• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An on-line constraint softening strategy to guarantee the feasibility of dynamic controller in double-layered MPC☆

    2017-05-28 19:46:20HongguangPanWeiminZhongZaiyingWang
    Chinese Journal of Chemical Engineering 2017年12期

    Hongguang Pan ,Weimin Zhong *,Zaiying Wang

    1 School of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an 710071,China

    2 Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,East China University of Science and Technology,Shanghai 200237,China

    1.Introduction

    Model predictive control(MPC)refers to a class of computer control algorithms thatutilize an explicitprocess modelto predictthe future response of a plant.Due to the advantage of controlling the constrained multivariable processes,MPC has been widely and successfully implemented in the process industries over recent years[1-3].

    In lots oflarge scale enterprises,a universalhierarchy shown in Fig.1 for optimization and control is generally adopted.With this hierarchical framework,in time scales,the re finement is successive from top to bottom;in the spatialscales,itis also varying from plant-wide optimization at the top to regulatory control via single PID loops at the bottom[4,5].Specially,a real time optimization(RTO)is mainly implemented to improve economic pro fit and give optimal set points(optimal inputs and outputs of the system)to the double-layered M-PC,which has a steady-state target calculation(SSTC)layer and a dynamic control layer;and then the SSTC layer can give steady-state targets which are tracked in the dynamic layer.

    The RTO level and the double-layered MPC level are linked via the optimal set points,which are solved in the RTO level and directly translated to the double-layered MPC,i.e.,to the SSTC layer.The SSTC layer is mainly implemented to correct the optimal set points from the RTO level[5,6].Because the steady-state targets may be changed by the disturbance or interference caused by environment and operators atany instant,the SSTC is necessarily inserted on top of dynamic control layer[7-9].Generally,the SSTC layer adopts a linear steady-state model,which is a steady-state version of a dynamic model used in the dynamic control layer.From Fig.1,we can get that the optimization problem of the SSTC layer is calculated at the same frequency as the dynamic control layer.

    The steady-state targets can be calculated in a single or in several optimization problems,named the single priority rank method or the multi-priority rank method,respectively.The single priority rank method may be classified into three types,i.e.,the “self-optimizing”,the target tracking and the weighting method according to various objectives of the cost function[9-11].The multi-priority rank method adopted in industrialpractices can distinguish the setpoints in different importance levels[5,11,12].

    The stability of the double-layered MPC has always been a hard topic since the double-layered MPC is adopted.However,there have been lots of systematical results on the stability of the MPC when a synthesis approach is adopted[13],and these results can be borrowed to do some research on the stability of the doublelayered MPC in some extent.Generally,a region of attraction(ROA)of the dynamic controller is inconsistent with the feasible domain of the SSTC layer,and the inconsistency between the doublelayered MPC will result in the in feasibility of the dynamic control layer during the control process.Another advantage of adopting the synthesis approach in dynamic control layer is that the ROA can be conveniently calculated.

    Fig.1.Control structure with RTO and double layered MPC.

    Based on the above consideration,the synthesis approach is adopted in this paper and an on-line constraintsoftening strategy is presented to guarantee the feasibility of the dynamic control layer.Specially,a series ofsoftened constraints are given via relaxing the softconstraints several times,and a series of ROA centering at the steady-state targets is calculated at each instant;then,the ROA is chosen on-line considering the following two conditions:1)the ROA should contain the current state at each instant and 2)the relaxation should be as small as possible.When the ROA is fixed,the correspondingly softened constraint is adopted in dynamic control layer and the feasibility can be guaranteed.

    The paper is organized as follows.Section 2 gives preliminary results of the double layered MPC and analyzes the reason of the inconsistency between the SSTC and the dynamic control;in Section 3,the calculation process of the approximate ROA and the presented algorithm are introduced;Section 4 gives two simulation examples and Section 5 concludes the paper.

    Notation:Rndenotes the n-dimensional Euclidean space,x*the optimal value of x;y(x,u)denotes the system output y∈Rny(state x∈Rnx,input u∈Rnu),ys(xs,us)the steady-state output(state,input),yt(ut)the set points of the output(input),yˉs(xˉs,uˉs,yˉt,uˉt)the upper bound of ys(xs,us,yt,ut);y(k+i|k)(x(k+i|k),u(k+i|k))denotes the future value of u(k+i)(x(k+i),x(k+i))predicted at instant k;Qs,Rs,Q,R,P denote the weighting matrices,which are positive definite;⊕denotes the Minkowski sum,i.e.,A⊕B={a+b|?a∈A,b∈B};Indenotes the n-dimensional identity matrix,N the control horizon;||x||denotes the 2-norm of x and||x||Q2denotes xTQx.

    2.Preliminary Results of the Double-layered MPC

    In this paper,a numerical algorithm for the subspace state space system identification(N4SID)method ofsubspace identification method(SIM)is adopted to get the state space model,which is adopted in the double-layered MPC.The reason is that,compared with the traditional approaches,SIM does not need nonlinear search(thence avoiding local minima and convergence problems)and canonical parameterization,which is intrinsically suitable for the identification of multivariable system[14].Because the N4SIDmethod is introduced in many literatures[14,15],it is unnecessary to give details here.

