12期

    Dongyan Li,Chen Gu ,Feng Han ,Zhaoxiang Zhong ,*,Weihong Xing ,*

    1 Department of Chemical Engineering and Materials,Nanjing Polytechnic Institute,Nanjing 210048,China

    2 State Key Laboratory of Materials-Oriented Chemical Engineering,National Engineering Research Center for Special Separation Membrane,Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    The use of fossil fuels has caused alarming environmental problems,including global warming,greenhouse effect,and air pollution[1].To meet increasing energy demand without further impacting on the environment,the search of environmentally friendly alternative energy sources such as solar,nuclear,and biology are imperative.A fuel cell converts chemical energy into electricity through an electrochemical reaction with higher energy conversion efficiency than conventional fossil fuel combustion[2].Furthermore,fuel cell produces water as the only by-product,eliminating the pollution caused by fuel burning[3,4].Among different type of fuel cells,direct methanol fuel cell(DMFC)has attracted more and more attention because of its abundant fuel source,high energy efficiency,low cost,and ease to transportation and storage[5,6].

    Pt catalysts own the highest catalytic activity for methanol electrooxidation.However,Pt catalysts have low CO tolerance[7,8].Numerous studies were conducted in search ofa solution to the low COtolerance of Pt catalysts,such as alloying with other metals,combined function with conductive substrates,and metal oxide coupling[9-11].The use of metal oxides such as ZnO and TiO2has shown promising results in controlling the poisoning of Pt[12,13].Furthermore,ZnO and TiO2also generate photocurrent under UV illumination using composite catalysts when coupled with Pt,further enhancing methanol electrooxidation ability.

    Carbon fibers(CFs)have many advantages in carrier material due to its superior electro conductivity,good chemical resistance,and high mechanical strength[14,15].Kong et al.modified carbon fiber with grown CoSe2nano particles as three-dimensional electrodes,exhibiting excellent catalytic activity for hydrogen evolution reaction[16].Huang et al.employed knitted carbon fibers for superca pacitors with improved capacity,energy and power density.However,the low specific surface area of carbon fibers resulted in low catalyst loading[17].

    In this study,a novel Pt@ZnO nanorod/carbon fibers(NR/CFs)with hierarchical structure with enhanced methanol electro-oxidation was fabricated.Although both ZnO and TiO2have wide band gap,ZnO processes two to three orders of magnitude higher electron migration rate(115-155 cm2·V-1·s-1)[18]and exhibits higher exciton binding energy of around 60 meV,which could generates higher photocurrent under UV illumination.Besides,the existence of ZnO with high specific surface area can efficiently increase the loading of catalytic composition and enlarge contact areas with electrolytes[19,20].Therefore,it is significant to synthesize these multifunctional materials.To prepare the novel structure,ZnO nanorods were hydrothermally grown on CF after the immobilization of ZnO seeds on CF via atomic layer deposition(ALD).Then,Pt were dispersed on the surface of ZnO nanorods via MS.The coverage,size,and chemical state of Pt can also be controlled precisely by MS.In the end,the crystal phase composition,morphology,and elements of Pt@ZnO NR/CF were characterized by XRD,SEM,and EDS.The prompt current during on/off switching of the UV lamp was recorded to investigate the photoelectric response of ZnO NR/CF.Chronoamperometry and cyclic voltammetry(CV)were conducted in a standard three-electrode cell at room temperature to evaluate the effect of thickness of sputtered Pt and ZnO secondary support on the activity of methanol oxidation and the stability of the catalyst.

    2.Experimental

    2.1.Raw materials

    Carbon fibers(T300-3k,Toray)with a diameter of7μmand length of 5 μm.The source of zinc and oxygen for ALD were diethyzinc(Zn(C2H5)2)and deionized water.Zinc nitrate hydrate(Zn(NO3)2·6H2O)and hexamethylenetetramine(HTMA,C6H12N4)were provided by Shanghai Lingfeng Co.Pt catalysts were purchased from Beijing Gaodewei metal Co.All chemical reagents were analytical grade in the experiment.

    2.2.Hydrothermal synthesis of ZnO nanorods

    Fig.1 shows the synthesis route of Pt@ZnO NR/CFs.Firstly,CFs were placed in the ALD reactor to deposit ZnO seeding layers,and then the chamber was preheated to 130°C with both sides exposing to N2.The ALD process will start when the vacuum in the chamber reached 1 Torr.Two precursor vapors of DEZ and water were heated to 40°C and 60°C,which were alternately delivered into the reaction chamber.To ensure the precursors enter into the samples thoroughly,exposure mode was set in the experimental section.Under the condition of N2flow rate of 20 sccm and temperature of 130°C,CFs were suffered over 300 cycles.Secondly,the hydrothermal synthesis reactor for growing ZnO NRs was maintained at 90°C for 3 h,which contained 5 mmol·L-1zinc nitrate.The prepared ZnO NRs/CFs were washed several times with water and dried at 70°C for 2 h.

    2.3.Pt nanoparticles loading

    Pt nanoparticles loading were conducted via magnetron sputtering(VTC-600-2HD,MTI,Shenyang)with a circular Pt target at room temperature.During the process of sputtering,the sample table was acted as the support for ZnO NRs/CFs substrates with rotation speed of 20 r·min-1to guarantee the homogeneous dispersion of Pt nanoparticles.The working pressure and power of the apparatus chamber were set as 3.0 Pa and 30 W,respectively.Besides,the layer thickness of Pt nanoparticles(10 nm,30 nm,and 50 nm)were controlled by the thickness detectors,which are defined as Pt@ZnO NR/CF-10,Pt@ZnO NR/CF-30,and Pt@ZnO NR/CF-50,respectively.

