• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt-H2SO4/Zr-mont morillonite:An efficient catalyst for the polymerization of octamethylcy-clotetrasiloxane,poly methylhydrosiloxane and hexamethyldisiloxane to low-hydro silicone oil☆

    2017-05-28 19:45:44YuedongZhouFengfuLiJunweiLiuZhiYunXiaGui
    Chinese Journal of Chemical Engineering 2017年12期

    Yuedong Zhou,Fengfu Li,Junwei Liu,Zhi Yun*,Xia Gui

    College of Chemistry and Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    After Dow Corning Corporation ful filled industrialized production of polysiloxane for the first time in the early of 1940s,polysiloxane has maintained a high development speed[1,2].With the increased quantity demand ofpolysilicon products in various fields ofsociety,low-hydro silicone oil,as one kind of polysiloxane polymers,is a significant chemical intermediate which is getting more and more concern[3-6].Various solid acid catalysts such as metal salts[7],metal oxides[8,9],heteropoly acids[9,10],clays[11],zeolite solid acids[12],and exchange resins[13,14]display excellent catalytic activity for low-hydro silicone oil.At present,the main preparation routing is based on the reaction of D4,D4Hand MM catalyzed by Mt[15].Although low cost and easy access[16,17],Mt has some drawbacks such as weak catalytic activity,poor repeatability,hard activation and so on[18,19].To overcome these defects and improve the catalytic performances of Mt in the reaction of polymerization,many efforts have been attempted.

    Mtis nanoparticles with layered structures,and usually has comparatively small diffusion resistance which facilitates the diffusion of bulky organic molecules through their pores.The layers own net negative charge neutralized by cations such as Na+,K+,and Ca2+,which occupy the interlamellar space.The modification of Mtlies in the fact that these interlamellar cations can be easily substituted by other cations or other molecules[20].This provides large space for modifying the properties of clays like acidity,textile parameters,polarity and other characteristics that govern their performances as catalysts.Modified Mt catalysts are mainly applied in severaltypes of reactions:ring-opening reactions,addition reactions,condensation reactions and Diels-Alder reactions[17].For instance,Aicha et al.found an acid exchanged Mt called Maghnite-H+for the synthesis of per fluoroal kyl end-capped ethylene oxides via cationic ring-opening polymerization which reached a very high yield of 83.4%[21].Fernando et al.prepared a highly active Ti/Mt catalyst by using dipping method which enhanced selectivity from ethylene towards the production of PE-MMT nanocomposites[22].Issaadi et al.demonstrated H2SO4/Zr-Mt catalyst high and stable catalytic activity[23].However,these modified Mt catalysts do not have outstanding reproducibility.Many efforts have been dedicated to strengthening recyclability of modified Mt catalysts,most of them have complicated synthesis processes[24].Thus the invention of catalysts with high catalytic performances for the polymerization of D4,D4Hand MM is still the subject of our study[25].

    As is generally known,Mt with catalytic activity is widely applied in the ring-opening of D4to silicone oil due to rich Br?nsted acidity sites and weak oxidability[26,27].The catalyst deactivation of Mt results from coverage of Br?nsted acidity sites and collapse of structure[28].Thus,researchers employ dopants like Pt,Pd and Ru to improve activity,stability and repetition of catalysts[29,30].Nevertheless,no scientific articles have reported Pt-H2SO4/Zr-Mt was utilized as an acidic catalyst in polymerization reaction of D4,MM and D4Hto low-hydro silicone oil up to now.

    In this work,we prepared H2SO4,Pt and Zr modified or co-modified Mt catalysts with zirconium loading(5 wt%)via a facile one-step impregnation method,respectively.The physical and chemical characterizations of Zr-Mt,H2SO4/Mt,H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt catalysts were conducted,and the performances of H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt catalysts were explored in terms of the polymerization ofD4,D4Hand MM.The objective ofthis study is to develop a new kind of catalyst with strong Br?nsted acidity and stable catalytic performances with high regeneration for polymerization of low-hydro silicone oil and compared with the commonly used catalysts for performance analysis.

    2.Materials and Methods

    D4(octamethylcy-clotetrasiloxane,with a mass fraction of 0.9999,made in America)and D4H(polymethylhydrosiloxane,with a mass fraction of 0.9999,made in America)were obtained from Dow-Corning Company.MM(hexamethyldisiloxane,with a mass fraction of 0.997,made in China),Mt(montmorillonite K-10,with a specific area of 240 m2·g-1,made in China),Zirconium hydroxide(Zr(OH)4,with a mass fraction of 0.97,made in China),Chloroplatinic acid solution(H2PtCl6,with a mass fraction of 0.998,made in China)and sulfuric acid(H2SO4,with a mass fraction of 0.98,made in China)were all obtained from Aladdin-Reagent Company in Shanghai.All components were used without further purification.

    2.1.Catalyst preparation

    The preparation process of Zr-Mt with the molar ratio of Si/Zr=10 was as follows:at first,20 g of activated clay was dispersed in 30 ml of deionized water,followed by 2.1 g of Zr(OH)4.Then,the mixed solution was placed in a reaction kettle and stirred for 5 h at 80°C.After cooling to room temperature,the solid was filtered out and washed with distilled water three times.The resulting solid was placed in the oven at 80 °C for 12 h.At last,the catalyst was calcined at 300 °C for 6 h in dry air stream with a heating rate of 1 °C·min-1.

    The H2SO4/Mt was pretreated as follows: firstly,20 g of Mt was dispersed in 100 ml of 10%dilute sulfuric acid solution under stirring for 2 h.Then the solid was filtered out and then washed with distilled water until the pH value of filter solution reached 6.The resulting solid was placed in an oven at 80°C for 12 h.At last,the catalyst was calcined at 300 °C for 6 h in dry air stream with a heating rate of 1 °C·min-1.

    The H2SO4/Zr-Mt catalyst was prepared by taking Mt as carrier and Zr(OH)4as Zr source.The preparation process of H2SO4/Zr-Mt catalyst with the molar ratio of Si/Zr=10 was as follows:1 g of Zr(OH)4and 7.3 g of Mt were mixed into 100 ml of 10%dilute sulfuric acid solution under stirring for 2 h.Then the solid is filtered out and washed with distilled water until the pH value of filter solution reach 6.At last,the resultant sample was then dried at 80°C overnight and then calcined at 300°C for 4 h in dry air stream with a heating rate of 1 °C·min-1.

