• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A data-derived soft-sensor method for monitoring effluent total phosphorus☆

    2017-05-28 19:46:12ShuguangZhuHongguiHanMinGuoJunfeiQiao
    Chinese Journal of Chemical Engineering 2017年12期

    Shuguang Zhu ,Honggui Han *,Min Guo ,Junfei Qiao

    1 College of Electronic Information&Control Engineering,Beijing University of Technology,Beijing 100124,China

    2 Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China

    3 Engineering Research Center of Digital Community,Ministry of Education,Beijing 100124,China

    4 Beijing Laboratory for Urban Mass Transit,Beijing 100124,China

    1.Introduction

    During the recent decades,the increasing awareness about the negative impact of eutrophication to the qualities of water bodies has led to more stringent wastewater treatment requirements and regulations[1].In wastewater treatment process(WWTP),Phosphorus(P)is of particular interest because of the major concern for elevated levels of Pin many naturalwaterways.Along with nitrogen,excessive P concentrations will promote eutrophication and the associated detrimental environmental impacts.To control eutrophication,a major requirement for improving the performance relies on the online measurements of effluent total phosphorus(ETP)[2,3].However,the online values of ETP are hard to measure[4,5].

    To measure the values of ETP online,the physico chemical detection methods have been developed[6].For example,an ion chromatography was developed to detect the values of ETP in the oil wastewater[7].A compact portable flow analysis system,including an ultra-violet photo-reactor and a spectrophotometry method,was introduced for the rapid measure ment of ETP in[8].Moreover,a micr of abricated cobalt electrode was designed for detecting the values of ETP in[9].For these above methods[7-9],the results show that they could obtain the values of ETP online with suitable accuracy in the laboratory conditions or some special detecting stations[10].However,there are several limitations of these methods,such as expensive capital and maintenance costs,as well as time-delayed responses[11,12].

    In recent years,since the large amount of process data have been routinely measured and collected in modern WWTPs,the dataderived soft-sensor method has been considered as an interesting alternative for measuring the values of water qualities online[13].A data-derived soft-sensor method is an input-output model,where the inputs usually consistofeasy-to-measure variables in the form ofplant's signals.Forexample,a self-validating soft-sensor method was proposed to predict the values of biological oxygen demand(BOD)with the capability of performing self-diagnostics,self-reconstruction and online uncertainty measurement[14].In addition,a soft-sensor,based on the multi-sensor water quality monitoring system,was used to monitor the chemical oxygen demand(COD)and total suspended solids(TSS)concentrations of the effluents in a real WWTP[15].Due to the unknown input-output relationship,neural networks,originally inspired by the abilities of human beings to perform many complicated tasks with ease,have been usually used to model complex relationships between inputs and outputs[16].For example,an adaptive net work based fuzzy inference system was developed to predict suspended solids(SS)and effluent COD of a paper mill wastewater treatment process[17].A soft-sensor,combining the multi-layer neural network and the multi-way principal components analysis,was developed for predicting the values of ETP in a full-scale WWTP[18].The results show that this soft-sensor can improve the predicting capability.However,in most real WWTPs,most of the input variables,such as the in fluent TSS,in fluent BOD,and in fluent total phosphorous,cannot be measured online.To predict the values of ETP with some easy-to measure variables,a soft-sensor,based on a feed-forward backpropagation neural network(FBNN),was designed and applied to a small scale municipal WWTP[19].The results demonstrate that the proposed soft-sensor method can significantly improve the estimation accuracy than some existing methods.However,since the softsensor method combines the FBNN with auto-regressive exogenous(ARX),it is time-consuming to adjust the parameters of the softsensor method[20].Although neural networks have been successfully used in predicting the effluent qualities of WWTPs[21-23],the parameters adjustment of the soft-sensor methods is still an open problem[24,25].

    In this study,a data-derived soft-sensor method,including a partial least square(PLS)method and a radial basis function neural network(RBFNN),is investigated to measure the values of ETP online.The PLS method is used to select the most suitable process variables for the data-driven soft-sensor method to rise the accuracy and reduce computing time.Meanwhile,the RBFNN algorithm is developed to model complex relationships between the process variables and ETP.Moreover,based on the soft-sensor method,an online monitoring system is designed and tested in a real WWTP.The results demonstrate that the proposed online monitoring system owns better performance than the results in[7,8,26].

    2.Methods

    2.1.Hardware setup

    The experimental setup is shown in Fig.1 based on a real anaerobic anoxic oxic(A2/O)WWTP(about 120 m3·d-1).It is located at the R&D center of Gaobeidian WWTP which is one of the largest municipal WWTP in China.The A2/O WWTP consists of two anaerobic tanks,two anoxic compartments,and four oxic compartments.Meanwhile,the mechanicalmixers are installed in anaerobic and anoxic tanks to ensure well-mixed conditions.The in fluent tank is used to subside the content of suspended solids by gravity,and the settler tank is designed to remove the flocs of biological growth.Moreover,the sludge will be removed from the bottom of settler tank if the effluent water is discharged from the surface of the same tank.

    In this study,the online monitoring systemconsists oftwo parts:the online instruments and the soft-sensor method.The online instruments are used to measure the easy-to-measure variables from different tanks of the A2/O process,including the dissolved oxygen concentration(DO),oxidation-reduction potential(ORP),TSS,pH,ammonium nitrogen(NH4-N),nitrate nitrogen(NO3-N),and temperature(T).All the instruments are operated in a continuous measurement mode to ensure the frequency of data collection,and the measured data are stored in their own memories.Since importing data through the SD-Card or the USB ports is time-consuming and low efficiency,a data recorder is installed to record the data from the online instruments and directly import the data into the computer automatically.In addition,since there is no direct contact between the wastewater treatment process and the data recorder,the transmission error can be ignored and the maintenance cost is acceptable.Further,following the data recorder,a softsensor mode,embedding the PLS method and the RBFNN together,is designed for predicting the values of ETP.