    The dynamic state space model{A;B;C}with nuinputs,nxstates and nyoutputs is obtained via N4SID:

    which subjects to the following constraints on the outputs,states and inputs:

    where Y,X and U denote the admissible set,and are assumed to be nonempty compact convex polyhedrons containing the origin in their interior,f∈ Rnu×nu.The above model is assumed to satisfy the following assumptions:

    Assumption 1.The pair(A,B)is stabilizable.

    Correspondingly,the steady-state model is as follows:

    and the steady-state states and inputs are in the following sets:

    Generally,Ys=Y,Xs=X,Us=Y.

    2.1.SSTC

    In practical industrial applications,almost all MPC software contains SSTC operation before implementing dynamic control.In this paper,we choose the targets tracking cost function for the SSTC.For the set points ytand ut,any ys(k),xs(k)and us(k)satisfying Eq.(6)are on-line calculated.The SSTC optimization problem is

    Generally,the solution of problems(7a)and(7b)is unique by minimizing the deviation between the set points and the steady-state targets in least squares sense[16].If(yt,ut)are not reachable,which means that they cannot be reached by any controller,the solution will converge to a solution(ys(k),us(k))which has the minimal distance from(yt,ut),and Js(k)is not equal to zero.With the changing of the set points,the steady-state targets can locate at any point in the admissible set.

    In this paper,the setpoints foroutput(yt)and input(ut)are selected(or calculated)through the RTO layer(see Fig.1 in Section 1).The set points remain unchanged when the RTO layer does not give new set points to the double layered MPC.Considering this papermainly focuses on double layered MPC and the feasibility guaranteeing of dynamic layer,the values of set points are given artificially in this paper.

    2.2.Dynamic control

    In the dynamic control layer,the model predictive controller is designed by the synthesis approach,and the following assumption should be considered.

    Assumption 2.

    1)K ∈ Rnu×nxis a local stabilizing control gain such that(A+BK)is Schur;

    2)P ∈ Rnx×nx,Q ∈ Rnx×nx,R ∈ Rnu×nuare positive definite matrices,where P ∈ Rnx×nxis such that(A+BK)TP(A+BK)-P=-(Q+KTRK);

    3)For tracking for systems(1a)and(1b),Xfis a terminal invariant set subject to Eqs.(3)and(4)and K.

    When the steady-state targets(ys(k),xs(k),us(k))(where ys(k)=Cxs(k))are calculated in the SSTC layer,the dynamic control optimization problem is shown as follows:

    where i=0,1,…,N-1,u′=[u(k|k),u(k+1|k),…,u(k+N-1|k)];the current state can be chosen as(k),which is estimated though a Kalman filter.The Kalman filer is brie fly introduced in Appendix.

    In optimization problems(8a)-(8f),all of the states are used in control.Indeed,although the cost functionin Eqs.(7a)and(7b)does not include the steady-state,the steady-state state xs(k)can be calculated as a decision variable(ys(k),xs(k),us(k)are the three decision variables in Eqs.(7a)and(7b)).

    Generally,the synthesis method includes the following“three ingredients”,i.e.,the terminal cost function||x(k+N|k)-xs(k)||P2,the terminal invariant set Xfand the local control gain K.The definition of ROA is given here according to[17,18],i.e.,the ROA is a set of states,which can be steered to the terminal invariant set in N steps or less,while assuring that no input and state constraints are violated.According to this definition,the ROA crucially re flects the control ability.

    Based on the brief introduction on the double layered MPC,we can find that the SSTC layer only requires the steady-state targets xs(k)to satisfy the constraints(i.e.,Eq.(7b)),while the dynamic controllayerrequires the predicted values of state in the predictive horizon to satisfy the constraints(i.e.,Eq.(8e)).According to the definition of ROA,when we adopt the synthesis method,if and only if the current state x(k|k)is contained in the ROA,the optimization problems(8a)-(8f)in the dynamic control layer are feasible;else,Eqs.(8a)-(8f)are infeasible.In the actual process,the state constraints of the controller may be modulated with the relaxed or tightened soft constraints,then,the scale of the ROA will change correspondingly.Based on the above analysis,it is found that,during the actual process,there is no specific measure which can guarantee that,the ROA can contain the current state x(k|k)at any instant.Once the current state is out of the ROA,the optimization problems(8a)-(8f)are infeasible.

    3.Presented Algorithm for the Double-layered MPC

    In this section,we give a solution,which can guarantee the feasibility of the dynamic control optimization problem.At each k,when the steady-state targets are calculated in the SSTC layer,they are passed to the dynamic control layer,and then,a series of ROA can be calculated centering at xs(k)through softening the soft constraints.These measures can guarantee that,at least one ROA can contain the current state.Next,the details are introduced.

    Firstly,the terminal invariant set is calculated,and then the ROA are introduced.Here,we adopt the linear quadratic regulator(LQR)and Riccati equation to calculate the local controller gain K,which can be applied to transform an original system into an autonomous system.The autonomous system is shown as

    Then,the method proposed in[19,20]is adopted in this paper to get the maximal terminal invariant set Xf(xs(k)),which centers at xs(k).Moreover,based on the maximal terminal invariant sets shown in Eqs.(10a)and(10b),the ROA O(xs(k))can be calculated[20,21]:

    where Ol(xs(k))(l=1,2,…,N)is the ROA for control horizon i.In Eqs.(10a)and(10b),O(xs(k))=ON(xs(k)).