    The preparation method of Pt-H2SO4/Zr-Mt was similar to H2SO4/Zr-Mt.At first,Mt,Zr(OH)4,H2SO4and H2PtCl6were added into a reaction kettle and stirred for 5 h at 80°C for 2 h.The obtained sample was filtered and washed with distilled water until the pH value offilter solution reached 6.At last,the obtained sample was dried at 80 °C overnight and then calcined at 300 °C for 4 h in dry air stream with a heating rate of 1 °C·min-1.The content of Pt loading was fixed at 2 wt%.

    2.2.Catalyst characterization

    The chemical composition of the Mt was determined using X-Ray Fluorescence(XRF)from WISDOM-6600 model.X-ray diffraction(XRD)experiments were conducted directly on the thin sheet with a Japan SmartLab X-ray diffraction meter powder diffractometer(40 kV,100 mA)(λ =0.183 nm)in a range from 10°to 90°at a rate of 20(°)·min-1.

    The specific surface area,pore size distribution and pore volume of the catalyst were measured by the N2adsorption-desorption method on a V-Sorb 2800P nitrogen adsorption instrument.

    NH3temperature-programmed desorption(NH3-TPD)was taken to determine the acidity of the samples.In the process,the sample was placed in the quartz reactor and heated from room temperature to 400 °C at a rate of 10 °C·min-1in pure He.Then,100 mg sample was pretreated at 100 °C and kept for 30 min.After cooling to 80 °C,NH3gas was fed to the reactor in the range from 100 °C to 700 °C for 30 min.At last,pure He was fed to the reactor to purge away any residual NH3for 30 min.

    The IR spectra of adsorbed pyridine were carried out on a Shimadzu FTIR-8700 spectrometer.First,the samples were pressed into a selfsupporting sheet in a quartz-infrared tank which is pumped vacuum processing to achieve 10-2Pa.After cooling to room temperature to adsorb pyridine,the quartz-infrared tank was pretreated under vacuumfor2 h.Finally,the samples were degassed at250°C.The acidity sites of Br?nsted and Lewis acid were calculated by using the integral intensities of the typical bands reported in the previous paper[31].

    The Fourier transform infrared spectra(FT-IR)of the catalysts were recorded on a Nexus 870 FT-IR spectrometer.Samples were ground with spectral grade KBr(in a mass ratio of 1:10)to form a mixture for FT-IR measurement in the range of 4000-500 cm-1.

    2.3.Catalytic reaction

    2 g of catalyst was added in the mixture of 100 g of D4,9.7 g of D4H,and 3.38 g of MM at 55°C with strong agitation.After the reaction established equilibrium(reach stable viscosity),the mixture was cooled down,and the catalystwas separated by filtering later.Before obtaining the desired productM,MMand low viscosity silicone oil were removed by vacuum.

    2.4.Product viscosity calculation

    The products were analyzed by a NDJ-79 rotational viscometer equipped with a thermostat bath with a temperature of 25°C.The relationship between the kinematic viscosity and the average molar mass of the low-hydro silicone oil obtained by the equilibrium polymerization can be calculated by the following formula[32-34]:

    where υ25°C(mm2·s-1)is the kinematic viscosity,Mwrepresents the average molar mass.

    M yield was quantified as following equation:

    3.Results and Discussion

    3.1.Catalyst characterization

    The XRF results of H2SO4/Mt and Mt samples are summarized in Table 1.The molar ratio of SiO2/Al2O3in H2SO4/Mt is larger than that of Mt.It reveals that these interlamellar cations(Na+,K+,Ca2+,etc.)ofMt can be substituted by cation H+after Mtwas acidified[20].Therefore,Mt can be served as an adequate catalyst carrier.

    Table 1 Chemical composition of Mt and H2SO4/Mt by XRF

    The high-angle XRD patterns of all the samples are shown in Fig.1.All the catalysts display strong peaks observed at 19.8°,26.5°,35.1°,50.2°and 61.8°which could be attributed to Mt.Peaks located at 19.8°and 35.98°could be ascribed to quartz as impurities in the material[35].Compared to the spectrum of Mt,the intensities of characteristic peaks of H2SO4/Mt decrease obviously because of cation H+replacing metal ions such as Ca2+,Na+and K+,which is in agreement with the results of Table 1.The intensities of characteristic Mt peaks in the XRD patterns of the H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt decrease and a new peak at 2θ =32.2°appears,indicating that Zr species are introduced in the Mt interlayer[36].In comparison to Zr-Mt,H2SO4/Zr-Mtand Pt-H2SO4/Zr-Mtsamples display stronger intensity of characteristic peaks at 2θ=32.2°because the zirconium ions are known to form tetrameric species in acidic solutions with the chemical formula[Zr4(OH)6(H2O)16]8+[37].Simultaneously,no other diffraction peak arising from crystalline Pt is observed in Fig.1,illustrating that the generated Pt nanoparticles are ultra fine,highly dispersed on the porous wall of Mt in Pt-H2SO4/Zr-Mt and the introduction of Pt species has no effect on the phase of H2SO4/Zr-Mt[38].

    Fig.1.X-ray diffraction patterns of activated clay molecular sieves.

    The datum of nitrogen adsorption-desorption about Mt,Zr-Mt,H2SO4/Mt,H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt is reported in Table 2.The original Mt specific surface area is 219 m2·g-1.After addition of zirconium and sulfuric acid,the specific surface areas of Zr-Mt and H2SO4/Mt respectively decrease to 136 m2·g-1and 173 m2·g-1due to the blockage of the channel[39].Compared with Mt,the specific surface area,pore volume and pore diameter of H2SO4-Zr/Mt increase obviously,suggesting that the introduction of sulfate groups in Zrpillared Mt increases its specific surface greatly[40].Simultaneously pore volume slightly decreases in Pt modified catalyst,pointing to a slight pore blockage of the H2SO4/Zr-Mt[41].