    2.2.Data-derived soft-sensor

    The proposed data-derived soft-sensorcan be described as an inputoutput process model,in which the inputs consist of easy-to-measure variables and the output is the online predicting values of ETP.In this soft-sensor model,the online instruments will consistently collect and transmit new data to the soft-sensor method.Then the soft-sensor will update its parameters to follow the change of data online.The steps and methodologies of the data-derived soft-sensor method are shown in Fig.2,and the main techniques are brie fly introduced in the following section.

    2.2.1.Data collection and data transmission

    The firststep in the proposed data-derived soft-sensor method is the data collection,which is to obtain the process data.To ensure the consistency and authenticity of the inputdata,the process data from this A2/O WWTP are routinely recorded and stored in the database.

    Fig.1.Schematic diagram of the monitoring system.

    Fig.2.The typical steps and methodologies of the data-derived soft-sensor.

    Table 1 The information of the process variables in the A2/O WWTP

    In this data-derived soft-sensor system,a hardware system,including the online instruments and the transmission component,is set up(refer to Fig.1).Nine process variables(as well as their collecting points,main apparatus and instruments,and sampling frequency),measured from the A2/O WWTP,are listed in Table 1.The sensors of the process variables are operated in a continuous/online measurement mode in this study.Meanwhile,the real values of ETP are collected by the laboratory analysis,and the sampling frequency of ETP is 5 min.Moreover,a data transmitting system has been designed to transmit the data directly between the sensors and the PC-computer.

    2.2.2.Variable selection

    In WWTPs,the data of the plants are redundant and possibly insignificant to calculate the measurements of the hard-to-measure variables.Moreover,in many situations,the computational capability ofthe soft-sensormethods cannothandle too many inputs.The quantity of the data with high-dimensionality restricts the development of soft-sensor methods.Therefore,it is necessary to pre-process the data before they are processed by a soft-sensor.A possible approach to overcome the dimensionality problem is variable selection,which is used to choose the easy-to-measure secondary variables that are most informative for the process,as well as the variables that provide high generalization ability.

    The variable selection is to eliminate the useless process variables and choose the important variables,which is a crucial stage for soft senor methods since a model with too many inputs may lead to over fitting and time consuming.In fact,the most commonly used techniques for the variable selection are multivariate linear techniques[27].For example,the principal component analysis(PCA)[28,29]and PLS[30,31]have been widely applied to obtain a low-dimensional subspace.PCA can extract feature information from the original data source,and form a new set of uncorrelated data with lower dimension.However,the PCA technique fails to extract the explanatory information of the input variables corresponding to the model output.On the other hand,PLS can extract principle components from inputs to form a new matrix(score matrix)that are maximally uncorrelated among themselves and maximally linear dependent between the input and output variables[32].In addition,the output can be represented by the original input variables after the essential components are chosen.Thus,the PLS technique is utilized to select the secondary variables for predicting the values of ETP in the proposed data-derived soft-sensor method.

    Suppose that there is a data set{X,y},where X is an n×αdata matrix with α being the number of independent variables and n the number of samples,and y is the corresponding dependentvariable vector with size n×1.The underlying assumption of PLS is that the observed data are generated by a system or process that is driven by a small number of latent variables.In the following,PLS adopts a two-step strategy to generate a functional relationship between X and y:

    where T,P and E are the score matrix,loading matrix and residual matrix of X block.U,Q and F are the score matrix,loading matrix and residual matrix of y,ti,pi,uiand qi(i=1,2,…,α)are the corresponding vectors of T,P,U and Q,α is the total number of available secondary variables.

    The above two equations formulate a PLS outer model.A least squares regression is subsequently performed on the extracted orthogonal latent variables.The input and output score vectors are then related by:

    where

    biis the i th regression coefficient,and the vector of the regression coefficients is b=[b1,b2,…,bα]T.Then,the predictors for the output variable can be selected in descending order of the magnitude of b:

    where bselectis the vector of the regression coefficients of the selected variables,Rselectis the importance of the selected variables.More predictors will be selected when the threshold of Rselectis larger.

    2.2.3.Model design

    In the model design process,the model structure will fit the specific application task,and the model parameters will determine the generalization abilities of the data-derived soft-sensor.Due to their simple topological structure and universal approximation ability,the RBFNN algorithm has been widely used in nonlinear system modeling and control[33].Moreover,the RBFNN algorithm does not need any assumptions about the functional relationship between the dependent and independent variables[34].Besides,the RBFNN algorithm has been proved with high accuracy,robustness to noise,as well as high computational efficiency[35,36].Thus,a RBFNN is used to design the soft-sensor model in this study.

    As shown in Fig.3,the structure of the basic RBFNN consists of one input layer,one output layer,and one hidden layer.To better illustrate the predicting method,a multi-input single-output(MISO)RBFNN model is used.A single output RBFNN with K hidden neurons can be described as follows

    where x and ? are the inputand outputofRBFNN respectively,wk.is the connecting weight between the k th hidden neuron and the output neuron,and θkis the output function of the k th hiddenneuron,which can be described as

    Fig.3.The structure of a RBFNN.

    In the above formula,||x(t)-μk(t)||should be changed to||x(t)-μk(t)||2where μkis the center vector of the k th neuron,and||x(t)-μk(t)||indicates the Euclidean distance between x and μk,σkis the width of the k th neuron,e(t)is the current predicting error of RBFNN

    ?(t)is the outputofthe neuralnetwork and y(t)is the system outputfor the current input sample x at time t.The training algorithm for μ =[μ1,μ2,…,μK]T,σ =[σ1,σ2,…,σK]T,and w=[w1,w2,…,wK]Tis similar to the description in[37],and is omitted here.