    3.1.Choosing a “suitable”ROA containing current state on-line

    Based on the analysis in last section,through enlarging the size of ROA,the current state can be contained,and the feasibility of the dynamic controller can be guaranteed.

    Here,letus soften the softconstraints L times,and Δxˉis the softened amplitude.After the softening,the enlarged state bounds are xˉ0,xˉ1,…,xˉl,…,xˉL(where xˉ0=xˉis the original bound),and Δxˉ=xˉ1-xˉ0= … =xˉl-xˉ(l-1)=…=xˉL-xˉ(L-1).Correspondingly,the admissible sets associated with the enlarged state bounds are rewritten as X0,X1,…,Xl,…,XL.According to this measure,afterobtaining the new bounds,a series of maximal terminal invariant sets,i.e.,(xs(k))centering at xs(k)can be obtained(note that,Xlf(xs(k))is associated with xˉl,l=0,1,…,L).Further,the ROA Ol(xs(k))can be calculated through Eqs.(10a)and(10b).

    Assumption3.By choosing the suitable N,L andΔxˉ,there exists a maximal ROA OL(xs(k))satisfying

    where X0=X.

    Note that,the “suitable”,in the assumption,means that Ol(xs(k))contains(xs(k))with the smallest softening time l.

    The above assumption is rational.The rationality is:in order to satisfy Eq.(11),the ROA can be enlarged enough by relaxing the soft constraints(and increasing the control horizon N can also be used to achieve this intention,but it will increase the computation burden obviously).Hence,the trade-off between the computational burden and the relaxed amplitude(associated with L and Δxˉ)should be carefully considered.

    Based on the analysis above,the improved optimization problem in the dynamic layer is rewritten as

    where i=0,…,N-1.Through solving this problem,the control inputs are obtained and injected to drive the system to the steady-state targets.

    3.2.On-line recursive feasible algorithm

    Algorithm 1.off-line stage:

    (i)select the predictive horizon N,the weighting matrices Qs,Rs,Q,R,the initial Kalman filter covariance H(0|0)and the initial state x(0|0);

    (ii)select L and Δxˉ,and get the admissible sets X0,X1,…,Xl,…,XL;

    (iii)obtain the local control gain K and the Lyapunov matrix P;

    on-line stage:at each k>0,implement the following steps,

    (i)in SSTC layer,obtain the unique xs(k)and us(k)through solving Eqs.(7a)and(7b),and judge whether xs(k)changes or not;if it changes,then continue,else,go to(iii);

    (ii)in SSTC layer,calculate Xf(xs(k))and O0(xs(k)),O1(xs(k)),…,Ol(xs(k)),…,OL(xs(k));

    (iii)in SSTC layer,select the “suitable”O(jiān)l(xs(k))with the smallest l to satisfy x(k)∈ Ol(xs(k)),then transmit xs(k),us(k),Xland Xlf(xs(k))to the dynamic control layer;

    (iv)in dynamic control layer,solve Eqs.(12a)-(12g)to obtain the optimal control inputs u*(k|k),…,u*(k+N-1|k),and inject the first control input u*(k|k)into the actual plant.

    In this on-line algorithm,although choosing a suitable ROA is added to the SSTC layer,the basic structures of the double-layered MPC are not changed,hence,all advantages of the double-layered MPC are remained.

    4.Numerical Example and Simulation

    In this paper,we show the effectiveness of the presented algorithm through the following two examples.In the first numerical example,the relationship between the ROA and the current state is demonstrated in two figures.In the second simulation example,we mainly give the control results.

    4.1.Numerical example 1

    Adopt the following LTI system to show the effectiveness of the proposed algorithm,

    whereand the constraint bounds are yˉ=4 and uˉ=0.6,respectively.

    According to Algorithm 1,the parameters are given as follows:

    (i)choose the predictive horizon N=7,the weighting matrix Qs=I2,Rs=I2,Q=I2,R=I2,and initial state x(0|0)=[-8,8]T.Note that,the controlled system is the same as the state space model in this numerical example,hence,the current state x(k|k)is chosen as x(k)and the Kalman filter is unnecessary;

    (ii)choose L=3 and Δyˉ=CΔxˉ=[3,3]T,i.e.,CΔxˉ1=C xˉ0+[3,3]T,CΔxˉ2=CΔxˉ1+[3,3]Tand CΔxˉ3=CΔxˉ2+[3,3]T;

    (iii)the localcontroller gain K and the weighting matrix P are calculated by the LQR and the Riccati equation solution as:

    We verify the effectiveness through a two-stage simulation.The desired targets are yt=xt=[4,2]T,ut=[0,0]T(k∈[0,30]),yt=xt=[2.5,2]T,ut=[0,0]T(k∈[31,60]),respectively.Note that,only the desired targets are changed in each stage.

    In the SSTC layer,the steady-state targets calculated ateach instantfor stages 1 and 2 are ys=xs=[4.00,1.21]T,us=[0.29,-0.33]T(k∈[0,30]),and ys=xs=[-4.00,-1.21]T,us=[-0.29,0.33]T(k∈[31,60]),respectively.We can find that not all of the desired targets can be reached in steady-state.