    Table 2 Textural parameters of different samples

    The NH3-TPD results of different samples are shown in Fig.2:The amount of acid sites is indicated by TPD adsorption which is calculated from absorption peak area,and is shown in Table 3.It is clear that Mt and H2SO4/Mt have only one TPD peak,indicating the presence of weak acid(600 °C-700 °C)in the catalysts[42].Zr-Mt displays a board peak from 230 °C to 330 °C,and exhibits a maximum desorption rate of ammonia at about 305°C,which is in agreement with Kooli et al.[43].Nevertheless,two peaks at 280 °C and 640 °C for the H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt are attributed to medium acid(200 °C-400 °C)of Zr and weak acid(600 °C-700 °C)of Mt respectively[42].The order of total acidities of the catalysts is H2SO4/Zr-Mt>Pt-H2SO4/Zr-Mt>Zr-Mt>H2SO4/Mt>Mt.

    Fig.2.NH3-TPD spectra of Mt,Zr-Mt,H2SO4/Mt,H2SO4/Zr-Mt,and Pt-H2SO4/Zr-Mt samples.

    Table 3 Acidities of Mt,Zr-Mt,H2SO4/Mt,H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt

    Fig.3 illustrates the pyridine-FT-IR spectra of Mt,H2SO4/Mt,Zr-Mt,H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt after pyridine adsorption.The polymerization efficiency of low-hydro silicone oil is associated with the Br?nsted acid content of the catalyst.In addition,the peak in the range of 1540-1548 cm-1is ascribed to pyridine adsorption which was used to calculate the content of Br?nsted acid[44].The amount of Br?nsted acid and Lewis acid sites is measured by the integral of the spectra,and the results are shown in Table 3.With few acid sites in Mt,the concentration of Br?nsted acid in Zr-Mt catalyst is higher than that of Mt because Zr atoms replace the Si atoms in Mt[45].These Br?nsted acid sites are associated with the change in the electron density of Sibecause the electronegativity charge imbalance caused by the introduction of Zr atoms near negatively charged silicon weakens the SiO--H bond[43].Meanwhile,H2SO4loading obviously increases the Br?nsted acid sites of the catalysts.Furthermore,it is observed that the number of the Lewis acid sites decreases after Pt loading in the support,which can be explained by the coverage of Pt on the Lewis acid sites.Although the totalacidity of the Pt-H2SO4/Zr-Mtdecreases slightly[46],the amount of Br?nsted acid sites increases.The increase of Br?nsted acid content in Pt-H2SO4/Zr-Mt is ascribed to polarization or hydrolysis of Pt2+[47].Besides,the total acidity measured by FT-IR spectra is well consistent with the NH3-TPD results.

    Fig.3.The pyridine-FT-IR spectra ofMt,Zr-Mt,H2SO4/Mt,H2SO4/Zr-Mtand Pt-H2SO4/Zr-Mt.

    3.2.Catalytic activity

    3.2.1.Effect of reaction temperature

    Fig.4.Reaction velocity of polymerization over Pt-H2SO4/Zr-Mt catalyst at different reaction temperatures.Reaction conditions:100 g of D4,6,71 g of,1.96 g of MM,and 3.2 g of catalyst.

    Effect of reaction temperature on the polymerization of D4,MM andwas investigated over Pt-H2SO4/Zr-Mt catalyst(Fig.4).The increase of temperature has a beneficial effect on the polymerization reaction of D4,MM and.As expected,the polymerization speed of D4,MM andenhances obviously with increasing temperature from 20°C to 80°C.Relationship between theoretical viscosity and molecular weight of the product is calculated by the formula(1).The boiling point of MM is 97 °C.When the temperature is greater than 100 °C,part of MM as a blocking agent in the reactor will transfer to the gaseous state,which results in reduction of polyatomic MM as a blocking agent.So the molecular weight of the product is higher than the theoretical calculated molecular weight and the product viscosity of the product is greater than theoretical viscosity[32-34].

    3.2.2.Effect of catalyst dosage

    The polymerization reaction was carried out at different catalyst dosages ranging from 1.8 wt%to 7.2 wt%(Fig.5).It can be seen from Fig.5,when the amount of catalyst is 1.8 wt%,the viscosity reaches the equilibrium value of 100 mPa·s,which indicates that the catalyst does not occur a large number of inactivation during polymerization of D4,and MM.The equilibrium velocity of the product increases with dosage,reaching an equilibrium velocity value of 100 mPa·s at 7.2 wt%within 4 h,the molecular weight of the product is the maximum as well.The reaction velocity improves as the catalyst dosage increases,but the reaction velocity did not change significantly from 7.2 wt%to 9 wt%.So 7.2 wt%of the Pt-H2SO4/Zr-Mt catalyst was chosen as the optimum catalyst amount for the polymerization reaction.

    3.2.3.Stability of Pt-H2SO4/Zr-Mt

    Deactivation of catalysts occurs when the pores of catalysts are blocked.Thus,as Fig.6 shows,the activity evolution as a function of the time on stream(TOS)was investigated over H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt at 60°C.It can be seen that the stability of Pt-H2SO4/Zr-Mt is much higher than that of H2SO4/Zr-Mt,the yield of low-hydro silicone oil over the H2SO4/Zr-Mt brings out an obvious decrease from 93%to 42%.Nevertheless,the yield of low-hydro silicone oil the Pt-H2SO4/Zr-Mt catalyst remains at 79%after reaction of 50 h,which is slightly lower than that in the first run(93%),indicating an outstanding stability of the catalyst.It demonstrates that the Pt-H2SO4/Zr-Mtis capable of efficient polymerization reaction for long-lasting and regeneration application.

    Fig.5.Reaction velocity of polymerization at different amount of catalyst.Reaction conditions:100 g of D4,6.71 g of D4H,1.96 g of MM,and 60°C.

    Fig.6.Yield of low-hydro silicon oil by using different samples.Reaction conditions:100 g of D4,6,71 g of1.96 g of MM,3 g of catalyst,and 60°C.

    3.2.4.Regeneration test of deactivated Pt-H2SO4/Zr-Mt

    Regeneration of deactivated Pt-H2SO4/Zr-Mt is an important research topic in the catalytic polymerization of D4,D4Hand MM to lowhydro silicone oil.Accordingly,the regeneration test was carried out to study the reusability of deactivated Pt-H2SO4/Zr-Mt.After the longterm stability test(50 h),the used Pt-H2SO4/Zr-Mt was regenerated by washing with mixed solution of sulfuric acid and MM,then dried in a vacuum oven at 80 °C for 3 h and calcined at 300 °C for 4 h[48].Fig.7 shows the yield of low-hydro silicone oil catalyzed by fresh and regenerated Pt-H2SO4/Zr-Mt catalysts.It is worth our attention that the regenerated Pt-H2SO4/Zr-Mt catalyst also exhibits high catalytic performance.Compared to the fresh Pt-H2SO4/Zr-Mt,the regenerated Pt-H2SO4/Zr-Mt shows almost the same catalytic activity after 35 h,although faster deactivation was shown after 35 h.