    The performance of the soft-sensor method is evaluated by the root mean-square-error(RMSE),which is defined as

    where T is the number of samples for the test set.The predicting performance of RBFNN will be discussed in the next section.

    Meanwhile,the percentage predicting accuracy is another key criterion to evaluate the performance of the soft-sensor method

    where p(T)is the predicting accuracy and e(t)is the error between the real output y(t)and the output of RBFNN ?(t).

    2.3.Experimental procedures

    In summary,the procedure of the proposed PLS-RBFNN-based softsensor method includes the following steps:

    Step 1:In the beginning of the procedure,routinely acquire and store the historical and online process data in the data acquisition system of the plant.

    Step 2:Preprocess the data to deal with missing values,and scale each variable to have zero mean and unit variance.

    Step 3:Select the secondary variables by the PLS technique.

    Step 4:Divide the data into the training samples and testing samples.

    Step 5:Set the initial parameters of RBFNN randomly.Train and test the RBFNN-based model by using the adaptive computation algorithm in[35]with different sets of data to find the best RBFNN-based model and ensure its performance.

    Step 6:Complete the model design of the PLS-RBFNN-based softsensor.

    Step 7:Apply the proposed PLS-RBFNN-based soft-sensor to a real WWTP to predict the ETP values.

    Step 8:Update the PLS-RBFNN-based soft-sensor regularly until reach the stop situation.

    Following the above procedures,the proposed data-derived softsensor method is then applied to predict the values of ETP in a real WWTP.For our proposed PLS-RBFNN-based soft-sensor,the convergence of RBFNN with respectto the para meterad justing is an important issue and needs careful investigation.When the proposed PLS-RBFNN-based method is applied to a real WWTP,new data of ETP will be acquired through time,and the parameter adjusting strategy would be crucial for a successful application.As shown in[37],the convergence of the proposed RBFNN can be demonstrated.This means that the learning algorithm proposed in this paper can guarantee the convergence of the PLS-RBFNN-based soft-sensor when new data of ETP are collected and used for model updating.

    3.Experiment Studies and Results

    This section presents and compares the results of the variable selection and the predicting performance in two cases:one with all the secondary variables and the other with the selected secondary variables.Moreover,the performance of the proposed PLS-RBFNN-based soft-sensor method is compared with some other existing methods.

    Fig.4.The regression coefficient of each parameter shown in Table 1.

    Table 2 The range of values of each process variables

    3.1.Variable selection results

    As shown in Table 1,there are total nine process variables whose values were collected directly by the online instruments.After the abnormal data were removed,a dataset containing 800 samples,corresponding to the real process operation(from 1st September 2014 to 3rd September 2014),is selected.

    In order to unify the time series of the online and laboratory data,the sampling frequency of all parameters is 5 min.The dataset is then separated into a training set with 720 samples and a test set with 80 samples.The process variables that are used as the inputs of the softsensor are selected according to the PLS technique.Fig.4 shows the results of the regression coefficients of the nine process variables.Moreover,the value ranges/dispersions of the process variables are shown in Table 2.As seen in Fig.4,the regression coefficients of T,TSS,pH,DO1and DO2are larger than the other the regression coefficients of ORP1,ORP2,NH4-N,and NO3-N.To show the regression coefficients more clearly,the details are listed in Table 3.

    Table 3 Regression coefficient of every process variables

    Based on the analysis results in[31],the threshold of Rselectis generally set between 0 and 1.Based on the features of the process data and the characteristics of WWTP,the value of Rselectis set as 0.85 in this paper.As a result,the selected secondary variables are:T,TSS,pH,and DO1.Therefore,four process variables are selected as the secondary variables for predicting the values of ETP in the proposed soft-sensor method.

    3.2.Predicting performance

    Fig.5.The predicting performance in Case 1:(a)concentration of ETP,(b)predicting error.

    In this work,the predicting performance is evaluated and compared by two cases:one with all the secondary variables(Case 1)and the other with the selected secondary variables(Case 2).In Case 1,a 9-20-1 RBFNN is built for predicting the values of ETP,and in Case 2,a 4-10-1 RBFNN is generated.The number of neurons in the input layer is the same as the number of input variables.In addition,the number of neurons in the hidden layer is determined by the experimental results.Figs.5 and 6 show the predicting performance of the proposed PLSRBFNN-based soft-sensor in Case 1 and Case 2,respectively.

    In order to evaluate the performances in Cases 1 and 2,the experimental results are assessed and compared in terms of computational time,the RMSE as defined in Eq.(8)and the predicting accuracy(p)as defined in Eq.(9).The details are presented in Table 4.The results in Table 4 show that the predicting performance of the proposed PLS-RBFNN-based soft-sensor in Case 2 is better than that in Case 1.

    Moreover,the proposed PLS-RBFNN-based soft-sensor is compared with the othertwo methods:the compact portable flow analysis system using ultra-violet photo-reactor and the spectrophotometry method[8]and a soft-sensor method combining multi-layer neural network and multi-way PCA[18].To make the results comparable,all experiments have been performed 20 times using the same data.The details are shown in Table 5 in terms of the computational time and RMSE.For the first method,the results show that the computational time of the compact portable flow analysis system is bigger than that of the PLSRBFNN-based soft-sensor method.In addition,the predicting accuracy the compact portable flow analysis system is lower than that of the proposed method.