    2.4.Characterizations

    The phase composition was detected by X-ray diffractometer(XRD;D8-Advance,Bruker,Germany)with Cu Kαradiation(wavelength of 0.154 nm),operated at 15 mA,40 kV,and a step width of 0.02°with a scanning range of 10°-80°.The microstructure was observed by field emission scanning electron microscope(FESEM,HitachiS-4800,Japan).

    2.5.Measurements of photoelectrochemical response

    A three-electrode cell with CHI760E electrochemical system(Chenhua Instruments,Co.,Shanghai)in which a 24-W UV lamp(LTD,λ=365 nm)was used in photoelectrochemical measurements served as light source.The working electrode was 10 nm Pt@ZnO NRs/CFs.Linear sweep voltammetry(LSV)was used to record the currentvoltage curves.First,the photoresponse was conducted by switching light lamp in the process of total 5 cycles and each cycle was set in the absence of light illumination from 0 to 40 s and then next 40 to 90 s under the continuous illumination of light.Finally,the lamp was turned off at 90 s measuring at 0 V(vs.SCE).Besides,we also investigated the effect of the applied voltage(0,0.1,0.3 and 0.6 V vs.SCE)on response current according to the experimental procedures mentioned above.

    2.6.Electrochemical and photoelectrochemical reactions of methanoloxidation

    The electrochemical performance of the prepared samples was conducted by a traditional three-electrode cell in electrochemical workstation.Pt was acted as counter electrode and saturated calomel electrode(SCE)was functioned as the reference electrode.Pt@ZnO NRs/CFs with the thickness of 10 nm,30 nm,and 50 nm were used as working electrode.Cyclic voltammetry method was conducted to characterize electrochemical active surface area(ECSA)and catalytic capability.In the methanol electro-oxidation experiment,the condition of electrode was 0.5 mol·L-1H2SO4and the mixed solution of 1 mol·L-1CH3OH and 0.5 mol·L-1H2SO4,respectively.In addition,chronoamperometry experiments was applied to characterize the stability of as-prepared working electrode and the scan rate was set as 30 mV·s-1in all electrochemical experiments.A UV lamp(LTD,24 W,λ=365 nm)was used as light source to test the effect of light source on the methanol-oxidation reaction performance of samples.

    3.Results and Discussions

    3.1.Microstructure and morphology

    Fig.1.Synthesis route of Pt@ZnO NRs/CFs composites.

    Fig.2.The XRD spectrums of Pt@ZnO NRs/CFs with different stages and Pt thickness of 10,30 and 50 nm(a),and the EDS spectrum of Pt@ZnO NRs/CFs sample(b).

    X-ray diffraction patterns of the samples are shown in Fig.2a.A obvious peak at 25°represented the existence of integral graphite structure[21].This indicated that CFs deposited on ZnO seeds by ALD and ZnO NR/CF showed three main peaks appearing at angles 2θ=31.94°,34.60°,and 36.42°,which could be attributed to(100),(002),and(101)planes of hexagonal wurtzite(JCPDS36-1451)[22,23].The pattern of sample of Pt@ZnO NR/CFs with 10 nm Pt coating were no Pt peaks,which may be due to the small size and amount of Pt nanoparticles[24].However,the crystalline phase peaks of Pt gradually increased with thickness of Pt.At 50 nm thick,two diffraction peaks at 39.5°and 46.8°were detected,which corresponded to(111)and(200)planes of Pt,respectively[25].The XRD analysis results confirmed the loading of Ptnanoparticles on the surface ofZnONRs.Fig.2b showed the EDS spectrum of Pt@ZnO NRs/CFs sample.It was used to further prove the existence of Pt on the surface of ZnO NRs.From Fig.2b,it can be obviously seen that the peak of Pt elementexisted on the surface of Pt@ZnO NRs/CFs.Furthermore,it also had C,Zn and O element.

    Fig.3 shows the SEM images of CFs,ZnONR/CFs and Pt@ZnO NR/CFs with different thickness of Pt.The initial morphology of pure CFs is shown in Fig.3(a).After ALD process,the CF substrates are covered with a uniform thin layer of ZnO seed[Fig.3(b)].As shown in Fig.3(cd),it can clearly be seen that ZnO NRs were on the surface of the CFs.From Fig.3(e-f),Pt@ZnO NR/CF-10 shows a similar morphology as that of ZnO NRs/CFs without observing the Pt nanoparticles deposited.MS has been demonstrated to be an effective and easy-controlled method to depositcoating layers on various substrates.With increasing loading of sputtered Pt,the surface of ZnO NRs becomes rougher,as shown in Fig.3(g-j).From Fig.3(i-j),when the deposited thickness of Pt reaching to 50 nm,the original surface of ZnO NR were obviously wrapped by smallPtnanoparticles.According to BET testdata published on my previous paper,ZnO NRs acted as bonding layer between carbon fiber substrate and Pt nanoparticles,which provided higher active sites and contact areas[20].

    3.2.Photoelectrochemical response of ZnO NR/CF

    Photoelectrochemical responses of ZnO NRs/CFs were investigated by using LSV method to record current-voltage(I-V)curves from 0 to 0.8 V with the scan rate of 10 mV·s-1(Fig.4).The response current gradually increased along with applied potentials from 0 and 0.8 V regardless of lightirradiation.However,the currentin the presence of light was consistently higher than thatin the dark at the same potential.This increment of current may be ascribed to the generation of photo current[26].

    Fig.3.The micromorphology of the prepared samples(a is original CFs;b is CFs deposited with a ZnO seed layer;c and d are the sample of ZnO NRs/CFs at different magnification;e,f are 10 nm Pt@ZnO NRs/CFs;g,h are 30 nm Pt@ZnO NRs/CFs;i,j are 50 nm Pt@ZnO NRs/CFs).