    Fig.7.The comparison of the stability of fresh and regenerated Pt-H2SO4/Zr-Mt.Reaction conditions:100 g of D4,6,71 g of D4H,1.96 g of MM,3 g of catalyst,and 60°C.

    FT-IR measurement of fresh and regenerated Pt-H2SO4/Zr-Mt was conducted in order to study the structural stability of the catalyst.The results of the fresh and regenerated Pt-H2SO4/Zr-Mt are shown in Fig.8.The broad peaks of adsorption band around 3441 cm-1and 1390 cm-1respectively represent characteristic peaks of O--H stretching in fresh and regenerated Pt-H2SO4/Zr-Mt[49],while the corresponding bending mode at 1631 cm-1is attributed to the deformation vibration of adsorbed water when substitution of Al for Si is low[50].The peak at 1037 cm-1corresponds to the perpendicular Si--O--Si antisymmetric vibration[51],and the bands at 618,518 and 470 cm-1are ascribed to Si--O bending vibration[52].Unfortunately,we cannot see the lower frequency(<400 cm-1)region and thus the effect of the inter layered cations(<100 cm-1)cannot be identified.Comparing with FT-IR spectrum of fresh Pt-H2SO4/Zr-Mt,regenerated Pt-H2SO4/Zr-Mt showed a new band at 2977 cm-1which is stretching vibration of methyl indicating that a trace amount of silicone oil exists on the catalyst surface.In addition,a Si--O bending vibration of regenerated Pt-H2SO4/Zr-Mt at 678 cm-1disappeared.

    Fig.8.FT-IR spectra of fresh and regenerated Pt-H2SO4/Zr-Mt catalysts.

    4.Conclusions

    We investigated the catalytic behaviors of Mt,Zr-Mt,H2SO4/Mt,H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt in the polymerization of D4,MM and D4H.The results indicated Pt-H2SO4/Zr-Mtwas the most effective catalyst in ring-opening of D4in this study.In comparison to H2SO4/Zr-Mt,the porous structure of the Pt-H2SO4/Zr-Mt remained almost unchanged,and the total acidity of the Pt-H2SO4/Zr-Mt decreased while the amount of Br?nsted acid sites increased,which can accelerate the rate of openloop reaction.In addition,the Pt-H2SO4/Zr-Mt showed better stability compared to H2SO4/Zr-Mt.After 50 h of reaction,the yield of lowhydro silicone oil reduced from 93%to 78%using Pt-H2SO4/Zr-Mt.However,H2SO4/Zr-Mt displayed an obvious decrease in yield from 93%to 42%,which was due to pore blockage,structure collapse and partial proton escape of the catalyst.Pt-H2SO4/Zr-Mt can be regenerated under the conditions set and exhibited well reusability in the polymerization of D4,MM and D4Hto low-hydro silicone oil.

    [1]Z.J.Zhang,N.Zhou,C.H.Xu,Polymerization of octamethylcy clotetrasiloxane with hexa methyl disilazyl-lithium as initiator,Chin.J.Polym.Sci.19(1)(2001)7-11.

    [2]J.Bauer,N.Husing,G.Kickelbick,Preparation of functional block copolymers based on a polysiloxane backbone by anionic ring-opening polymerization,J.Polym.Sci.A Polym.Chem.40(10)(2002)1539-1551.

    [3]A. Degunzbourg, J.C. Favier, P. Hemery, Anionic-polymerization of octamethylcyclotetrasiloxane in aqueous emulsion.1.Preliminary-results and kinetic-study,Polym.Int.35(2)(1994)179-188.

    [4]I.Yilgor,J.E.Mcgrath,Polysiloxane containing copolymers—A survey of recent developments,Adv.Polym.Sci.86(1998)1-86.

    [5]W.Z.Wang,Synthesis and characterization of UV-curable polydimethylsiloxane epoxy acrylate,Eur.Polym.J.39(6)(2003)1117-1123.

    [6]C.Iojoiu,M.J.M.Abadie,V.Harabagiu,Synthesis and photocrosslinking of benzyl acrylate substituted polydimethylsiloxanes,Eur.Polym.J.36(10)(2000)2115-2123.

    [7]F.Wang,J.L.Dubois,W.Ueda,Catalytic dehydration ofglycerolover vanadium phosphate oxides in the presence of molecular oxygen,J.Catal.268(2)(2009)260-267.

    [8]H.Oki,T.Morita,K.Nakajima,MoO3/ZrO2as a stable,reusable,and highly active solid acid catalyst for polyester polyol synthesis,Chem.Lett.42(10)(2013)1314-1316.

    [9]B.M.Reddy,M.K.Patil,Organic syntheses and transformations catalyzed by sulfated zirconia,Chem.Rev.109(6)(2009)2185-2208.

    [10]R.J.Stanis,M.C.Kuo,A.J.Rickett,Investigation into the activity of heteropolyacids towards the oxygen reduction reaction on PEMFC cathodes,Electrochim.Acta 53(28)(2008)8277-8286.

    [11]C.Cativiela,J.M.Fraile,J.I.Garcia,Effect of clay calcination on clay-catalyzed Diels-Alder reactions of cyclopentadiene with methyl and(-)-menthyl acrylates,Tetrahedron 48(31)(1992)6467-6476.

    [12]K.Li,E.M.Kennedy,B.Z.Dlugogorski,Non-oxidative reaction of CBrF3with methane over NiZSM-5 and HZSM-5,Catal.Today 63(2-4)(2000)355-362.

    [13]X.F.Yang,Q.Shao,L.L.Yang,Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes,J.Appl.Polym.Sci.127(3)(2013)1717-1724.

    [14]B.Yactine,A.Ratsimihety,F.Ganachaud,Do-it-yourself functionalized silicones part 2:synthesis by ring opening polymerization of commercial cyclosiloxanes,Polym.Adv.Technol.21(2)(2010)139-149.