    For the second method,the results illustrate that the performance of the soft-sensor method based on MPCA and multi-layer neural network is better than that of the compact portable flow analysis system.However,the computational time and the RMSE are worse than those of the proposed PLS-RBFNN-based soft-sensor method.Moreover,the PLS-RBFNN-based soft-sensor method can save almost 15 s to obtain a reportable result in the continuous measurement mode.This means that it can obtain over 210 measurement results per hour.Further,the results demonstrate that the ETP trends in WWTP can be predicted with acceptable accuracy using T,TSS,pH,and DO1as the input variables.

    4.Results Analysis

    4.1.Results analysis

    Fig.6.The predicting performance in Case 2:(a)concentration of ETP,(b)predicting error.

    Table 4 Comparison of the performance with different inputs(All results were averaged on 20 independent runs)

    Table 5 Comparison of the performance with different methods(All results were averaged on 20 independent runs)

    Figs.5 and 6 show that the proposed PLS-RBFNN-based soft-sensor method can predict the values of ETP online.Further,the performance of the proposed PLS-RBFNN-based soft-sensor method in Case 2 is better than in Case 1,which means that the model with selected secondary variables has smaller predicting error than the initial process variables.The results in Table 3 demonstrate that the proposed soft-sensor method with the selected secondary variables can obtain better predicting accuracy with less computational time and smaller RMSE,since it only takes 16 s to get a reportable result with an average accuracy rate of 83%.

    Moreover,compared to the other methods,the results in Table 5 show thatthe proposed PLS-RBFNN-based soft-sensor method can achieve better predicting accuracy and the computational time.From a practical point of view,the predicting values with large errors undoubtedly have a serious impact on the performance of further quality control loops and deteriorate the performance of WWTP.Since the predicting values of ETP will act as the feedback signal for the control loops.In addition,another practical issue of a soft-sensor is its online computational cost for a real application.Once the online instruments collect a group of new samples,they are immediately fed to the soft-sensor as inputs.However,itusually takes some time for computers to calculate the online inference of quality indices.If the soft-sensor method is too complicated,the computation time may be considerably long.The results in Table 5 demonstrate that the proposed PLS-RBFNN-based soft-sensor requires much less computational time than the other methods.

    5.Conclusions

    The aim of this paper has been to develop a new data-derived softsensor for predicting the values of ETP online in a real A2/O WWTP.The PLS technique and RBFNN algorithm were designed to develop the soft-sensor.The learning algorithm of PLS-RBFNN-based softsensor could handle the characteristics ofthe nonlinear system.Further,compared with the other methods,the proposed PLS-RBFNN-based soft-sensor method can predict the values of ETP online with suitable accuracy.Meanwhile,the monitoring system has been successfully used to detect the values of ETP online in a real WWTP with short computation time.Based on the predicting values of ETP by the proposed monitoring system,an efficient model predictive controller(MPC)will be designed for improving the treatment of WWTP.

    [1]M.Lürling,G.Waajen,F.van Oosterhout,Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication,Water Res.54(1)(2014)78-88.

    [2]P.Roccaro,M.Yan,G.V.Korshin,Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter,Water Res.84(1)(2015)136-143.

    [3]H.Hauduc,I.Takacs,S.Smith,A.Szabo,S.Murthy,G.T.Daigger,M.Sperandio,A dynamic physicochemical model for chemical phosphorus removal,Water Res.73(1)(2015)157-170.

    [4]W.L.Huang,W.Cai,H.Huang,Z.F.Lei,Z.Y.Zhang,J.H.Tay,D.J.Lee,Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge,Water Res.68(1)(2015)423-431.

    [5]C.Y.Ki,K.H.Kwon,S.W.Kim,K.S.Min,T.U.Lee,D.J.Park,Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process,Water Sci.Technol.69(10)(2014)2023-2028.

    [6]M.Q.Hui,J.G.Jin,H.Chao,Determination of phosphite,phosphate,glyphosate and aminomethyl phosphonic acid by two-dimensional ion chromatography system coupled with capillary ion chromatography,Chin.J.Anal.Chem.41(12)(2013)1910-1914.

    [7]Y.Zhang,P.Thepsithar,X.Jiang,J.H.Tay,Direct determination of phosphate in raw Jatropha curcas oil by ion chromatography,Ind.Crop.Prod.44(1)(2013)459-464.

    [8]B.S.Gentle,P.S.Ellis,P.A.Faber,M.R.Grace,I.D.McKelvie,A compact portable flow analysis system for the rapid determination of total phosphorus in estuarine and marine waters,Anal.Chim.Acta 674(2)(2010)117-122.

    [9]E.M.Wilson,J.Tureckova,P.Rotwein,Micro cobalt electrodes for detection of total phosphorus in water,Micro Nano Lett.71(12)(2012)1176-1179.

    [10]C.Valls-Cantenys,M.Iglesias,J.L.Todolí,Speciation of phosphorus oxoacids in natural and waste water samples,J.Chromatogr.A 1231(2012)16-21.

    [11]H.C.Kim,High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent,Water Res.69(1)(2015)40-50.

    [12]M.P.Ginige,A.S.Kayaalp,K.Y.Cheng,J.Wylie,A.H.Kaksonen,Biological phosphorus and nitrogen removal in sequencing batch reactors:effects of cycle length,dissolved oxygen concentration and in fluent particulate matter,Water Sci.Technol.68(5)(2013)982-990.

    [13]H.Haimi,M.Mulas,F.Corona,R.Vahala,Data-derived soft-sensors for biological wastewater treatment plants:an overview,Environ.Model.Softw.47(1)(2013)88-107.

    [14]Y.Q.Liu,J.D.Chen,Z.H.Sun,Y.Li,D.P.Huang,A probabilistic self-validating soft-sensor with application to waste watertreat ment,Comput.Chem.Eng.71(1)(2014)263-280.

    [15]G.Leonhardt,S.Fach,C.Engelhard,H.Kinzel,W.Rauch,A software-based sensor for combined sewer over flows,Water Sci.Technol.66(7)(2012)1475-1482.