    Fig.4.The I-V curves of ZnO NRs/CFs in dark and light illumination.

    Fig.5.The on-off I-t curves of ZnO NRs/CFs at 0 V potential.

    ZnO is a photosensitive material.Experiment with periodic irradiation was performed to investigate the photosensitive characteristics of ZnO by recording the photocurrent-time(I-t)data.At 0 V vs.SCE,the response current remains at-0.020 mA in the dark during the first 40 s(Fig.5).When UV light illumination was switched on,the response photocurrent immediately changed from-0.020 to 0.30 mA.Besides,the photocurrent maintained about 0.30 mA under UV light illumination for 50 s.When the light was switched off,the current returned to-0.020 mAin the dark.The generation and disappearance of photocurrent is rapid in the periodic irradiation experiment,which suggests that ZnO have excellent response to photoelectricity.The consistent photocurrent response under periodic irradiation indicates the stability of ZnO NR/CF.

    Fig.6 shows the effects of applied potentials on the photocurrent generation of ZnO NR/CF.As shown in Fig.6,the as-prepared sample of ZnO NR/CF showed increasing sensitivity to light irradiation with applied potential.However,ZnO NR/CF showed remarkable response regardless of the applied potentials.When the applied potential increased from 0 V to 0.6 V,the photocurrent generated under light irradiation increased from 0.235 to 0.725 mA.This is because the higher potential promotes more effective separation and transfer of photogenerated electron-hole pairs while suppressing electron recombination,leading to increasing photocurrent[27].

    3.3.Role of ZnO secondary carrier layer in electro-oxidation of methanol

    Fig.6.The on-off I-t curves of ZnO NRs/CFs at different potentials(0,0.1,0.3,0.6 V).

    Cyclic voltammetry(CV)is a common method to calculate ECSA of Pt catalyst.The actual value of ECSA not only revealed the number of active sites of the catalyst,but also estimated the catalytic performance and the choice of suitable substrates.The ECSA were calculated by the area ratio of hydrogen adsorption/desorption peaks in the range of negative potential[28].CV diagram of Pt@CF-10 and Pt@ZnO NR/CF-10 catalyst were measured in 0.5 mol·L-1H2SO4solution as shown in Fig.7.Both catalysts had distinct hydrogen adsorption/desorption peaks between-0.2 and 0.1 V.According to the equation,ECSA=QH/(210 × Pt)[29],the ECSA(cm2·g-1)values of Pt@CF-10 and Pt@ZnO NR/CF-10 catalysts are 10.78 m2·g-1and 23.19 m2·g-1,respectively.The higher ECSA value of Pt@ZnO NR/CF-10 suggested that the existence of ZnO secondary carrier layer,which improved the distribution and the size of Pt nanoparticles on the surface of ZnO NR,and this was bene ficial to the improvement of catalytic efficiency.

    Fig.7.The electrochemically active surface areas measured in 0.5 mol·L-1 H2SO4 of10 nm Pt@CFs and Pt@ZnO NRs/CFs with 30 mV·s-1 sweep rate.

    Fig.8 showed the CV curves of the catalytic activity for electronoxidation methanol of ZnO NR/CFs,Pt@CFs-10,and Pt@ZnO NR/CFs-10.As shown in the Fig.8,it can be seen that CV curves of the three catalysts showed two similar current peaks located at the potentials of about 0.7 V in forward scan and 0.5 V in backward scan.The current peaks in 0.7 V and 0.5 V corresponded to the peaks of methanol oxidation(If)and CO oxidation peak(Ib),respectively.The peak current density at about 0.7 V was a crucial parameter to represent the catalytic ability for methanol oxidation[30].Otherwise,Fig.8 also showed that the peak of current density(If)of three catalysts resided in accordance with the following order:Pt@ZnO NR/CFs-10>Pt@CFs-10>ZnO NR/CFs.Pt@ZnO NR/CFs-10 possessed the highest current density for methanol oxidation because of the synergistic effect between the Pt nanoparticles and the ZnO NRs.Moreover,the ratio of Ifand Ibwas an indication of cataly sttolerance towards CO,where higherratio of If/Ibindicates higher CO tolerance of catalysts[31].The calculated If/Ibvalue of Pt@ZnONR/CFs-10 and Pt@CFs-10 were 1.72 and 1.41,respectively.The increased ratio of If/Ibrevealed that the existence of ZnO enhanced the CO tolerance by oxidizing CO in lower potential[12].In summary,the existence of ZnO secondary carrier layer effectively improved the ECSA,the methanol catalytic oxidation activity and the CO tolerance.

    Fig.8.Cyclic voltammograms of ZnO NRs/CFs,10 nm Pt@CFs,10 nm Pt@ZnO NRs/CFs in 0.5 mol·L-1 H2SO4 and 1 mol·L-1 methanol with 30 mV·s-1 sweep rate.

    3.4.Methanolelectro-oxidation by Pt@ZnONRs/CFs electrode with different Pt loadings

    Fig.9 showed the CVs curves of catalysts with different thickness of Pt(10,30,and 50 nm)in 0.5 mol·L-1H2SO4solution between-0.2 and+1.2 V.As shown in Fig.9,the Pt@ZnO NRs/CFs with 10,30,and 50 nm thickness all exhibited hydrogen adsorption/desorption peaks in scan range of-0.2-0.1 V.Calculated results indicated that ECSA of the three prepared samples of 10,30,and 50 nm Pt@ZnO NRs/CFs are 23.19 m2·g-1,29.73 m2·g-1,and 43.65 m2·g-1,respectively.The results further indicated that the ECSA values of catalysts increases with the increasing loading of Pt[32],thus improving the ability of methanol electro-oxidation.