    [15]X.F.Yang,Z.G.Chen,J.Liu,A convenient method for preparation of hydroxyl silicone oils with ring opening polymerization of octamethylcyclotetrasiloxane(D4),Phosphorus Sulfur Silicon Relat.Elem.191(1)(2016)117-122.

    [16]O.S.Ahmed,D.K.Dutta,Friedel-Crafts benzylation of benzene using Zn and Cd ions exchanged clay composites,J.Mol.Catal.A Chem.229(1-2)(2005)227-231.

    [17]G.Nagendrappa,Organic synthesis using clay and clay-supported catalysts,Appl.Clay Sci.53(2)(2011)106-138.

    [18]G.B.B.Varadwaj,S.Ran,K.Parida,Pd(0)nanoparticles supported organofunctionalized clay driving C-C coupling reactions under benign conditions through a Pd(0)/Pd(II)redox interplay,J.Phys.Chem.C 118(3)(2014)1640-1651.

    [19]W.Pu,S.Pang,H.Jia,Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics,J.Pet.Sci.Eng.134(2014)123-130.

    [20]L.Zatta,L.P.Ramos,F.Wypych,Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid acid with methanol,Appl.Clay Sci.80-81(2013)236-244.

    [21]A.Hachemaoui,A.Yahiaoui,M.Belbachir,Synthesis of per fluorohexyl-terminated poly(ethylene oxide)using Maghnite-H as clay catalyst,J.Appl.Polym.Sci.118(6)(2010)3445-3452.

    [22]F.Junges,M.S.Beauvalet,B.C.Leal,UHMWPE-layered silicate nanocomposites by in situ polymerization with tris(pyrazolyl)borate titanium/clay catalyst,J.Braz.Chem.Soc.20(3)(2009)472-477.

    [23]R.Issaadi,F.Garin,C.E.Chitour,Catalytic behaviour of combined palladium-acid catalysts:use of Al and Zr-pillared montmorillonite as supports part I.Reactivity of linear,branched and cyclic hexane hydrocarbons,Appl.Catal.A Gen.207(1-2)(2001)323-332.

    [24]W.Li,W.Ding,Y.Nie,Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction,Sci.Bull.61(18)(2016)1435-1439.

    [25]S.Y.Feng,M.Z.Cui,Study of polysiloxanes containing epoxy groups I.Synthesis and characterization of polysiloxanes containing 3-(2,3-epoxypropoxy)propyl groups,React.Funct.Polym.45(2)(2000)79-83.

    [26]R.Mokaya,W.Jones,Pillared clays and pillared acid-activated clays—Acomparativestudy of physical,acidic,and catalytic properties,J.Catal.153(1)(1995)76-85.

    [27]B.Tyagi,C.D.Chudasama,R.V.Jasra,Characterization of surface acidity of an acid montmorillonite activated with hydrothermal,ultrasonic and microwave techniques,Appl.Clay Sci.31(1-2)(2006)16-28.

    [28]N.Belaidi,S.Bedrane,A.Choukchou-Braham,Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation,Appl.Clay Sci.107(2015)14-20.

    [29]I.Kun,G.Szollosi,M.Bartok,Crotonaldehyde hydrogenation over clay-supported platinum catalysts,J.Mol.Catal.A Chem.169(1-2)(2001)235-246.

    [30]K.Balazsik,B.Torok,G.Szakonyi,Homogeneous and heterogeneous asymmetric reactions.Part X:enantioselective hydrogenations over K-10 montmorillonite supported noble metal catalysts with immobilized modifier,Appl.Catal.A Gen.182(1)(1999)53-63.

    [31]C.A.Emeis,Determination of integrated molar extinction coefficients for infraredabsorption bands of pyridine adsorbed on solid acid catalysts,J.Catal.141(2)(1993)347-354.

    [32]E.L.Warrick,W.A.Piccoli,F.O.Stark,Melt viscosities of dimethylpolysiloxanes,J.Am.Chem.Soc.77(1955)5017.

    [33]D.Tyagi,I.Yilgor,J.E.Mcgrath,Segmented organosiloxane copolymers.2.Thermal and mechanical-properties of siloxane urea copolymers,Polymer 25(12)(1984)1807-1816.

    [34]P.R.Dvornic,J.D.Jovanovic,M.N.Govedarica,On the critical molecular chain-length of polydimethylsiloxane,J.Appl.Polym.Sci.49(9)(1993)1497-1507.

    [35]O.B.Ayodele,J.K.Lim,B.H.Hameed,Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin,Appl.Catal.A Gen.413-314(2012)301-309.

    [36]H.Gao,B.X.Zhao,J.C.Luo,D.Wu,W.Ye,Q.Wang,X.L.Zhang,Fe-Ni-Al pillared montmorillonite as a heterogeneous catalyst for the catalytic wet peroxide oxidation degradation of orange acid II:preparation condition and properties study,Microporous Mesoporous Mater.196(2014)208-215.

    [37]G.R.Rao,B.G.Mishra,A comparative UV-vis-diffuse re flectance study on the location and interaction of cerium ions in Al-and Zr-pillared montmorillonite clays,Mater.Chem.Phys.89(1)(2005)110-115.

    [38]W.J.Zhang,M.K.S.Li,R.J.Wang,Preparation of stable exfoliated Pt-clay nanocatalyst,Langmuir 25(14)(2009)8226-8234.

    [39]X.Xu,X.Zhang,W.Zou,Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite,Catal.Commun.62(2015)67-70.

    [40]N.Bouchenafa-Saib,R.Issaadi,P.Grange,Hydroconversion of n-heptane:A comparative study of catalytic properties of Pd/Sulfated Zr-pillared montmorillonite,Pd/Sulfated zirconia and Pd/gamma-alumina,Appl.Catal.A Gen.259(1)(2004)9-15.

    [41]D.Das,H.K.Mishra,K.M.Parida,Preparation and characterisation of Zr,Ti and Zr-Ti mixed oxide pillared montmorillonite and their catalytic activity towards nitration of chlorobenzene,Indian J.Chem.Sect.A-Inorg.Bio-Inorg.Phys.Theor.Anal.Chem.41(11)(2002)2238-2243.

