• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transport properties of dilute ammonia-noble gas mixtures from new intermolecular potential energy functions

    2017-05-28 19:45:12FarshidZargariDelaraMohammadAghaieMaryamLotfiMasoumeGhorbanipourMohammadMehdiAlavianmehrOmolbaninShahraki
    Chinese Journal of Chemical Engineering 2017年12期

    Farshid Zargari*,Delara Mohammad-Aghaie ,Maryam Lot fi,Masoume Ghorbanipour ,Mohammad Mehdi Alavianmehr ,Omolbanin Shahraki**

    1 Department of Chemistry,Shiraz University of Technology,Shiraz,Iran

    2 Medicinal and Natural Products Chemistry Research Center,Shiraz University of Medical Sciences,Shiraz,Iran

    3 Department of Physical Chemistry,University of Tabriz,Tabriz,Iran

    4 Zahedan University of Medical Sciences,Zahedan,Iran

    1.Introduction

    Transport properties of matters in different thermo-physical states are important features,required in different engineering design problems,such as simulations of viscous flows through channels and combustion chambers of various technical devices,such as flows in rocket engines,chemical reactors and shock tubes.There is a growing demand for more accurate transport properties,in response to the worldwide need for higher efficiency,process integration and energy awareness in the industry[1].

    Three principal transport properties of industrial interest are the viscosity,η,the diffusivity,D,and the thermal conductivity,λ,which characterize the dynamics of fluids,involving the momentum transport related to the pressure difference,the mass transport related to the concentration difference,and the heat transport related to the temperature difference,respectively[2].

    Prediction and determination of equilibrium and non-equilibrium properties of a matter,and interpretation of most phenomena involving atoms and molecules,depend on knowledge of intermolecular forces.Once the interaction potential is known,evaluation of thermophysical properties of fluids will be straightforward.This reduces the need for experimentation considerably.Various methods of determining intermolecular potentials have been used,either theoretical,based on experimental information,or combining both approaches[3,4].

    Among these methods,inversion of dilute gas properties has been of particular importance.The semi-empirical method of inversion,developed by Maitl and and co-workers,determines unique potential energy function from thermo physical properties,without explicit assumption of a mathematical model[5-8].

    The Chapman-Enskog solution of the Boltzmann equation of gas kinetic theory,provides expressions to relate the transport coefficients of gases to interaction potential energy,through collision integrals,Ω(l,s)(T*)[9,10].For noble gases,with spherically symmetric potentials,inversion of experimental second virialco efficients,B2(T),is directly related to the pair potential U(r).Combining this result with other experimental sources such as viscosity and diffusion coefficients,and quantum mechanical calculations,provides an accurate knowledge of U(r)for these simple substances[11-14].

    However,the Chapman-Enskog theory for transport properties of polyatomic gases with non-spherical interactions is fundamentally different from that of monatomic molecules,due to the possibility of inelastic collisions,which makes change in the rotational and vibrational energies[15].

    Another approximation has been proposed by Mason and Monchick[16]who assumed that the molecules have a fixed relative orientation,during a collision.The physical basis for this assumption is that most of the interaction in a collision occurs in the vicinity of the distance of the closest approach,during which the relative orientation does not change much,so that one relative orientation dominates in each collision.Therefore the Chapman-Enskog theory of polyatomic molecules retains its original form,but the collision integrals must be averaged over all possible orientations,occurring in collisions.

    In the import antcase of dilute polargases,Mason and Monchick[17]applied this approximation,considering the facts that these molecules have an angle-dependent potential and the possible rotational-energy transfers on every collision must be taken into account.In order to calculate the collision integrals of some polar gases,they employed the Stock mayer potential as interaction potential and related it to the collision integrals Ω(l,s),using the following equations:

    where θ is the classical deflection angle for U(r)interaction potential,b the impact parameter,rmthe distance of the closest approach in a collision,w the relative velocity of colliding partners and Q(l)(E)the collision cross section,corresponding to the l moment.They used the experimental viscosities and dipole moments of a number of polar gases to determine the potential parameters necessary to calculate other properties of these gases.Over-all agreement between the experiment and their model,makes the Stock mayer potential for polar gases,comparable to the Lennard-Jones(12-6)model for non-polar gases.It has been shown that effective total interaction energy between a polar molecule and non-polar molecule,has the same form as that of two non-polar molecules which are spherically symmetric[15],so in mixtures of polar and non-polar gases,the polar-nonpolar interactions have essentially a non-polar nature.