    [16]M.H.Kim,Y.S.Kim,A.A.Prabu,C.K.Yoo,A systematic approach to data-driven modeling and soft sensing in a full-scale plant,Water Sci.Technol.60(2)(2009)363-370.

    [17]J.Q.Wan,M.Z.Huang,Y.W.Ma,Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system,Appl.Soft Comput.11(3)(2011)3238-3246.

    [18]X.S.Qin,F.R.Gao,G.H.Chen,Wastewater quality monitoring system using sensor fusion and machine learning techniques,Water Res.46(4)(2012)1133-1144.

    [19]M.W.Lee,S.H.Hong,H.Choi,Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors,Process Biochem.43(10)(2008)1107-1113.

    [20] ?.?inar,H.Hasar,C.Kinaci,Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network,J.Biotechnol.123(2)(2006)204-209.

    [21]K.Hu,J.Q.Wan,Y.W.Ma,A fuzzy neural network model for monitoring A2/O process using on-line monitoring parameters,J.Environ.Sci.Health Part A 47(5)(2012)744-754.

    [22]H.G.Han,Y.Li,Y.N.Guo,J.F.Qiao,A recurrent self-organizing neural network for predicting sludge volume index,Applied Soft Computing 38(1)(2016)477-486.

    [23]H.G.Han,J.F.Qiao,Prediction of activated sludge bulking based on a self-organizing RBF neural network,J.Process Control 22(6)(2012)1103-1112.

    [24]P.F.Cao,X.G.Luo,Softsensor model derived from wiener model structure:modeling and identification,Chin.J.Chem.Eng.22(5)(2014)538-548.

    [25]K.Hiromasa,F.Kimito,Estimation of predictive accuracy of softsensor models based on data density,Chemom.Intell.Lab.Syst.128(2013)111-117.

    [26]D.Cecil,M.Kozlowska,Software sensors are a real alternative to true sensors,Environ.Model.Softw.25(5)(2010)622-625.

    [27]W.M.Shao,X.M.Tian,Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models,Chem.Eng.Res.Des.95(1)(2015)113-132.

    [28]P.Kadlec,B.Gabrys,S.Strandt,Data-driven soft sensors in the process industry,Comput.Chem.Eng.33(4)(2009)795-814.

    [29]I.T.Jolliffe,Principal Component Analysis,Springer,Heidelberg,2002.

    [30]P.Geladi,B.R.Kowalski,Partial least-square regression:a tutorial,Anal.Chim.Acta 185(1)(1986)1-17.

    [31]J.L.Liu,Developing a soft sensor based on sparse partial least squares with variable selection,J.Process Control 24(7)(2014)1046-1056.

    [32]P.Shan,S.Peng,L.Tang,C.X.Yang,Y.H.Zhao,Q.Xie,C.W.Li,A nonlinear partial least squares with slice transform based piecewise linear inner relation,Chemom.Intell.Lab.Syst.143(1)(2015)97-110.

    [33]Y.W.Lei,L.X.Ding,W.S.Zhang,Generalization performance of radial basis function networks,IEEE Trans.Neural Netw.Learn.Syst.26(3)(2015)551-564.

    [34]H.G.Han,Q.L.Chen,J.F.Qiao,An efficient self-organizing RBF neural network for water quality prediction,Neural Netw.24(7)(2011)717-725.

    [35]H.Yu,T.Xie,S.Paszczynski,B.M.Wilamowski,Advantages of radial basis function networks for dynamic system design,IEEE Trans.Ind.Electron.58(12)(2011)5438-5450.

    [36]J.Ghosh,A.Nag,Radial Basis Function Networks 2,Springer,Heidelberg,2001.

    [37]H.G.Han,J.F.Qiao,Adaptive computation algorithm for RBF neural network,IEEE Trans.Neural Netw.Learn.Syst.23(2)(2012)342-347.