    Fig.9.The electrochemically active surface areas measured in 0.5 mol·L-1 H2SO4 of Pt@ZnO NRs/CFs with different thickness of Pt(10,30,and 50 nm)at a sweep rate of 30 mV·s-1.

    Fig.10 showed the CVs curves of samples with various deposited Pt thickness(10,30,and 50 nm)in mixed solution between 0 to 1 V vs.As shown in Fig.10,the forward anodic peak current(If)increased with the loading of Pt.The result was consistent with the ECSA experiment(Fig.9).The distribution,grain size,and morphology of Pt component had direct effect on the catalytic performance.From Fig.10,the sample of Pt@ZnO NR/CF-50 had the highest forward anodic peak current density(If),which may be due to the unique nanorod-bundle morphology of Pt caused by pressure and high temperature in the process of MS.The changed morphology of Pt could cause much great improvement in activity of methanol oxidation activity.For example,the peak current density ofPt@ZnONR/CFs-50 was approximately 3.75 times than thatof Pt@ZnO NR/CFs-30.However,the Ifvalue of Pt@ZnO NR/CFs-30 is only 2.5 times than Pt@ZnO NR/CFs-10.This enhancement may be due to the aggregation and growth of Pt cores resulting in the increase of contact area and active sites for methanol oxidation.However,the improved loadings of Pt bring about the decrement of CO tolerance of catalysts due to the easiness of Pt catalyst poisoning[10].

    Fig.10.The CVdiagrams ofPt@ZnONRs/CFs with various thickness ofPt(10,30,50 nm)in 0.5 mol·L-1 H2SO4 and 1 mol·L-1 methanol with 30 mV·s-1 sweep rate.

    Chronoamperometric analytic approach is usually used to investigate the electric stability of catalysts.The current density was recorded for1800 s at0.6 V(vs.SCE)with 30 mV·s-1scan rate in electrolyte containing 0.5 mol·L-1H2SO4and 1 mol·L-1methanol.At 0.6 V constant potential,the current density of ZnO NR/CFs,Pt@CFs-10 and Pt@ZnO NR/CFs with different thickness of Pt(10,30,and 50 nm)decreased with time(Fig.11).This result revealed the formation of reaction intermediates and the oxide of Pt on the basis of proceeding in methanol oxidation reaction[33].Pt@ZnO NR/CFs-50 consistently showed the highest current density among all samples tested.In addition,Pt@ZnO NR/CFs-10 possessed higher current density than Pt@CFs-10,which indicated the existence of ZnO secondary support was bene ficial to improve the CO tolerance and activity of Pt.

    3.5.Photoassisted methanol electro-oxidation

    Fig.12 showed the CV curves of Pt@ZnO NR/CFs-30 for methanol electro-oxidation under light illumination.As shown in Fig.12,the peak current density in forward scan was 6.55 mA·cm-2under UV light,which was approximately 1.42 times than in the dark(4.6 mA·cm-2).This improvement of peak current density may be attributed to the occurrence of light-assisted methanol electro-oxidation.The increase of peak current density by 42%was attributed to the synergistic photocurrent produced on ZnO semiconductor[13].Under UV light,the electrons on ZnO semiconductor transferred from valance band to conduct band,which facilitate the formation of electron-hole pairs,thus generating additional photocurrent[26].

    Fig.11.The recording of chronoamperometric curves at 0.6 V versus SCE of ZnO NRs/CFs,10 nm Pt@CFs,10 nm Pt@ZnO NRs/CFs,30 nm Pt@ZnO NRs/CFs,and 50 nm Pt@ZnO NRs/CFs.

    Fig.12.CV diagrams of methanol electrochemical oxidation at the electrode of 30 nm Pt@ZnO NRs/CFs with or without UV light.

    4.Conclusions

    Firstly,a novel multilevel photo catalyst of Pt@ZnO NR/CFs was fabricated by ALD method united with hydrothermal synthesis and magnetron sputtering.With increasing loadings of Pt,the existing morphology of Pt changed from nanoparticles to nanorod bundles.ZnO NR/CFs is an excellent photosensitive material as demonstrated by the excellent and stable photoelectric response.The presence of ZnO can efficiently enlarge the ECSA of catalyst,promote the efficiency of methanol oxidation,and improve CO tolerance on methanol oxidation of catalysts.In addition,the changed morphology of Pt could cause much great improvement of methanol oxidation activity.The peak current density of methanol oxidation on Pt@ZnO NR/CFs-30 under UV illumination increased significantly compared with that in dark environment.The synergistic catalysis of lightand electricity resulted in the improvement of current for methanol oxidation.Most importantly,the novelcatalysts show good application promising due to its high catalytic efficiency and tenacious CO tolerance.

    [1]X.Xu,Y.Chen,W.Zhou,A perovskite electrocatalyst for efficient hydrogen evolution reaction,Adv.Mater.28(30)(2016)6442-6448.

    [2]B.C.H.Steele,A.Heinzel,Materials for fuel-cell technologies,Nature 414(6861)(2001)345-352.

    [3]A.S.Arico,S.Srinivasan,Antonucci V.DMFCs:from fundamental aspects to technology development,Fuel Cells 1(2)(2001)133-161.

    [4]M.Winter,R.J.Brodd,What are batteries,fuel cells,and supercapacitors?Chem.Rev.104(3)(2004)4245-4270.

    [5]Z.Wen,J.Liu,J.Li,Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells,Adv.Mater.20(4)(2008)743-747.

    [6]L.Bai,H.Zhu,J.S.Thrasher,Synthesis and electrocatalytic activity of photoreduced platinum nanoparticles in a poly(ethylenimine)matrix,ACS Appl.Mater.Interfaces 1(10)(2009)2304-2311.