    Ammonia has a widespread use in many industrial sectors and it is one of the chemicals with the largest production volume in the world.Its main uses are in fertilizers,industrial refrigeration systems,explosives,as well as in plastic and pharmaceutical product manufacturing[18].Furthermore ammonia is often the subject of experimental and theoretical studies,because of its ability to form hydrogen bonds and its simple symmetric molecular structure.

    Reliable data for mixtures with ammonia are of special interest in the field of refrigeration.Furthermore,the correct description of the intermolecular interactions in such systems is a challenging task from a theoretical point of view due to the intra molecular inversion behavior of the ammonia molecule.

    Recently,Papari et al.have applied the inversion method based on the law of corresponding states,to infer the intermolecular potential energies of non-polar polyatomic molecules[19,20]and their mixtures with noble gases[21-28],and predict their collision integrals,required to calculate transport properties.Their method was also applied to pure refrigerants[23,29]and refrigerant mixtures[30,31]as slightly polar molecules to obtain the effective and isotropic pair potential energies of this class of fluids.

    The novelty of the present work is that the Papari et al.'s scheme is extended to a highly polar molecule ammonia and its mixtures with noble gases at low density.The numerical values of the inverted potentialenergies of ammonia-noble gas binary mixtures are then fitted to an analytical MSV model potential.The experimental viscosity,diffusion coefficient and thermal conductivity data,together with an iterative least squares method are used to obtain the best force parameters,ε12and σ12for each binary system.

    Generated intermolecular potential energies are evaluated by comparison of our model potential with those obtained from other sources,both experimental and theoretical.In addition,the dilute gas transport coefficients(except thermal conductivity)of the studied mixtures,encompassing a wide range of temperatures,are predicted using the Chapman-Enskog version of the kinetic theory[9,10]and compared with the literature data.Computation of thermal conductivities for the studied mixtures through Schreiber et al.method[32]and comparing the results with literature data,provide a further test for the inverted potential energy functions.

    2.Transport Properties of Gaseous Mixtures

    Expressions for the viscosity η,thermal conductivity λ,and diffusion coefficient D of pure substances are given in Ref.[19].The mixture transport properties of dilute gases are obtained by the following relationships:

    2.1.Viscosity

    The viscosity of an arbitrary multicomponent mixture of dilute gases can be evaluated from the following equations:

    where

    whereis the ratio of the collision integrals,defined by Eq.(11)in Ref.[19],xithe mole fraction of component i,and mithe molecular mass of the component i.kBT is the molecular thermal energy,σ the distance at which the potential energy is zero,andthe interaction viscosity.Subscripts i and j denote the heavier and lighter components of the i-j pair,respectively.

    2.2.Diffusion

    Diffusion in multicomponent mixtures is entirely described in terms of binary diffusion coefficients,Dij[15]:

    where P is the pressure and Δijis a higher order correction term of the binary diffusion coefficient,which can be defined as:

    where

    2.3.Thermal diffusion factor

    A tendency of a convection-free mixture to separate under a thermal(or temperature)gradient is known as the thermal diffusion process or Soret effect.In this process,the transport of matter takes place(i.e.a concentration gradient of the mixture constituents develops)with the temperature gradient.The thermal diffusion coefficient is the measure of this effect,and its sign determines the direction of the thermal diffusion[33].

    The Chapman-Enskog expression for the thermal-diffusion factor,αT,of a binary mixture is:

    where kTis a higher order correction term for the thermal-diffusion factor.This term is usually negligible compared with experimental uncertainties in αT.The corresponding formulas of quantities S1,?1,and ?12in Eq.(13)can be found in Ref.[31],Eqs.(23)-(25).

    The expressions for S2and?2are obtained from those ofS1and?1by interchanging subscripts 1 and 2.The sign convention for αTrequires that subscript 1 denotes the heavier component.

    2.4.Thermal conductivity

    The dependence of thermal conductivity of polyatomic molecular gases,on the internal degrees of freedom and the inherent details of inelastic collisions,prevents the application of Chapman Enskog theory for the calculation of this property.In this respect,the thermal conductivity of a multicomponent polyatomic gas mixture at zero density can be expressed in the form analogous to that for a mixture,consisting of monatomic species[32]:

    where,xiis the mole fraction of species i and the symbolλ,indicates the fullformal first-orderkinetic theory result,obtained by means of expansion in Thijsse basis vectors[34].Studies have shown that accurate and relatively simple expressions for pure polyatomic gases[35],atom-diatom mixtures[36],and atom-molecule mixtures[37]can be obtained by means of the Thijsse approximation,which identifies the total energy,as the dominant factor in determining thermal conductivity.