    [42]P.Berteau,M.A.Kellens,B.Delmon,Acid-base properties of modified aluminas,J.Am.Chem.Soc.87(9)(1991)1425-1431.

    [43]F.Kooli,Y.Liu,K.Hbaieb,Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillared derivatives,Microporous Mesoporous Mater.226(2016)482-492.

    [44]T.Ma,Z.Yun,W.Xu,Pd-H3PW12O40/Zr-MCM-41:an efficient catalyst for the sustainable dehydration of glycerol to acrolein,Chem.Eng.J.294(2016)343-352.

    [45]D.Olszewska,Characterization of ZrO2-acid activated montmorillonite doped with Cu,Ni or Mn ions,Appl.Clay Sci.53(2)(2011)353-358.

    [46]H.A.Patel,S.Bocchini,A.Frache,Platinum nanoparticle intercalated montmorillonite to enhance the char formation of polyamide 6 nanocomposites,J.Mater.Chem.20(42)(2010)9550.

    [47]E.J.M.Hensen,D.G.Poduval,V.Degirmenci,Acidity characterization of amorphous silica-alumina,J.Phys.Chem.C 116(40)(2012)21416-21429.

    [48]K.Oussadi,V.Montembault,M.Belbachir,Ring-opening bulk polymerization offive-and six-membered cyclic phosphonates using maghnite,a nontoxic proton exchanged montmorillonite clay,J.Appl.Polym.Sci.122(2)(2011)891-897.

    [49]A.Schutz,W.E.E.Stone,G.Poncelet,J.J.Fripiat,Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxyaluminum solutions,Clay Clay Miner.35(4)(1987)251-262.

    [50]M.R.S.Kou,S.Mendioroz,M.I.Guijarro,A thermal study of Zr-pillared montmorillonite,Thermochim.Acta 323(1-2)(1998)145-157.

    [51]S.Yariv,L.Heller-Kallai,Iron-bearing kaolinite in Venezuelan laterites.1.Infrared spectroscopy and chemical dissolution evidence,Clay Clay Miner.21(1973)199.

    [52]V.C.Farmer,Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite,Spectrochim.Acta A 56(5)(2000)927-930.