    [7]A.S.Polo,M.C.Santos,R.F.B.De Souza,Pt-Ru-TiO2photoelectrocatalysts for methanol oxidation,J.Power Sources 196(2)(2011)872-876.

    [8]C.Xu,P.K.Shen,Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts,J.Power Sources 142(1)(2005)27-29.

    [9]H.Song,X.Qiu,X.Li,TiO2nanotubes promoting Pt/C catalysts for ethanol electrooxidation in acidic media,J.Power Sources 170(1)(2007)50-54.

    [10]C.T.Lin,H.J.Huang,J.J.Yang,A simple fabrication process of Pt-TiO2hybrid electrode for photo-assisted methanol fuel cells,Microelectron.Eng.88(8)(2011)2644-2646.

    [11]C.S.Chen,F.M.Pan,Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2supports toward methanol oxidation,Appl.Catal.,B 91(3)(2009)663-669.

    [12]K.Drew,G.Girishkumar,K.Vinodgopal,Boosting fuel cell performance with a semiconductor photocatalyst:TiO2/Pt-Ru hybrid catalyst for methanol oxidation,J.Phys.Chem.B 109(24)(2005)11851-11857.

    [13]H.Zhang,W.Zhou,Y.Du,Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2/ITO electrode under UV illumination,Int.J.Hydrog.Energy 35(24)(2010)13290-13297.

    [14]W.Guo,F.Zhang,C.Lin,Z.L.Wang,Direct growth of TiO2nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange,Adv.Mater.24(35)(2012)4761-4764.

    [15]N.Saito,K.Aoki,Y.Usui,M.Shimizu,Application of carbon fibers to biomaterials:a new era of nano-level control of carbon fibers after 30-years of development,Chem.Soc.Rev.40(7)(2011)3824-3834.

    [16]D.Kong,H.Wang,Z.Lu,CoSe2nanoparticles grown on carbon fiber paper:an efficient and stable electrocatalyst for hydrogen evolution reaction,J.Am.Chem.Soc.136(13)(2014)4897-4900.

    [17]L.Huang,D.Chen,Y.Ding,Nickel-cobalt hydroxide nanosheets coated on NiCo2O4nanowires grown on carbon fiber paper for high-performance pseudo capacitors,Nano Lett.13(7)(2013)3135-3139.

    [18]Y.H.Lin,Y.C.Hsueh,C.C.Wang,Enhancing the photon-sensing properties of ZnO nano wires by atomic layer deposition of platinum,Electrochem.Solid-State Lett.13(12)(2010)K93-K95.

    [19]H.U.Lee,S.Y.Park,S.C.Lee,J.H.Seo,Highly photocatalytic performance of flexible 3 dimensional(3D)ZnO nanocomposite,Appl.Catal.,B.144(83-89)(2014).

    [20]C.Gu,S.Xiong,Z.X.Zhong,Y.Wang,W.H.Xing,A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation,RSC Adv.7(36)(2017)22234-22242.

    [21]H.Khan,I.K.Swati,Fe3+-doped anatase TiO2with d-d transition,oxygen vacancies and Ti3+centers:synthesis,characterization,UV-Vis photocatalytic and mechanistic studies,Ind.Eng.Chem.Res.55(23)(2016)6619-6633.

    [22]S.G.Ullattil,P.Periyat,B.Naufal,M.A.Lazar,Self-doped ZnO microrods-high temperature stable oxygen deficient platforms for solar photocatalysis,Ind.Eng.Chem.Res.55(22)(2016)6413-6421.

    [23]D.Banerjee,J.Y.Lao,D.Z.Wang,J.Y.Huang,Synthesis and photoluminescence studies on ZnO nanowires,Nanotechnology 15(3)(2004)404-409.

    [24]A.V.Rosario,E.C.Pereira,The role of Ptaddition on the photocatalytic activity of TiO2nanoparticles:the limit between doping and metallization,Appl.Catal.,B.144(840-845)(2014).

    [25]X.Peng,S.Zhao,T.J.Omasta,Activity and durability ofPt-Ni nanocage electocatalysts in proton exchange membrane fuel cells,Appl.Catal.,B.203(927-935)(2017).

    [26]M.K.Lee,H.F.Tu,Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts,J.Electrochem.Soc.155(12)(2008)758-762.

    [27]X.Gu,N.Yu,L.Zhang,Growth of TiO2nanorod bundles on carbon fibers as flexible and weaveable photocatalyst/photoelectrode,RSC Adv.5(124)(2015)102868-102876.

    [28]S.Sharma,A.Ganguly,P.Papakonstantinou,Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol,J.Phys.Chem.C 114(45)(2010)19459-19466.

    [29]G.Girishkumar,M.Rettker,R.Underhile,Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells,Langmuir 21(18)(2005)8487-8494.

    [30]Y.Li,W.Gao,L.Ci,Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation,Carbon 48(4)(2010)1124-1130.

    [31]Y.H.Lin,X.L.Cui,C.H.Yen,PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid:a novel electrocatalyst for direct methanol fuel cells,Langmuir 21(24)(2005)11474-11479.

    [32]N.A.Oliveira,R.R.Dias,M.M.Tusi,Electro-oxidation of methanol and ethanol using PtRu/C,PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process,J.Power Sources 166(1)(2007)87-91.

    [33]B.Liu,J.H.Chen,C.H.Xiao,Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electro-oxidation,Energy Fuel 21(3)(2007)1365-1369.