    In the dynamic controllayer,the state evolutions overthe two stages are shown in Figs.2,3 and Table 1.

    In Table 1,the ROA containing the current state at each instant k are listed,and we can find that O0(xs(k))at instants k=1-34 do not contain the current state x(k|k).If the presented method is not adopted,the dynamic control optimization problem is infeasible at the above instants.Further,Figs.2 and 3 can also give the same conclusion.

    4.2.Simulation example 2

    Consider the following transfer matrix of a heavy oil fractionator[22]:

    Fig.2.The state evolution of example 1 in stage 1.

    Fig.3.The state evolution of example 1 in stage 2.

    Table 1 The chosen results of the ROA in example 1

    The three inputs u1,u2,and u3are the product draw rate from the top of the column,the product draw rate from the side of the column,and the re flux heat duty for the bottom of the column,respectively.The three outputs y1,y2,and y3are the draw composition from the top of the column,the draw composition from the side of the column and the re flux temperature at the bottom of the column,respectively.The inputs and outputs are constrained between-0.5 and 0.5,i.e.,uˉ=yˉ=[0.5,0.5,0.5]T.

    Here,we adopt the N4SID method to get the state space model,and the identification process is introduced brie fly.The open loop inputs and outputs data are obtained by exciting the system(13)with 3 general binary noise(GBN)signals of magnitude 0.5 as the inputs.2000 sample points are measured as the identification data with the sampling period 4 min.The system order is set as n=6.Through N4SID command in Matlab R2013a,the state space matrices{A,B,C}are identified,and matrix D is set to zero.{A,B,C}are as follows:

    Similarly,the parameters for Algorithm 1 are given as follows:

    (i)choose the predictive horizon N=5,the weighting matrix Qs=I3,Rs=I3,Q=diag[1,1,2],R=I3,the initial state y(0|0)=Cx(0|0)=[0 0 0]Tand the initial Kalman filter covariance H(0|0)=100,000I6;

    (ii)choose L=3 and Δyˉ=CΔxˉ=[0.1,0.1,0.1]T,i.e.,CΔxˉ1=C xˉ0+[0.1,0.1,0.1]T,CΔxˉ2=CΔxˉ1+[0.1,0.1,0.1]Tand CΔxˉ3=CΔxˉ2+[0.1,0.1,0.1]T;

    (iii)K and P are

    In this example,we also give a two-stage simulation,and the desired targets in the first and second stages are chosen as yt=[0.4,0.3,0.3]T,ut=[0.3,-0.25,-0.25]T(k∈[0,100]),and yt=[0.5,-0.5,0.4]T,ut=[0.2,-0.2,-0.2]T(k∈[101,600]),respectively;then,the steady-state targets are calculated via Eqs.(7a)and(7b)in the SSTC layer,and the results are ys=[0.48,0.36,0.16]T,us=[0.25,-0.01,-0.07]T(k∈[0,100]),and ys=[0.50,-0.36,0.18]T,us=[-0.08,-0.24,0.21]T(k∈[101,600]),respectively.

    In the dynamic control layer,the chosen results of the ROA are shown in Table 2,and the control outputs and inputs corresponding to the steady-state targets given through problem are shown in Fig.4.During the control process(k=101),another group of desired targets(yt=[0.5,-0.5,0.4]Tand ut=[0.2,-0.2,0.2]T)are given by the RTO layer,then,the new group of steady-state targets(ys=[0.48,0.36,0.16]Tand us=[0.25,-0.01,-0.07]T)are calculated through Eqs.(7a)and(7b),and tracked by the dynamic layer.In Table 2,wecan find that O0(xs(k))at instants k ∈ [122,149]and[169,195]do not contain the currentstate x(k|k).Ifthe presented method is notadopted,the dynamic control optimization problem is infeasible at the above instants.Further,Fig.4 can also give the same conclusion.

    Table 2 The chosen results of the ROA in example 2

    Fig.4.The control results of example 2.

    In the above two examples,Eqs.(7a)and(7b)are standard quadratic programming problems which are solved adopting the Matlab optimization toolbox;the sets(xs(k))and Ol(xs(k))are computed via Multi-Parametric Toolbox(MPT)in Matlab(see e.g.[23]);and Eqs.(12a)-(12g)are solved through the Linear Matrix Inequality(LMI)toolbox in Matlab.

    5.Conclusions

    In this paper,we firstly analyze the inconsistency in the doublelayered model predictive control,and obtain the guideline to solve the infeasibility of the dynamic control layer.Further,the on-line constraint softening strategy is given to guarantee the feasibility of the dynamic control layer through on-line choosing a “suitable”region of attraction.This work lays a foundation for solving the stability problem of the double-layered MPC.In the future,the following two works should be continued,1)considering the disturbance and noise,which is more close to the real processes and 2)analyze the stability of the doublelayered MPC based on this work.

    Appendix.Brief introduction of Kalman filter

    The gain matrix Kkand the current state are updated as follows:

    (1)discrete Kalman filter time update equations:

    (2)discrete Kalman filter measurement update equations:

    where H denotes Kalman filter covariance,W measurement noise covariance,and I unit matrix.When an initial state estimation(0)and an initial covariance H(0|0)are given,the above two steps are repeated to on-line update the filtergain Kkand the current state estimation(k)with each instant.