    免费久久久久久久精品成人欧美视频 | 亚洲精品国产av成人精品| av卡一久久| 99热这里只有是精品在线观看| 免费少妇av软件| 欧美激情极品国产一区二区三区 | 秋霞在线观看毛片| 久久精品aⅴ一区二区三区四区 | 91aial.com中文字幕在线观看| 精品久久国产蜜桃| a 毛片基地| 免费黄网站久久成人精品| 亚洲国产精品999| 精品福利永久在线观看| 中文精品一卡2卡3卡4更新| 精品卡一卡二卡四卡免费| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 亚洲天堂av无毛| 久久影院123| 在现免费观看毛片| h视频一区二区三区| 黄色毛片三级朝国网站| 国产乱人偷精品视频| 精品人妻熟女毛片av久久网站| 汤姆久久久久久久影院中文字幕| 丰满迷人的少妇在线观看| 亚洲欧美清纯卡通| 免费少妇av软件| 中文字幕另类日韩欧美亚洲嫩草| 日韩大片免费观看网站| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 成人免费观看视频高清| 日日撸夜夜添| 美国免费a级毛片| 国产深夜福利视频在线观看| 久久女婷五月综合色啪小说| 国产精品秋霞免费鲁丝片| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 欧美bdsm另类| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 永久免费av网站大全| 亚洲成国产人片在线观看| 成人无遮挡网站| 三上悠亚av全集在线观看| 欧美日本中文国产一区发布| 亚洲国产av新网站| 欧美人与性动交α欧美软件 | 欧美少妇被猛烈插入视频| 下体分泌物呈黄色| 亚洲,欧美精品.| 婷婷色麻豆天堂久久| 男女高潮啪啪啪动态图| 久久久精品区二区三区| 不卡视频在线观看欧美| 国产麻豆69| 午夜福利视频精品| 日本91视频免费播放| 免费高清在线观看日韩| 五月玫瑰六月丁香| 女性被躁到高潮视频| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线| 高清av免费在线| 美女国产高潮福利片在线看| 考比视频在线观看| 五月伊人婷婷丁香| 日韩欧美精品免费久久| 成年动漫av网址| 欧美最新免费一区二区三区| 国产精品国产三级专区第一集| 久久这里有精品视频免费| 97精品久久久久久久久久精品| 一区二区三区四区激情视频| 色哟哟·www| 在线观看美女被高潮喷水网站| 久久国内精品自在自线图片| 韩国高清视频一区二区三区| 国产高清三级在线| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 亚洲精品aⅴ在线观看| 中文字幕人妻熟女乱码| 免费久久久久久久精品成人欧美视频 | 国产精品免费大片| 午夜免费鲁丝| 好男人视频免费观看在线| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 少妇被粗大的猛进出69影院 | 日韩中文字幕视频在线看片| 亚洲,一卡二卡三卡| 成年人午夜在线观看视频| 九九爱精品视频在线观看| 久久女婷五月综合色啪小说| 大码成人一级视频| 国产精品99久久99久久久不卡 | 一级爰片在线观看| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久久久久| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 久久久久精品人妻al黑| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 最黄视频免费看| 美女内射精品一级片tv| h视频一区二区三区| 18在线观看网站| 国产综合精华液| 国产无遮挡羞羞视频在线观看| 日韩,欧美,国产一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲av免费高清在线观看| 成年女人在线观看亚洲视频| 波多野结衣一区麻豆| 99久久综合免费| videos熟女内射| 国产成人精品久久久久久| 国产精品三级大全| 久久人人97超碰香蕉20202| 国产有黄有色有爽视频| 国产成人精品婷婷| 青春草国产在线视频| 黄色一级大片看看| 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| 欧美老熟妇乱子伦牲交| 免费观看a级毛片全部| av国产久精品久网站免费入址| 日本91视频免费播放| a级毛片在线看网站| 国产成人av激情在线播放| 中文字幕免费在线视频6| 国产av码专区亚洲av| 日韩av免费高清视频| 少妇熟女欧美另类| 国产在线免费精品| 成人国产av品久久久| 一本—道久久a久久精品蜜桃钙片| 91精品国产国语对白视频| 精品亚洲成国产av| 成人手机av| 热re99久久国产66热| 国产免费又黄又爽又色| 国产一区二区在线观看日韩| 亚洲四区av| 18禁国产床啪视频网站| 爱豆传媒免费全集在线观看| 亚洲国产色片| 国产欧美亚洲国产| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 永久免费av网站大全| 黄片播放在线免费| 美女中出高潮动态图| 只有这里有精品99| 精品国产国语对白av| 欧美97在线视频| 街头女战士在线观看网站| 嫩草影院入口| 午夜福利,免费看| 国产极品粉嫩免费观看在线| 一本大道久久a久久精品| av视频免费观看在线观看| 成人手机av| 丰满少妇做爰视频| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 国产亚洲精品久久久com| 欧美激情 高清一区二区三区| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 老司机影院毛片| 97在线视频观看| 欧美 日韩 精品 国产| 精品熟女少妇av免费看| 人人妻人人添人人爽欧美一区卜| 夜夜爽夜夜爽视频| 日本与韩国留学比较| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 大香蕉久久成人网| 99久久精品国产国产毛片| 18+在线观看网站| 成人黄色视频免费在线看| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 黑人高潮一二区| 人妻系列 视频| 亚洲成色77777| 有码 亚洲区| 婷婷成人精品国产| 欧美精品一区二区大全| 久久97久久精品| 亚洲国产看品久久| 久久这里只有精品19| 熟女人妻精品中文字幕| 大香蕉久久网| 男女高潮啪啪啪动态图| 九九爱精品视频在线观看| 不卡视频在线观看欧美| 高清av免费在线| 熟女人妻精品中文字幕| 在线观看免费视频网站a站| 91aial.com中文字幕在线观看| 亚洲精品国产av成人精品| 午夜福利,免费看| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 久久久久久久久久人人人人人人| 久久人人爽av亚洲精品天堂| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 成人无遮挡网站| a级片在线免费高清观看视频| 日本wwww免费看| 亚洲人与动物交配视频| 肉色欧美久久久久久久蜜桃| 美女福利国产在线| a级片在线免费高清观看视频| 一级毛片 在线播放| 99热这里只有是精品在线观看| 全区人妻精品视频| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 极品人妻少妇av视频| 国产乱来视频区| 99视频精品全部免费 在线| 中国国产av一级| 午夜福利视频在线观看免费| 精品国产乱码久久久久久小说| 熟女人妻精品中文字幕| 永久网站在线| 一级毛片我不卡| 99re6热这里在线精品视频| 国产一区亚洲一区在线观看| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 女性被躁到高潮视频| 五月开心婷婷网| 黑人猛操日本美女一级片| 日日啪夜夜爽| 成人黄色视频免费在线看| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 精品久久久精品久久久| 看十八女毛片水多多多| 综合色丁香网| av视频免费观看在线观看| 亚洲av.av天堂| 青春草国产在线视频| 天堂中文最新版在线下载| 亚洲色图综合在线观看| a级片在线免费高清观看视频| 国产一区亚洲一区在线观看| videos熟女内射| 亚洲天堂av无毛| 最近2019中文字幕mv第一页| 成年美女黄网站色视频大全免费| 精品久久久精品久久久| 亚洲国产日韩一区二区| 黑人欧美特级aaaaaa片| 久久久精品免费免费高清| 日韩大片免费观看网站| 亚洲国产精品国产精品| 蜜臀久久99精品久久宅男| 国产在视频线精品| 国产一区二区三区综合在线观看 | 精品少妇黑人巨大在线播放| 亚洲国产精品一区三区| 久久久精品免费免费高清| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 曰老女人黄片| 午夜福利在线观看免费完整高清在| 中文字幕av电影在线播放| av视频免费观看在线观看| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 最黄视频免费看| 麻豆精品久久久久久蜜桃| 免费观看在线日韩| 高清欧美精品videossex| 亚洲国产日韩一区二区| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 一本色道久久久久久精品综合| 久久人人97超碰香蕉20202| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 精品卡一卡二卡四卡免费| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 午夜av观看不卡| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 国产在线一区二区三区精| 免费观看a级毛片全部| 国产日韩欧美视频二区| 青春草视频在线免费观看| 日本wwww免费看| 女的被弄到高潮叫床怎么办| 亚洲av国产av综合av卡| 少妇熟女欧美另类| 最新的欧美精品一区二区| 在线 av 中文字幕| 99视频精品全部免费 在线| 天美传媒精品一区二区| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 乱人伦中国视频| 美女主播在线视频| 久热久热在线精品观看| 国产精品一国产av| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| videossex国产| 国产精品.