    久久久久性生活片| 国产精品乱码一区二三区的特点| 日本成人三级电影网站| 搡老岳熟女国产| 亚洲熟妇熟女久久| 欧美成人一区二区免费高清观看| 高清毛片免费看| 亚洲欧美日韩东京热| 大香蕉久久网| 大型黄色视频在线免费观看| 99热网站在线观看| 久久久久久国产a免费观看| 久久国内精品自在自线图片| 99热这里只有是精品50| 麻豆久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 欧美日韩乱码在线| 极品教师在线视频| 黄色一级大片看看| 亚洲欧美成人综合另类久久久 | 欧美又色又爽又黄视频| 日韩制服骚丝袜av| 欧美日韩一区二区视频在线观看视频在线 | 精品免费久久久久久久清纯| 黄色视频,在线免费观看| 热99在线观看视频| 久久婷婷人人爽人人干人人爱| 一进一出好大好爽视频| 国产一区二区在线av高清观看| av在线播放精品| 亚洲高清免费不卡视频| 欧美xxxx性猛交bbbb| 特大巨黑吊av在线直播| 国产综合懂色| 欧美高清成人免费视频www| 国产精品一区二区三区四区免费观看 | 欧美日韩精品成人综合77777| 国产男人的电影天堂91| 成人漫画全彩无遮挡| 日韩 亚洲 欧美在线| 啦啦啦观看免费观看视频高清| 亚洲第一区二区三区不卡| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 国产伦一二天堂av在线观看| 久久精品国产自在天天线| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 波多野结衣高清作品| 国产亚洲精品久久久com| 国产乱人偷精品视频| 婷婷精品国产亚洲av| 国产高清激情床上av| 两个人视频免费观看高清| 成人亚洲精品av一区二区| 亚洲最大成人av| 亚洲av熟女| 成人鲁丝片一二三区免费| 欧美日韩国产亚洲二区| 午夜福利18| 超碰av人人做人人爽久久| 少妇人妻精品综合一区二区 | 天天一区二区日本电影三级| 久久精品国产自在天天线| 丝袜美腿在线中文| 别揉我奶头 嗯啊视频| 波野结衣二区三区在线| 免费高清视频大片| 亚洲四区av| 淫妇啪啪啪对白视频| 欧美日韩一区二区视频在线观看视频在线 | 五月伊人婷婷丁香| 一个人观看的视频www高清免费观看| 精品日产1卡2卡| 看免费成人av毛片| 亚洲综合色惰| 精品人妻熟女av久视频| 日韩成人伦理影院| 日日啪夜夜撸| 大型黄色视频在线免费观看| 午夜激情福利司机影院| 熟女人妻精品中文字幕| 精品午夜福利视频在线观看一区| 成人一区二区视频在线观看| 熟妇人妻久久中文字幕3abv| 精品少妇黑人巨大在线播放 | 欧美性感艳星| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 日韩国内少妇激情av| 久久鲁丝午夜福利片| 欧美不卡视频在线免费观看| 成人亚洲欧美一区二区av| 欧美一区二区精品小视频在线| 久久久午夜欧美精品| 亚洲美女视频黄频| 久久久成人免费电影| 99久久中文字幕三级久久日本| 中国国产av一级| 春色校园在线视频观看| 可以在线观看的亚洲视频| 精品日产1卡2卡| 免费人成在线观看视频色| 国产黄片美女视频| 婷婷精品国产亚洲av在线| 久久婷婷人人爽人人干人人爱| 十八禁网站免费在线| 免费人成视频x8x8入口观看| 简卡轻食公司| 日本黄色片子视频| 级片在线观看| 青春草视频在线免费观看| 亚洲精华国产精华液的使用体验 | 成人欧美大片| 午夜影院日韩av| 变态另类成人亚洲欧美熟女| 成人特级黄色片久久久久久久| 成人av一区二区三区在线看| 五月伊人婷婷丁香| 国产高清有码在线观看视频| 国产亚洲精品久久久com| 国产精品美女特级片免费视频播放器| 午夜精品国产一区二区电影 | 丰满乱子伦码专区| 国产一区二区亚洲精品在线观看| av视频在线观看入口| 少妇熟女欧美另类| 国产精品久久电影中文字幕| 国内精品久久久久精免费| 国产白丝娇喘喷水9色精品| 国产男靠女视频免费网站| 精品乱码久久久久久99久播| 日本a在线网址| 日韩欧美精品免费久久| 亚洲精品国产av成人精品 | 亚洲内射少妇av| 国产精品久久视频播放| 亚洲一区高清亚洲精品| 国产欧美日韩精品一区二区| 欧美区成人在线视频| 国产真实伦视频高清在线观看| 精品久久国产蜜桃| 久久午夜亚洲精品久久| 欧美国产日韩亚洲一区| 日韩国内少妇激情av| 日韩欧美 国产精品| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 老熟妇乱子伦视频在线观看| a级毛片a级免费在线| 欧美成人精品欧美一级黄| 亚洲成人av在线免费| 国产高清视频在线观看网站| 麻豆av噜噜一区二区三区| 三级经典国产精品| 变态另类丝袜制服| 欧美3d第一页| 国产高清视频在线播放一区| 亚洲婷婷狠狠爱综合网| a级一级毛片免费在线观看| 欧美日韩在线观看h| av卡一久久| 天堂网av新在线| 久久久午夜欧美精品| 久久韩国三级中文字幕| 亚洲中文日韩欧美视频| 最新中文字幕久久久久| 最近在线观看免费完整版| 亚洲精华国产精华液的使用体验 | eeuss影院久久| 人妻夜夜爽99麻豆av| 日韩在线高清观看一区二区三区| 日韩一区二区视频免费看| 精品少妇黑人巨大在线播放 | 露出奶头的视频| 一区二区三区高清视频在线| 日本黄色视频三级网站网址| 神马国产精品三级电影在线观看| 搡老岳熟女国产| 激情 狠狠 欧美| 欧美日韩乱码在线| 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区四那| 亚洲一区二区三区色噜噜| 久久久久久久久大av| 久久韩国三级中文字幕| 午夜福利成人在线免费观看| 国产精品99久久久久久久久| 亚洲欧美精品自产自拍| 欧美bdsm另类| 天天躁日日操中文字幕| 在线看三级毛片| 日韩成人伦理影院| 日日啪夜夜撸| 一级毛片电影观看 | 国产精品一区二区免费欧美| 女同久久另类99精品国产91| 亚洲自拍偷在线| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线观看播放| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 