    [1]D.Q.Mayne,Model predictive control:recent developments and future promise,Automatica 50(12)(2014)2967-2986.

    [2]R.Amrit,J.B.Rawlings,L.T.Biegler,Optimizing process economics online using model predictive control,Comput.Chem.Eng.58(2013)334-343.

    [3]M.L.Darby,M.Nikolaou,MPC:current practice and challenges,Control.Eng.Pract.20(4)(2012)328-342.

    [4]M.A.Miiller,D.Angeli,F.Allgower,R.Amrit,J.B.Rawlings,Convergence in economic model predictive control with average constraints,Automatica 50(12)(2014)3100-3111.

    [5]M.L.Darby,M.Nikolaou,J.Jones,Doug Nicholson,RTO:an overview and assessment of current practice,J.Process Control 21(6)(2011)874-884.

    [6]A.G.Marchetti,A.Ferramosca,A.H.Gonzalez,Steady-state target optimization designs for integrating real-time optimization and model predictive control,J.Process Control 24(1)(2014)129-145.

    [7]D.E.Kassmann,T.A.Badgwell,Robert B.Hawkins,Robust steady-state target calculation for model predictive control,AIChE J.46(5)(2000)1007-1024.

    [8]A.Nikandrov,C.L.E.Swartz,Sensitivity analysis of LP-MPC cascade control systems,J.Process Control 19(1)(2009)16-24.

    [9]C.V.Rao,J.B.Rawlings,Steady states and constraints in model predictive control,AIChE J.45(6)(1999)1266-1278.

    [10]J.B.Rawlings,R.Amrit,Optimizing process economic performance using model predictive control,Nonlinear Model Predictive Control,Springer 2009,pp.119-138.

    [11]H.G.Pan,H.N.Gao,Y.Sun,Y.Zhang,B.C.Ding,The algorithm and software implementation for double layered model predictive control based on multi priority rank steady state optimization,Acta Automat.Sin.40(3)(2014)405-414.

    [12]T.Zou,H.Q.Li,X.X.Zhang,Y.Gu,H.Y.Su,Feasibility and soft constraint of steady state target calculation layer in LP-MPC and QP-MPC cascade control systems,Advanced Control of Industrial Processes(ADCONIP),2011 International Symposium on,IEEE 2011,pp.524-529.

    [13]D.Q.Mayne,J.B.Rawlings,C.V.Rao,P.O.M.Scokaert,Constrained model predictive control:stability and optimality,Automatica 36(6)(2000)789-814.

    [14]B.Huang,R.Kadali,Dynamic Modeling,Predictive Control and Performance Monitoring,Springer,London,2008.

    [15]P.V.Overschee,B.L.R.De Moor,Subspace Identification for Linear Systems:Theory,Implementation,Applications,Springer US,New York,1996.

    [16]K.R.Muske,Steady-State Target Optimization in Linear Model Predictive Control,American Control Conference.Proceedings of the 1997,vol.6,IEEE 1997,pp.3597-3601.

    [17]D.Limon,T.A.,E.F.Camacho,Enlarging the domain of attraction of mpc controllers,Automatica 41(4)(2005)629-635.

    [18]F.Blanchini,S.Miani,Any domain of attraction for a linear constrained system is a tracking domain of attraction,SIAM J.Control.Optim.38(3)(2000)971-994.

    [19]B.Pluymers,J.A.Rossiter,J.A.K.Suykens,Bart De Moor,The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty,American Control Conference.Proceedings of the 2005,IEEE 2005,pp.804-809.

    [20]F.Blanchini,Survey paper:set invariance in control,Automatica 35(11)(1999)1747-1767.

    [21]E.C.Kerrigan,Robust Constraint Satisfaction:Invariant Sets and Predictive Control(PhD thesis)University of Cambridge,2001.

    [22]D.M.Prett,M.Morari,The Shell Process Control Workshop,Elsevier,2013.

    [23]M.Kvasnica,P.Grieder,M.Baotic,M.Morari,Multi-Parametric Toolbox(MPT),Hybrid System:Computation and Control,Springer,Berlin 2004,pp.448-462.