    日韩中文字幕欧美一区二区| 成人手机av| 国产精品久久久人人做人人爽| 婷婷亚洲欧美| 黑人操中国人逼视频| 成人一区二区视频在线观看| av超薄肉色丝袜交足视频| 成人av一区二区三区在线看| 亚洲国产欧美人成| 两个人视频免费观看高清| 757午夜福利合集在线观看| 中亚洲国语对白在线视频| 久久久久久免费高清国产稀缺| www.精华液| 人人妻,人人澡人人爽秒播| 国产亚洲精品综合一区在线观看 | 日韩欧美在线乱码| 国产69精品久久久久777片 | 欧美日本亚洲视频在线播放| 777久久人妻少妇嫩草av网站| 成人18禁在线播放| 91麻豆精品激情在线观看国产| 成人欧美大片| 99久久无色码亚洲精品果冻| 淫秽高清视频在线观看| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区三| 亚洲精品中文字幕在线视频| 无限看片的www在线观看| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 久久99热这里只有精品18| 亚洲人成网站高清观看| 高清毛片免费观看视频网站| 久久亚洲精品不卡| 中文字幕高清在线视频| 淫妇啪啪啪对白视频| 日韩大尺度精品在线看网址| 免费在线观看视频国产中文字幕亚洲| 黄色成人免费大全| 欧美+亚洲+日韩+国产| 国产精品久久久久久久电影 | 天天添夜夜摸| 欧美性猛交╳xxx乱大交人| 精品乱码久久久久久99久播| 亚洲中文av在线| av在线天堂中文字幕| 免费观看人在逋| 国模一区二区三区四区视频 | 精品国产美女av久久久久小说| 久久 成人 亚洲| 亚洲天堂国产精品一区在线| 亚洲国产看品久久| 99久久国产精品久久久| 日本熟妇午夜| 欧美黄色片欧美黄色片| 国产亚洲欧美98| 99热只有精品国产| 91老司机精品| 国产高清有码在线观看视频 | 午夜福利在线在线| 精品熟女少妇八av免费久了| 午夜福利免费观看在线| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 日韩欧美国产在线观看| 久久精品国产清高在天天线| 91九色精品人成在线观看| 男女视频在线观看网站免费 | 国产一区在线观看成人免费| 91老司机精品| e午夜精品久久久久久久| 中文字幕熟女人妻在线| 最新美女视频免费是黄的| 国产精品av视频在线免费观看| 成人18禁高潮啪啪吃奶动态图| 午夜福利免费观看在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产一区二区精华液| 成在线人永久免费视频| 亚洲全国av大片| 丁香六月欧美| 午夜免费激情av| 久久亚洲精品不卡| 亚洲av五月六月丁香网| 无人区码免费观看不卡| 亚洲精品国产精品久久久不卡| 亚洲精品在线美女| 黄色女人牲交| 全区人妻精品视频| 91在线观看av| 国内久久婷婷六月综合欲色啪| 午夜精品久久久久久毛片777| 日本a在线网址| 天堂√8在线中文| 美女免费视频网站| 三级国产精品欧美在线观看 | 国产av一区在线观看免费| 麻豆成人午夜福利视频| 人成视频在线观看免费观看| 九色成人免费人妻av| 一a级毛片在线观看| 精品第一国产精品| 嫁个100分男人电影在线观看| 久久精品aⅴ一区二区三区四区| 日本熟妇午夜| 91麻豆av在线| 天天添夜夜摸| 免费看a级黄色片| 午夜精品一区二区三区免费看| 免费搜索国产男女视频| 男女午夜视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩无卡精品| 国产又黄又爽又无遮挡在线| 亚洲av熟女| 亚洲国产精品sss在线观看| 色综合婷婷激情| 免费在线观看成人毛片| 久久久久久国产a免费观看| 亚洲精品在线美女| 天堂影院成人在线观看| 亚洲五月天丁香| 亚洲国产看品久久| 欧美 亚洲 国产 日韩一| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 曰老女人黄片| 校园春色视频在线观看| 日韩欧美国产一区二区入口| 黄色a级毛片大全视频| 久久性视频一级片| 亚洲成人久久性| 黄片大片在线免费观看| 亚洲成人国产一区在线观看| 国产精品乱码一区二三区的特点| 国产视频内射| 国产一区二区三区在线臀色熟女| 国产高清视频在线播放一区| 最近最新中文字幕大全电影3| 免费看十八禁软件| 久久天堂一区二区三区四区| 一边摸一边做爽爽视频免费| 亚洲欧美日韩高清在线视频| av福利片在线| 亚洲熟妇中文字幕五十中出| 麻豆成人av在线观看| 欧洲精品卡2卡3卡4卡5卡区| 两个人视频免费观看高清| 宅男免费午夜| 久久久久国产精品人妻aⅴ院| 国产v大片淫在线免费观看| 亚洲国产欧美人成| 亚洲熟女毛片儿| 两个人看的免费小视频| 亚洲狠狠婷婷综合久久图片| 12—13女人毛片做爰片一| www国产在线视频色| 色播亚洲综合网| 日韩欧美国产一区二区入口| 国语自产精品视频在线第100页| 久久亚洲真实| 999精品在线视频| 国产av一区在线观看免费| 中国美女看黄片| 丰满人妻一区二区三区视频av | 成人特级黄色片久久久久久久| 在线观看免费视频日本深夜| 岛国在线观看网站| 黄色毛片三级朝国网站| 久久国产精品人妻蜜桃| www.www免费av| 一夜夜www| 色噜噜av男人的天堂激情| 无限看片的www在线观看| 国产亚洲欧美98| 一个人观看的视频www高清免费观看 | 精品欧美国产一区二区三| 亚洲精品中文字幕在线视频| 欧美色欧美亚洲另类二区| 给我免费播放毛片高清在线观看| 中文字幕熟女人妻在线| 99在线人妻在线中文字幕| 色哟哟哟哟哟哟| 国产精品野战在线观看| 午夜精品一区二区三区免费看| 日韩大码丰满熟妇| 免费搜索国产男女视频| 男人舔女人下体高潮全视频| 国产高清激情床上av| 美女大奶头视频| 黄色 视频免费看| 妹子高潮喷水视频| 777久久人妻少妇嫩草av网站| 悠悠久久av| 国产精品一区二区精品视频观看| 久久精品91蜜桃| 国产精品香港三级国产av潘金莲| 亚洲av成人av| 两个人视频免费观看高清| 精品日产1卡2卡| 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| www日本黄色视频网| 天堂动漫精品| 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 欧美日韩亚洲综合一区二区三区_| 97超级碰碰碰精品色视频在线观看| www.