久久久| 啦啦啦中文免费视频观看日本| 97超碰精品成人国产| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 午夜福利影视在线免费观看| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 91精品三级在线观看| 久久综合国产亚洲精品| 欧美97在线视频| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 老司机影院成人| 丰满饥渴人妻一区二区三| 9191精品国产免费久久| 亚洲国产精品国产精品| 大香蕉久久网| 26uuu在线亚洲综合色| 咕卡用的链子| 一区二区日韩欧美中文字幕 | 黄片无遮挡物在线观看| av国产久精品久网站免费入址| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 97精品久久久久久久久久精品| 色94色欧美一区二区| 男女国产视频网站| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| 性色avwww在线观看| 亚洲精品一二三| 一本色道久久久久久精品综合| 妹子高潮喷水视频| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 精品一区二区三卡| 亚洲精品,欧美精品| 国产在视频线精品| 国产福利在线免费观看视频| 国产精品久久久久久精品电影小说| 边亲边吃奶的免费视频| 老司机亚洲免费影院| 成人毛片60女人毛片免费| 免费日韩欧美在线观看| 国产精品 国内视频| 51国产日韩欧美| 久久免费观看电影| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 少妇人妻精品综合一区二区| 欧美日韩成人在线一区二区| 如何舔出高潮| 亚洲欧洲国产日韩| 国产深夜福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 丁香六月天网| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| 亚洲内射少妇av| 午夜视频国产福利| 精品第一国产精品| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 夫妻性生交免费视频一级片| 亚洲婷婷狠狠爱综合网| 国产有黄有色有爽视频| 9热在线视频观看99| 免费观看av网站的网址| 午夜激情av网站| 久久久亚洲精品成人影院| 少妇熟女欧美另类| av福利片在线| 乱码一卡2卡4卡精品| 成人国产av品久久久| 在线观看美女被高潮喷水网站| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| 国产一区二区激情短视频 | 亚洲av在线观看美女高潮| 色吧在线观看| 男人添女人高潮全过程视频| 激情五月婷婷亚洲| 日本黄色日本黄色录像| 亚洲高清免费不卡视频| 中文字幕人妻丝袜制服| 亚洲综合精品二区| 男女下面插进去视频免费观看 | 制服诱惑二区| 国产欧美日韩一区二区三区在线| 国产一区二区在线观看日韩| 午夜福利视频在线观看免费| 欧美国产精品一级二级三级| a级片在线免费高清观看视频| 黄色怎么调成土黄色| 成年人免费黄色播放视频| 青青草视频在线视频观看| 尾随美女入室| av卡一久久| 狠狠婷婷综合久久久久久88av| 国产精品熟女久久久久浪| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 日韩中字成人| 乱码一卡2卡4卡精品| 久久久国产一区二区| 国产精品人妻久久久久久| 久久人人爽av亚洲精品天堂| 色94色欧美一区二区| av电影中文网址| 成人亚洲欧美一区二区av| 欧美日韩成人在线一区二区| 欧美精品亚洲一区二区| 黄片无遮挡物在线观看| 自线自在国产av| 亚洲精品乱久久久久久| 精品人妻在线不人妻| 搡老乐熟女国产| 久久精品国产亚洲av涩爱| 王馨瑶露胸无遮挡在线观看| 亚洲精品aⅴ在线观看| 国产精品一二三区在线看| 免费在线观看黄色视频的| 老女人水多毛片| 国产国拍精品亚洲av在线观看| 97超碰精品成人国产| 免费观看无遮挡的男女| 寂寞人妻少妇视频99o| 一二三四在线观看免费中文在 | 国产精品99久久99久久久不卡 | 日韩一本色道免费dvd| 欧美3d第一页| av片东京热男人的天堂| 赤兔流量卡办理| 日本爱情动作片www.在线观看| 黑丝袜美女国产一区| 在现免费观看毛片| av播播在线观看一区| 黑人巨大精品欧美一区二区蜜桃 | 欧美+日韩+精品| 国产成人a∨麻豆精品| 国产免费福利视频在线观看| 国产日韩欧美视频二区| 日本wwww免费看| av在线播放精品| 免费av不卡在线播放| 色婷婷久久久亚洲欧美| 两性夫妻黄色片 | 欧美日韩精品成人综合77777| 精品亚洲成a人片在线观看| 久久人人爽人人爽人人片va| 人妻一区二区av| 成人无遮挡网站| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 日日撸夜夜添| 蜜桃在线观看..| 国产精品久久久久久av不卡| 国产福利在线免费观看视频| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 国产精品人妻久久久久久| 少妇猛男粗大的猛烈进出视频| 久久99一区二区三区| 免费看av在线观看网站| 一本色道久久久久久精品综合| 国产成人午夜福利电影在线观看| 丝袜美足系列| 成人毛片a级毛片在线播放| 999精品在线视频| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 大片免费播放器 马上看| 精品福利永久在线观看| 中文字幕制服av| 亚洲精品色激情综合| 蜜桃在线观看..| 美女内射精品一级片tv| 1024视频免费在线观看| 99久久人妻综合| 免费av中文字幕在线| 国产成人精品福利久久| 又黄又粗又硬又大视频| 男女边摸边吃奶| 自线自在国产av| 国产亚洲午夜精品一区二区久久| 看免费成人av毛片| 久久久久精品性色| 日韩av在线免费看完整版不卡| 中文字幕免费在线视频6| 亚洲内射少妇av| 欧美激情极品国产一区二区三区 | 国产 一区精品| 一个人免费看片子| 国产成人av激情在线播放| 狠狠婷婷综合久久久久久88av| 激情视频va一区二区三区| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 一本久久精品| 免费人妻精品一区二区三区视频| 十八禁高潮呻吟视频| 欧美另类一区| 黑丝袜美女国产一区| 麻豆乱淫一区二区| 亚洲av男天堂| 国产av一区二区精品久久| 久久国产亚洲av麻豆专区| 边亲边吃奶的免费视频| 久久人人97超碰香蕉20202| 97在线视频观看| 国产精品一区二区在线观看99| 少妇 在线观看| 国产成人91sexporn| 久久亚洲国产成人精品v| 国产在视频线精品| 国产 一区精品| 欧美97在线视频| 中文字幕av电影在线播放| 国产永久视频网站| 国产深夜福利视频在线观看| 中文字幕最新亚洲高清| 国产有黄有色有爽视频| 国产精品久久久久久精品古装| 一本—道久久a久久精品蜜桃钙片| 高清视频免费观看一区二区| 老司机影院成人| 久久精品久久久久久噜噜老黄| 精品人妻在线不人妻| 午夜91福利影院| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 最近最新中文字幕免费大全7| 色5月婷婷丁香| 欧美国产精品va在线观看不卡| 欧美人与性动交α欧美精品济南到 | 亚洲精品456在线播放app| 久久久久视频综合| 看免费成人av毛片| 最近2019中文字幕mv第一页| 99热网站在线观看| 91精品三级在线观看| 曰老女人黄片| 美女主播在线视频| 巨乳人妻的诱惑在线观看| 亚洲情色 制服丝袜| 亚洲一码二码三码区别大吗| 在线亚洲精品国产二区图片欧美| 精品一区在线观看国产| 欧美日韩一区二区视频在线观看视频在线| 国产一级毛片在线| 国国产精品蜜臀av免费| 熟女电影av网| 丝袜在线中文字幕| 九色成人免费人妻av| 免费av不卡在线播放| 啦啦啦啦在线视频资源| 国产精品免费大片| 大陆偷拍与自拍| 蜜桃国产av成人99| 97在线视频观看| 香蕉丝袜av| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 黄色一级大片看看| 人妻系列 视频| 啦啦啦在线观看免费高清www| 五月开心婷婷网| 国产精品一二三区在线看| 国产成人精品婷婷| 老司机影院毛片| 国产精品久久久久久久久免| 丰满乱子伦码专区| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| 亚洲欧洲精品一区二区精品久久久 | 欧美xxxx性猛交bbbb| 亚洲一级一片aⅴ在线观看| 少妇高潮的动态图|