    香蕉丝袜av| 久久久精品大字幕| 老司机在亚洲福利影院| 午夜福利欧美成人| 最近视频中文字幕2019在线8| 日本一二三区视频观看| 国产综合懂色| 三级国产精品欧美在线观看| 一进一出好大好爽视频| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 脱女人内裤的视频| 久久精品人妻少妇| 国产一区二区三区在线臀色熟女| 国产美女午夜福利| 国产精品久久久久久人妻精品电影| 青草久久国产| 久久久精品大字幕| 精品人妻偷拍中文字幕| 久久香蕉国产精品| 亚洲成人久久爱视频| 亚洲人成网站高清观看| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区亚洲精品在线观看| 国产成人aa在线观看| 久久久精品大字幕| 两个人的视频大全免费| 琪琪午夜伦伦电影理论片6080| 久久久久国内视频| 男女那种视频在线观看| 悠悠久久av| 五月玫瑰六月丁香| 午夜精品在线福利| 美女被艹到高潮喷水动态| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 熟女人妻精品中文字幕| 国产熟女xx| 午夜福利在线在线| 天美传媒精品一区二区| 国产成人啪精品午夜网站| 亚洲色图av天堂| 啦啦啦免费观看视频1| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 欧美日韩综合久久久久久 | 成人亚洲精品av一区二区| 熟妇人妻久久中文字幕3abv| 少妇丰满av| 色播亚洲综合网| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱 | 欧美性猛交╳xxx乱大交人| 国产中年淑女户外野战色| 免费一级毛片在线播放高清视频| 国产一级毛片七仙女欲春2| 人人妻,人人澡人人爽秒播| 五月玫瑰六月丁香| 久久天躁狠狠躁夜夜2o2o| 欧美中文日本在线观看视频| 99精品在免费线老司机午夜| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 噜噜噜噜噜久久久久久91| 99在线视频只有这里精品首页| 首页视频小说图片口味搜索| 国产成人a区在线观看| 搡老熟女国产l中国老女人| 又紧又爽又黄一区二区| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区三| 90打野战视频偷拍视频| 亚洲av免费在线观看| 在线观看免费视频日本深夜| 无遮挡黄片免费观看| 精品久久久久久,| 国产国拍精品亚洲av在线观看 | 毛片女人毛片| 99久国产av精品| netflix在线观看网站| 国产乱人视频| 国产不卡一卡二| 国产精品日韩av在线免费观看| 91久久精品国产一区二区成人 | 精品国内亚洲2022精品成人| 一级毛片高清免费大全| 成人高潮视频无遮挡免费网站| 一级黄色大片毛片| 中文字幕av成人在线电影| avwww免费| 长腿黑丝高跟| 亚洲av一区综合| 男人的好看免费观看在线视频| 99热6这里只有精品| 亚洲欧美精品综合久久99| 亚洲av成人精品一区久久| 日本熟妇午夜| 精品人妻偷拍中文字幕| 国产精品一区二区三区四区久久| 美女cb高潮喷水在线观看| 亚洲av不卡在线观看| 日韩国内少妇激情av| 搡老岳熟女国产| 欧美激情在线99| 国产精品永久免费网站| 亚洲国产高清在线一区二区三| 男女床上黄色一级片免费看| 国产中年淑女户外野战色| 18+在线观看网站| 国产av在哪里看| 亚洲av一区综合| 99热这里只有精品一区| 不卡一级毛片| 香蕉丝袜av| 精品久久久久久成人av| 12—13女人毛片做爰片一| 久久久国产精品麻豆| 国产97色在线日韩免费| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 老司机在亚洲福利影院| 亚洲熟妇中文字幕五十中出| 99久久综合精品五月天人人| 人妻夜夜爽99麻豆av| 丰满乱子伦码专区| 亚洲国产精品久久男人天堂| 亚洲专区中文字幕在线| 欧美一区二区亚洲| 制服人妻中文乱码| 免费av观看视频| 欧美av亚洲av综合av国产av| 美女cb高潮喷水在线观看| 99久久精品一区二区三区| 久久久久久人人人人人| av视频在线观看入口| 久久久久精品国产欧美久久久| 国产午夜福利久久久久久| 国产精品,欧美在线| 别揉我奶头~嗯~啊~动态视频| 色综合婷婷激情| 日韩成人在线观看一区二区三区| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 午夜影院日韩av| 色播亚洲综合网| 淫妇啪啪啪对白视频| 日韩人妻高清精品专区| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 热99在线观看视频| 女警被强在线播放| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕| 国产日本99.免费观看| 少妇熟女aⅴ在线视频| www.色视频.com| 久9热在线精品视频| 日韩欧美在线乱码| 国产91精品成人一区二区三区| 久久久国产成人免费| 久久久久久久久中文| 美女免费视频网站| 高清毛片免费观看视频网站| 可以在线观看毛片的网站| 国产午夜精品久久久久久一区二区三区 | 亚洲精品粉嫩美女一区| 午夜福利成人在线免费观看| 身体一侧抽搐| 天美传媒精品一区二区| 看免费av毛片| 国产精品香港三级国产av潘金莲| 一进一出抽搐动态| av天堂中文字幕网| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 亚洲 国产 在线| 丝袜美腿在线中文| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久com| 看黄色毛片网站| 国产不卡一卡二| 国产欧美日韩一区二区精品| 亚洲最大成人中文| 九色成人免费人妻av| 国产成人欧美在线观看| 日韩免费av在线播放| 天美传媒精品一区二区| 99热这里只有是精品50| 3wmmmm亚洲av在线观看| 久久久国产成人免费| 日本熟妇午夜| 亚洲av电影在线进入| 蜜桃久久精品国产亚洲av| 成人av一区二区三区在线看| 欧美黑人巨大hd| 啦啦啦韩国在线观看视频| 亚洲欧美日韩无卡精品| 熟女人妻精品中文字幕| 亚洲成人免费电影在线观看| 欧美成人性av电影在线观看| 日韩欧美在线乱码| 