熟女人妻精品国产| 欧美绝顶高潮抽搐喷水| 黄色毛片三级朝国网站| av中文乱码字幕在线| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 免费在线观看成人毛片| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看 | 曰老女人黄片| ponron亚洲| 黄片小视频在线播放| 欧美成人性av电影在线观看| 1024手机看黄色片| 99热这里只有精品一区 | 在线观看免费午夜福利视频| 国产久久久一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲国产精品久久男人天堂| 在线观看www视频免费| 国产三级黄色录像| 91麻豆av在线| 伊人久久大香线蕉亚洲五| 99国产精品一区二区蜜桃av| 亚洲中文日韩欧美视频| 香蕉av资源在线| 日韩有码中文字幕| 精品少妇一区二区三区视频日本电影| 成在线人永久免费视频| 亚洲第一电影网av| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 无限看片的www在线观看| 黄片小视频在线播放| 国产视频内射| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 亚洲av成人精品一区久久| 午夜影院日韩av| 午夜免费激情av| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 欧美一级毛片孕妇| 老熟妇仑乱视频hdxx| 51午夜福利影视在线观看| 最近最新中文字幕大全电影3| 最好的美女福利视频网| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 男女床上黄色一级片免费看| 亚洲av电影不卡..在线观看| 久久久久久大精品| 日本一区二区免费在线视频| 午夜两性在线视频| 久久精品综合一区二区三区| 国产av一区在线观看免费| 国产精品影院久久| 麻豆国产av国片精品| 亚洲专区字幕在线| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 精品电影一区二区在线| 人成视频在线观看免费观看| 久久久久免费精品人妻一区二区| 丰满的人妻完整版| 亚洲成a人片在线一区二区| 成人特级黄色片久久久久久久| 在线观看美女被高潮喷水网站 | 少妇人妻一区二区三区视频| 99精品久久久久人妻精品| 欧美不卡视频在线免费观看 | 99国产精品99久久久久| 黄色女人牲交| 久久精品国产99精品国产亚洲性色| 999久久久精品免费观看国产| 免费观看人在逋| 欧美久久黑人一区二区| 国产不卡一卡二| 在线观看免费午夜福利视频| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 少妇被粗大的猛进出69影院| 精品午夜福利视频在线观看一区| 日韩欧美 国产精品| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 1024香蕉在线观看| 日韩欧美在线二视频| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 欧美精品亚洲一区二区| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 亚洲av成人av| 精品第一国产精品| 丰满的人妻完整版| 国产精品久久电影中文字幕| 久久久久亚洲av毛片大全| 国产亚洲av嫩草精品影院| 日韩精品中文字幕看吧| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 国产精品香港三级国产av潘金莲| 又爽又黄无遮挡网站| 一进一出抽搐gif免费好疼| av超薄肉色丝袜交足视频| 香蕉久久夜色| 欧美一区二区国产精品久久精品 | av国产免费在线观看| 午夜福利在线观看吧| 国产精品电影一区二区三区| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| av中文乱码字幕在线| 1024手机看黄色片| av福利片在线观看| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 亚洲中文av在线| 两个人看的免费小视频| 久久天堂一区二区三区四区| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 免费搜索国产男女视频| 亚洲国产精品合色在线| 日本a在线网址| 99精品在免费线老司机午夜| 亚洲激情在线av| 一卡2卡三卡四卡精品乱码亚洲| 欧美又色又爽又黄视频| 国产成人av教育| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影| 亚洲国产欧美网| 男女床上黄色一级片免费看| 两个人看的免费小视频| 黄片小视频在线播放| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 欧美极品一区二区三区四区| 欧美在线黄色| 国产单亲对白刺激| 久久久国产欧美日韩av| 老司机午夜十八禁免费视频| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 一区二区三区高清视频在线| 欧美人与性动交α欧美精品济南到| 国产亚洲精品久久久久久毛片| 最近最新中文字幕大全免费视频| 亚洲欧美日韩东京热| 亚洲精品国产精品久久久不卡| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 中文在线观看免费www的网站 | 可以在线观看毛片的网站| 99热只有精品国产| 国产在线精品亚洲第一网站| 深夜精品福利| 午夜精品一区二区三区免费看| av在线播放免费不卡| av福利片在线| 欧美三级亚洲精品| 69av精品久久久久久| 免费在线观看视频国产中文字幕亚洲| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 一个人免费在线观看的高清视频| 精品久久久久久久人妻蜜臀av| 99热只有精品国产| 91老司机精品| 亚洲av美国av| 国内精品久久久久精免费| 久久久久久久久久黄片| 黄色a级毛片大全视频| 精品乱码久久久久久99久播| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 久久久精品大字幕| 亚洲精品色激情综合| 美女扒开内裤让男人捅视频| 啦啦啦免费观看视频1| 少妇的丰满在线观看| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 熟女电影av网| 这个男人来自地球电影免费观看| 熟女电影av网| 两性夫妻黄色片| 小说图片视频综合网站| 中亚洲国语对白在线视频| 国产精品99久久99久久久不卡| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 精品久久久久久久末码| 国产亚洲精品久久久久久毛片| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 在线观看午夜福利视频| 