亚洲av第一区精品v没综合| 少妇人妻精品综合一区二区 | 亚洲精品国产成人久久av| 国产成人a∨麻豆精品| 如何舔出高潮| 不卡视频在线观看欧美| 亚洲欧美日韩无卡精品| 日韩欧美免费精品| 欧美中文日本在线观看视频| 国产成人freesex在线 | 国产精品一二三区在线看| 国产亚洲精品av在线| 国产男靠女视频免费网站| 一级毛片久久久久久久久女| 欧美3d第一页| 看免费成人av毛片| 成人国产麻豆网| 久久午夜福利片| 国产综合懂色| 亚洲一区二区三区色噜噜| 久久精品影院6| 久久午夜亚洲精品久久| 在线播放无遮挡| 91麻豆精品激情在线观看国产| 夜夜夜夜夜久久久久| 国产午夜福利久久久久久| 嫩草影院新地址| 国内精品久久久久精免费| 国产一区二区在线观看日韩| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 国产欧美日韩精品一区二区| 日本 av在线| 最近的中文字幕免费完整| 成人亚洲欧美一区二区av| 俄罗斯特黄特色一大片| 又黄又爽又刺激的免费视频.| 国产三级在线视频| 午夜精品在线福利| 日韩,欧美,国产一区二区三区 | 神马国产精品三级电影在线观看| 麻豆成人午夜福利视频| 一级黄色大片毛片| av在线天堂中文字幕| 亚洲欧美日韩高清在线视频| 99热网站在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 久久久久国产网址| 一级毛片久久久久久久久女| 日韩在线高清观看一区二区三区| 国产一区二区激情短视频| 精品人妻一区二区三区麻豆 | 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 69av精品久久久久久| 国产成人91sexporn| 国产麻豆成人av免费视频| 国产精品亚洲一级av第二区| av在线播放精品| 亚洲中文日韩欧美视频| 男女边吃奶边做爰视频| 人妻丰满熟妇av一区二区三区| 日韩精品有码人妻一区| 中出人妻视频一区二区| av在线观看视频网站免费| 精品一区二区三区视频在线| 成人特级黄色片久久久久久久| 欧美zozozo另类| 日韩欧美在线乱码| 久久人人爽人人爽人人片va| 国产色爽女视频免费观看| 在线观看一区二区三区| 国产单亲对白刺激| 午夜影院日韩av| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 免费无遮挡裸体视频| 国产精品精品国产色婷婷| 黄色欧美视频在线观看| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆 | 国产日本99.免费观看| 插逼视频在线观看| 日韩欧美精品免费久久| 在线a可以看的网站| 岛国在线免费视频观看| 成人高潮视频无遮挡免费网站| 一级毛片电影观看 | 国产真实乱freesex| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 十八禁网站免费在线| 天堂影院成人在线观看| 丰满的人妻完整版| 国产久久久一区二区三区| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| 日本色播在线视频| 一级av片app| 婷婷精品国产亚洲av在线| 亚洲欧美中文字幕日韩二区| 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 少妇高潮的动态图| 亚洲av第一区精品v没综合| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 看黄色毛片网站| 亚洲av成人av| 免费人成在线观看视频色| 亚洲av美国av| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 亚洲第一电影网av| 国产精品久久久久久精品电影| 久久草成人影院| 亚洲乱码一区二区免费版| 久久久久性生活片| 日本与韩国留学比较| 欧美xxxx性猛交bbbb| 国产高潮美女av| 99久国产av精品国产电影| 在线a可以看的网站| 国产精品久久久久久av不卡| 免费av不卡在线播放| 亚洲国产精品成人综合色| 免费看光身美女| 综合色丁香网| 一个人看视频在线观看www免费| 狂野欧美激情性xxxx在线观看| 成人欧美大片| 淫秽高清视频在线观看| 国产亚洲精品av在线| 欧美性猛交黑人性爽| 国产精品野战在线观看| 国产精品爽爽va在线观看网站| av专区在线播放| 久久人人爽人人爽人人片va| 国产伦精品一区二区三区四那| 国产av不卡久久| 国产成人a区在线观看| 色吧在线观看| 天堂网av新在线| 深夜精品福利| 精品一区二区三区av网在线观看| 久久精品影院6| 青春草视频在线免费观看| 长腿黑丝高跟| 亚洲av中文字字幕乱码综合| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片| 校园人妻丝袜中文字幕| 国产毛片a区久久久久| 日日摸夜夜添夜夜爱| 黄色一级大片看看| 国产精品久久视频播放| 欧美日韩一区二区视频在线观看视频在线 | 丰满乱子伦码专区| 亚洲国产日韩欧美精品在线观看| 91久久精品国产一区二区三区| 天堂av国产一区二区熟女人妻| 国产一区二区亚洲精品在线观看| 91在线观看av| 亚洲av第一区精品v没综合| 国产成人freesex在线 | 欧美一区二区精品小视频在线| 在线免费十八禁| 成人毛片a级毛片在线播放| 1024手机看黄色片| 亚洲精品亚洲一区二区| 夜夜夜夜夜久久久久| 国产一区二区三区av在线 | 国产毛片a区久久久久| 亚洲国产精品成人综合色| 国产黄片美女视频| 春色校园在线视频观看| 国产精品综合久久久久久久免费| 久久久久性生活片| 精华霜和精华液先用哪个| 女的被弄到高潮叫床怎么办| 久久亚洲精品不卡| 国产色爽女视频免费观看| 天堂动漫精品| 亚洲中文日韩欧美视频| 午夜亚洲福利在线播放| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 亚洲中文字幕日韩| 人妻少妇偷人精品九色| 亚洲精品一区av在线观看| 性欧美人与动物交配| 搡老岳熟女国产| 欧美另类亚洲清纯唯美| 99久久中文字幕三级久久日本| 