亚洲熟妇中文字幕五十中出| 91麻豆av在线| 国产精品影院久久| 亚洲欧美日韩高清专用| 波野结衣二区三区在线 | 日本一本二区三区精品| 日本 av在线| 亚洲成人久久爱视频| 精品福利观看| 免费大片18禁| 成人欧美大片| 91麻豆精品激情在线观看国产| 欧美日韩福利视频一区二区| 女同久久另类99精品国产91| 欧美激情在线99| 国产av麻豆久久久久久久| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 一个人看的www免费观看视频| 亚洲内射少妇av| 校园春色视频在线观看| 婷婷精品国产亚洲av在线| 国模一区二区三区四区视频| 香蕉久久夜色| 亚洲av日韩精品久久久久久密| 亚洲不卡免费看| 又粗又爽又猛毛片免费看| 国产精品 国内视频| 一区二区三区国产精品乱码| 亚洲av免费在线观看| 两人在一起打扑克的视频| 在线国产一区二区在线| 亚洲精品在线观看二区| 婷婷亚洲欧美| av欧美777| 国产成人影院久久av| 国产精品电影一区二区三区| 久久国产乱子伦精品免费另类| 欧美成人性av电影在线观看| 欧美国产日韩亚洲一区| 国产老妇女一区| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 夜夜看夜夜爽夜夜摸| 国产欧美日韩精品亚洲av| 无人区码免费观看不卡| 欧美激情久久久久久爽电影| 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 国产aⅴ精品一区二区三区波| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 夜夜夜夜夜久久久久| 麻豆成人av在线观看| 免费电影在线观看免费观看| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 亚洲中文字幕日韩| 在线免费观看的www视频| 久久天躁狠狠躁夜夜2o2o| 蜜桃久久精品国产亚洲av| h日本视频在线播放| 国产精品,欧美在线| 国产精华一区二区三区| 免费观看精品视频网站| 一进一出抽搐gif免费好疼| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片| xxx96com| 两个人的视频大全免费| 久久伊人香网站| 国产精品国产高清国产av| 国产成人系列免费观看| 在线观看av片永久免费下载| 亚洲七黄色美女视频| 国产色婷婷99| 午夜福利欧美成人| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| www.www免费av| 色综合婷婷激情| 2021天堂中文幕一二区在线观| 亚洲精华国产精华精| 中文字幕av在线有码专区| 国产一区二区在线观看日韩 | 欧美成人免费av一区二区三区| 麻豆成人av在线观看| 18禁国产床啪视频网站| 女警被强在线播放| 久久国产精品影院| a级毛片a级免费在线| 久久伊人香网站| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 欧美最黄视频在线播放免费| 亚洲成人久久性| 久久久久久久精品吃奶| 久久精品夜夜夜夜夜久久蜜豆| 香蕉丝袜av| 欧美不卡视频在线免费观看| 草草在线视频免费看| a在线观看视频网站| 99热精品在线国产| av中文乱码字幕在线| 最近最新中文字幕大全免费视频| 国产精品一区二区免费欧美| 午夜福利高清视频| 成人午夜高清在线视频| 国内精品久久久久精免费| 日本与韩国留学比较| 色精品久久人妻99蜜桃| 窝窝影院91人妻| 国产不卡一卡二| 欧美成狂野欧美在线观看| 在线播放无遮挡| 一进一出好大好爽视频| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| 黄色片一级片一级黄色片| 久久久精品大字幕| 亚洲自拍偷在线| 欧美zozozo另类| av专区在线播放| 99久久精品热视频| 麻豆国产av国片精品| 国产熟女xx| 国产精品av视频在线免费观看| 欧美色视频一区免费| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头~嗯~啊~动态视频| 欧美乱色亚洲激情| 国产不卡一卡二| 欧美成人一区二区免费高清观看| 怎么达到女性高潮| 国产三级在线视频| 69av精品久久久久久| 国产精品一区二区免费欧美| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 欧美极品一区二区三区四区| 亚洲中文字幕日韩| 舔av片在线| 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| 欧美黑人巨大hd| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 国产老妇女一区| 欧美一区二区亚洲| 亚洲人成网站高清观看| 亚洲国产精品sss在线观看| 毛片女人毛片| 欧美日韩国产亚洲二区| 久久久成人免费电影| 欧美日韩福利视频一区二区| 成人高潮视频无遮挡免费网站| 长腿黑丝高跟| 狂野欧美激情性xxxx| 小说图片视频综合网站| 天美传媒精品一区二区| 日日夜夜操网爽| 色吧在线观看| 中出人妻视频一区二区| 1000部很黄的大片| 色精品久久人妻99蜜桃| 免费在线观看日本一区| 3wmmmm亚洲av在线观看| 精品熟女少妇八av免费久了| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 又爽又黄无遮挡网站| 国产99白浆流出| 深爱激情五月婷婷| 99热这里只有是精品50| av欧美777| 在线看三级毛片| 日本黄色视频三级网站网址| 免费大片18禁| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清专用| 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 欧美国产日韩亚洲一区| 午夜免费成人在线视频| 成年人黄色毛片网站| 手机成人av网站| 深爱激情五月婷婷| 观看免费一级毛片| 免费看a级黄色片| 真人一进一出gif抽搐免费| 一级黄色大片毛片| 久久久精品欧美日韩精品| 黑人欧美特级aaaaaa片| 成人三级黄色视频| 无人区码免费观看不卡| 国产一级毛片七仙女欲春2| 日日干狠狠操夜夜爽| 亚洲国产欧美网| www日本黄色视频网| bbb黄色大片| 