一区二区三区激情视频| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 久99久视频精品免费| 精品电影一区二区在线| 国产麻豆成人av免费视频| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 国产三级中文精品| 97超级碰碰碰精品色视频在线观看| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 人人妻,人人澡人人爽秒播| 99久久国产精品久久久| 日韩免费av在线播放| 国产真实乱freesex| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看 | a在线观看视频网站| 欧美日本视频| 嫩草影院精品99| 亚洲成av人片在线播放无| 国产三级黄色录像| 人人妻人人看人人澡| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全电影3| 久久99热这里只有精品18| 成人亚洲精品av一区二区| 一区福利在线观看| 久久久国产成人精品二区| 精品国产亚洲在线| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 最近最新中文字幕大全免费视频| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 欧美色欧美亚洲另类二区| 最好的美女福利视频网| 国产单亲对白刺激| 国产不卡一卡二| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 亚洲欧美激情综合另类| 免费在线观看影片大全网站| 99精品久久久久人妻精品| 成人国产一区最新在线观看| 国产日本99.免费观看| 亚洲真实伦在线观看| 成年免费大片在线观看| 在线观看一区二区三区| 亚洲第一电影网av| 亚洲国产欧洲综合997久久,| 国产在线精品亚洲第一网站| 久久久久久国产a免费观看| 91在线观看av| 一夜夜www| 国语自产精品视频在线第100页| 99riav亚洲国产免费| 在线观看www视频免费| 亚洲人成电影免费在线| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 法律面前人人平等表现在哪些方面| 久久婷婷人人爽人人干人人爱| 伦理电影免费视频| 国产精品一区二区三区四区久久| 久久 成人 亚洲| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 性色av乱码一区二区三区2| 久久久久国产精品人妻aⅴ院| 国模一区二区三区四区视频 | 亚洲精品色激情综合| 国产av麻豆久久久久久久| 叶爱在线成人免费视频播放| 成人国产综合亚洲| 又大又爽又粗| 亚洲国产高清在线一区二区三| 好男人在线观看高清免费视频| 日韩欧美国产一区二区入口| 免费在线观看成人毛片| 欧美在线黄色| 欧美大码av| 国产精品九九99| netflix在线观看网站| 岛国在线免费视频观看| 国产精品一区二区精品视频观看| 亚洲成av人片免费观看| 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 亚洲天堂国产精品一区在线| 久久久水蜜桃国产精品网| 脱女人内裤的视频| a级毛片a级免费在线| 搞女人的毛片| 国模一区二区三区四区视频 | 国产精品日韩av在线免费观看| 亚洲av片天天在线观看| 日本a在线网址| 亚洲人成网站在线播放欧美日韩| 久99久视频精品免费| 精品久久久久久,| 高清在线国产一区| 亚洲18禁久久av| 91在线观看av| 久久亚洲真实| 一级黄色大片毛片| 精品欧美国产一区二区三| 日本五十路高清| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人av| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 亚洲国产精品合色在线| 国产亚洲av嫩草精品影院| 国产精品影院久久| 亚洲男人的天堂狠狠| 岛国视频午夜一区免费看| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 国产亚洲av高清不卡| 后天国语完整版免费观看| 成人av一区二区三区在线看| 桃色一区二区三区在线观看| 黄色女人牲交| 看片在线看免费视频| 国产成人精品久久二区二区91| 精品国产超薄肉色丝袜足j| 非洲黑人性xxxx精品又粗又长| 国产精品香港三级国产av潘金莲| 精品第一国产精品| 亚洲无线在线观看| www日本在线高清视频| 高清毛片免费观看视频网站| 波多野结衣高清无吗| 日韩欧美在线二视频| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩东京热| 两性夫妻黄色片| 精品人妻1区二区| 国产精品永久免费网站| 久久久久久久午夜电影| 白带黄色成豆腐渣| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 久久久久精品国产欧美久久久| 欧美一区二区国产精品久久精品 | 久久中文字幕人妻熟女| 麻豆成人av在线观看| 99在线视频只有这里精品首页| 国产男靠女视频免费网站| 校园春色视频在线观看| 亚洲国产欧洲综合997久久,| 好看av亚洲va欧美ⅴa在| 国模一区二区三区四区视频 | 99国产综合亚洲精品| 国产亚洲av高清不卡| 老司机午夜十八禁免费视频| 免费av毛片视频| 亚洲av成人一区二区三| 1024视频免费在线观看| 动漫黄色视频在线观看| 又爽又黄无遮挡网站| 亚洲精品色激情综合| 亚洲国产日韩欧美精品在线观看 | 久久中文字幕一级| 亚洲成人免费电影在线观看| 国内精品久久久久久久电影| 丰满的人妻完整版| 99久久99久久久精品蜜桃| 亚洲精品久久国产高清桃花| 国产av在哪里看| 久久午夜综合久久蜜桃| 成在线人永久免费视频| 午夜激情av网站| 午夜老司机福利片| 久久99热这里只有精品18| 欧美高清成人免费视频www| 又大又爽又粗| 欧美日本亚洲视频在线播放| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 人妻夜夜爽99麻豆av| 欧美极品一区二区三区四区| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av| 国产熟女午夜一区二区三区| 国产一区在线观看成人免费| 一级毛片精品| 欧美在线一区亚洲| 欧美+亚洲+日韩+国产| 国产人伦9x9x在线观看| a级毛片a级免费在线| 欧美成人午夜精品| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 成人高潮视频无遮挡免费网站| 国产熟女午夜一区二区三区|