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 欧美潮喷喷水| 国产精品爽爽va在线观看网站| 亚洲无线观看免费| 日日摸夜夜添夜夜爱| av天堂中文字幕网| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线 | 岛国在线免费视频观看| 婷婷精品国产亚洲av| 插阴视频在线观看视频| 22中文网久久字幕| 又爽又黄无遮挡网站| 少妇被粗大猛烈的视频| 观看免费一级毛片| 97在线视频观看| 国产午夜精品论理片| av视频在线观看入口| 三级男女做爰猛烈吃奶摸视频| 国产成人影院久久av| 免费在线观看影片大全网站| 免费在线观看成人毛片| 欧美日韩精品成人综合77777| 直男gayav资源| 深夜精品福利| 午夜日韩欧美国产| 女人十人毛片免费观看3o分钟| 在线a可以看的网站| 国产精品嫩草影院av在线观看| 欧美一区二区精品小视频在线| 久久久久性生活片| 午夜a级毛片| 老师上课跳d突然被开到最大视频| 国产亚洲91精品色在线| 搡老熟女国产l中国老女人| 一区二区三区四区激情视频 | 美女黄网站色视频| 国产在线男女| 亚洲av熟女| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线| 色在线成人网| 精品久久久久久久久久久久久| 精品午夜福利在线看| 99久久久亚洲精品蜜臀av| 一级黄片播放器| 深夜a级毛片| 蜜桃久久精品国产亚洲av| 亚州av有码| 亚洲av中文字字幕乱码综合| 国产综合懂色| 长腿黑丝高跟| 久久久久久久久久成人| 最后的刺客免费高清国语| 91久久精品电影网| 欧美丝袜亚洲另类| 一a级毛片在线观看| 最近最新中文字幕大全电影3| 亚洲精品粉嫩美女一区| 特级一级黄色大片| 午夜老司机福利剧场| 国产爱豆传媒在线观看| 性欧美人与动物交配| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩高清在线视频| 免费大片18禁| 亚洲人成网站在线播放欧美日韩| 乱系列少妇在线播放| 国产一区二区三区av在线 | 熟女电影av网| 美女 人体艺术 gogo| 国产 一区精品| 国内久久婷婷六月综合欲色啪| 少妇的逼好多水| 国产精品99久久久久久久久| 99riav亚洲国产免费| 日韩人妻高清精品专区| 成熟少妇高潮喷水视频| 长腿黑丝高跟| 日本熟妇午夜| 国产精华一区二区三区| 国产精品福利在线免费观看| 天堂影院成人在线观看| 狂野欧美激情性xxxx在线观看| 白带黄色成豆腐渣| 成人性生交大片免费视频hd| 日韩中字成人| 青春草视频在线免费观看| 少妇裸体淫交视频免费看高清| 国产精品1区2区在线观看.| 亚洲国产精品成人久久小说 | 国产高清有码在线观看视频| 国产极品精品免费视频能看的| 国产精品一二三区在线看| 精品一区二区免费观看| 久久久欧美国产精品| 夜夜爽天天搞| 99久久久亚洲精品蜜臀av| 亚洲精品456在线播放app| 日韩欧美三级三区| 亚洲无线观看免费| 午夜免费激情av| 午夜福利在线在线| 亚洲国产精品国产精品| 91久久精品国产一区二区三区| 大香蕉久久网| 精品人妻熟女av久视频| 午夜a级毛片| 成人欧美大片| 久久韩国三级中文字幕| 日韩一本色道免费dvd| 午夜福利成人在线免费观看| 亚洲内射少妇av| 又黄又爽又免费观看的视频| 日韩亚洲欧美综合| 精品久久久久久久久亚洲| 淫妇啪啪啪对白视频| 一个人免费在线观看电影| 高清午夜精品一区二区三区 | 成人永久免费在线观看视频| 久久久久九九精品影院| 亚洲美女黄片视频| 久久久久久久亚洲中文字幕| 一夜夜www| 三级国产精品欧美在线观看| 欧美成人免费av一区二区三区| 亚洲av成人av| 婷婷亚洲欧美| 日韩 亚洲 欧美在线| 国产精品av视频在线免费观看| 真人做人爱边吃奶动态| 国产精品久久视频播放| 国产男靠女视频免费网站| 国产又黄又爽又无遮挡在线| 亚洲国产欧美人成| 欧美最新免费一区二区三区| 免费在线观看成人毛片| 丰满人妻一区二区三区视频av| 中国美白少妇内射xxxbb| 男插女下体视频免费在线播放| 自拍偷自拍亚洲精品老妇| 乱码一卡2卡4卡精品| 欧美一区二区亚洲| 亚洲电影在线观看av| 美女高潮的动态| 久久久久久伊人网av| 啦啦啦观看免费观看视频高清| 久久精品综合一区二区三区| 精品国内亚洲2022精品成人| 亚洲av二区三区四区| 国产成人影院久久av| ponron亚洲| 桃色一区二区三区在线观看| 村上凉子中文字幕在线| 午夜精品国产一区二区电影 | 69av精品久久久久久| 国产成人一区二区在线| 一区二区三区四区激情视频 | 搡老岳熟女国产| 精品日产1卡2卡| 国产私拍福利视频在线观看| 免费人成在线观看视频色| 综合色丁香网| 女同久久另类99精品国产91| 日韩亚洲欧美综合| av天堂在线播放| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 国产 一区 欧美 日韩| 亚洲精品色激情综合| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 国产精品亚洲美女久久久| 亚洲aⅴ乱码一区二区在线播放| 变态另类成人亚洲欧美熟女| 一本一本综合久久| 又粗又爽又猛毛片免费看| 久久精品国产99精品国产亚洲性色| 久久精品国产自在天天线| 日韩欧美国产在线观看| 亚洲av成人av| 在线播放无遮挡| 欧美激情在线99| 久久精品91蜜桃| 久99久视频精品免费| 2021天堂中文幕一二区在线观| 午夜福利成人在线免费观看| 亚洲综合色惰| 亚洲丝袜综合中文字幕| 国产精品女同一区二区软件| 国产黄片美女视频| 久久午夜亚洲精品久久| 亚洲真实伦在线观看| 亚洲美女搞黄在线观看 | 国产在视频线在精品| 超碰av人人做人人爽久久| 一进一出抽搐gif免费好疼| av黄色大香蕉| 日日干狠狠操夜夜爽| 欧美+亚洲+日韩+国产| 亚洲av成人精品一区久久| 一个人观看的视频www高清免费观看| av在线观看视频网站免费| 联通29元200g的流量卡| 国模一区二区三区四区视频| 日本色播在线视频| 亚洲中文日韩欧美视频| 亚洲av免费高清在线观看| 婷婷六月久久综合丁香|