三级男女做爰猛烈吃奶摸视频| www.999成人在线观看| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 亚洲人与动物交配视频| 在线a可以看的网站| 久久精品综合一区二区三区| 精品人妻一区二区三区麻豆 | 午夜视频国产福利| 国产成年人精品一区二区| 女人被狂操c到高潮| 欧美一区二区精品小视频在线| 精品久久久久久久末码| 欧美日本视频| 亚洲内射少妇av| svipshipincom国产片| 成人国产一区最新在线观看| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av| 亚洲av免费在线观看| 国产久久久一区二区三区| 中文字幕人成人乱码亚洲影| 桃色一区二区三区在线观看| 国产免费一级a男人的天堂| 91久久精品国产一区二区成人 | 999久久久精品免费观看国产| 欧美zozozo另类| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 日本三级黄在线观看| 91字幕亚洲| 给我免费播放毛片高清在线观看| 757午夜福利合集在线观看| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 在线观看av片永久免费下载| 亚洲成av人片免费观看| 欧美区成人在线视频| 搡老妇女老女人老熟妇| 在线观看舔阴道视频| 十八禁网站免费在线| 亚洲avbb在线观看| 亚洲真实伦在线观看| tocl精华| 国产午夜福利久久久久久| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| 有码 亚洲区| 国产 一区 欧美 日韩| 日韩欧美一区二区三区在线观看| 欧美3d第一页| 国产精品影院久久| 精品熟女少妇八av免费久了| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 亚洲中文字幕日韩| 男人的好看免费观看在线视频| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 搡老熟女国产l中国老女人| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| av一本久久久久| 久久这里有精品视频免费| 国产一区二区亚洲精品在线观看| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 天堂网av新在线| 丰满人妻一区二区三区视频av| 极品教师在线视频| av免费观看日本| 成人鲁丝片一二三区免费| 欧美精品一区二区大全| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区| 精品久久久久久久末码| 国产精品一区二区在线观看99 | 丝瓜视频免费看黄片| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 成人鲁丝片一二三区免费| 国产在线男女| 国产女主播在线喷水免费视频网站 | 日本一二三区视频观看| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 久久久久国产网址| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 校园人妻丝袜中文字幕| 伦精品一区二区三区| 天美传媒精品一区二区| 日韩国内少妇激情av| 亚洲精品久久午夜乱码| 国产成人freesex在线| 久久97久久精品| 黄色一级大片看看| 免费观看性生交大片5| 国产一区二区三区综合在线观看 | 高清av免费在线| 亚洲三级黄色毛片| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 国产成人精品一,二区| 亚洲18禁久久av| 亚洲丝袜综合中文字幕| 国产av不卡久久| 中文字幕av在线有码专区| av在线天堂中文字幕| 亚洲性久久影院| 在线观看美女被高潮喷水网站| 少妇熟女aⅴ在线视频| 91在线精品国自产拍蜜月| 网址你懂的国产日韩在线| 好男人视频免费观看在线| 一个人看的www免费观看视频| 日韩欧美精品免费久久| 大话2 男鬼变身卡| 亚洲成人久久爱视频| 自拍偷自拍亚洲精品老妇| a级毛色黄片| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 亚洲美女视频黄频| 十八禁国产超污无遮挡网站| 九色成人免费人妻av| kizo精华| 噜噜噜噜噜久久久久久91| kizo精华| av在线天堂中文字幕| 免费看不卡的av| 日本免费a在线| 国产一区二区三区综合在线观看 | 日韩成人伦理影院| 视频中文字幕在线观看| 国产黄片美女视频| 日韩欧美精品免费久久| 永久免费av网站大全| 三级国产精品片| 欧美bdsm另类| 乱码一卡2卡4卡精品| 一级片'在线观看视频| 97超碰精品成人国产| 99九九线精品视频在线观看视频| 特级一级黄色大片| 日日摸夜夜添夜夜爱| 最近中文字幕2019免费版| 成年人午夜在线观看视频 | 青青草视频在线视频观看| 国产成人精品福利久久| 一区二区三区乱码不卡18| 成人毛片60女人毛片免费| 免费在线观看成人毛片| eeuss影院久久| 国产综合懂色| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 国产av国产精品国产| 在线a可以看的网站| 人妻少妇偷人精品九色| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站在线播| av免费在线看不卡| 精品久久久噜噜| 我要看日韩黄色一级片| 国产黄片美女视频| 男人爽女人下面视频在线观看| 亚洲乱码一区二区免费版| 中文字幕亚洲精品专区| 99久久中文字幕三级久久日本| 欧美97在线视频| 乱人视频在线观看| 日韩,欧美,国产一区二区三区| 能在线免费看毛片的网站| 三级国产精品欧美在线观看| 国产精品国产三级国产专区5o| 国产不卡一卡二| 欧美一级a爱片免费观看看| 日韩强制内射视频| 久久久久久久久久久免费av| 亚洲精品日本国产第一区| 黄片无遮挡物在线观看| 直男gayav资源| 少妇的逼好多水| 欧美人与善性xxx| 一个人观看的视频www高清免费观看| 肉色欧美久久久久久久蜜桃 | 午夜福利成人在线免费观看| 亚洲精品乱久久久久久| 日韩成人伦理影院|