    Employing the Thijsse et al.[34]and spherical approximations to the full results,gives rise to the following determinant elements,Lij[32]:

    where λqis the thermal conductivity of pure molecular species q,λqq′,is the interaction thermal conductivity,is the ideal-gas isobaric heat capacity of q,R is the gas constant,and the quantities A*and B*are ratios of effective cross-sections,given by Eqs.(11)and(14)in Ref.[19].In addition yqis the mass ratio of species q,given by:

    Here,Mqis the relative molecular mass of species q.The interaction thermal conductivity can be related to the more readily available interaction viscosity,ηqq′,through the equation below:

    Inspection of above equations reveals that in order to obtain the thermal conductivity of a multi-component polyatomic gas mixture,knowledge of the thermal conductivity and the isobaric heat capacity of each of the pure species is required.This information is readily available for a large number of fluids as a function of temperature,either in terms of correlations or directly from experimental information.Three binary interaction parameters,namely,ηqq′,A*and B*,as functions of temperature,are the remaining required quantities which in the present work correspond to the interaction viscosity and collision integral ratios,obtained from the inversion method.

    3.Results and Discussio n

    Detailed iterative inversion technique was employed in this study to define the intermolecular pair interaction potential energies of five NH3-noble gas mixtures,from corresponding states correlations of viscosity.Implementation of the full inversion procedure,requires the extension of experimental data over as wide temperature range as possible.To achieve this,we considered the corresponding states correlation for functional viscosity collision integrals,Ω*(2,2)of noble gases proposed in Ref.[38],together with the one given for ammonia in Ref.[17],to obtain the mixed interaction functional〈Ω*(2,2)〉ijfor NH3-noble gas mixtures by employing the following simple combining rule:

    Resulting 〈Ω*(2,2)〉ijvalues were employed to perform the inversion procedure in order to generate effective interaction potentials for considered systems.The inverted potential energy values were then fitted to an analytical multi-parameter MSV potential model.This model potential includes a Morse function and the van der Waals dispersion expansion that is respectively used for short range and long range interactions,along with a Spline function responsible for joining them smoothly.

    The reduced form of MSV potential function reads as:

    where=r/σ,x1=1.071444,and x2=1.405981.

    Table 1 Calculated parameters of MSV potential function(Eqs.(24)-(27))for NH3-noble gas mixtures

    Fig.1.Reduced MSV potential model of NH3--Ne mixture(●)obtained by inversion of reduced viscosity collision integrals compared with improved Lennard-Jones(ILJ)potential model of Pirani et al.[39](―).

    A nonlinear least squares method was performed for all studied binary mixtures,where the outcome of the fittings has been reported in Table 1.Our model potentials for mixtures of NH3with Ne,Ar,He and Krhave been compared with those obtained from molecular beam scattering measurements and infrared spectroscopic observations[39]in Figs.1 and 2 and S1 and S2 of supplementary data,respectively.The acceptable accordance,confirms the validity of our inverted potential energy functions for aforementioned mixtures.

    Fig.2.Reduced MSV potential model of NH3--Ar mixture(●)obtained by inversion of reduced viscosity collision integrals compared with improved Lennard-Jones(ILJ)potential model of Pirani et al.[39](―).

    As a further test to assess the reliability of our proposed potential models for the present systems,mixture transport properties in low density region were computed.To achieve this,the effective potential energies obtained from the inversion method were used to perform the integration over the whole range and,in turn,to evaluate the improved kinetic theory collision integrals over the given range,using Eqs.(1)-(3).The results for the most commonly needed collision integrals and theirratios,obtained from Eqs.(11)-(15)in Ref.[19],for binary mixtures of NH3--Ne,NH3--Ar,NH3--He,NH3--Kr and NH3--Xe have been tabulated in Tables 2 and 3 and S1,S2 and S3 of supplementary material,respectively.

    To calculate mixture transport properties,we needed to know the binary potential parameters,σijandεijof studied mixtures.Unlike interaction parameters characterizing binary interactions can be obtained from like parameters,σii,εiiand σjj,εjjby means of the combining rules.In this study,in order to obtainε12andσ12for NH3-noble gas mixtures,we employed experimental viscosity,diffusion coefficient and thermal conductivity data as reference properties.Our determination method of effective pair potential parameters,involved minimizingthe relative root mean square deviations(RMSD's)between reference transport properties and those predicted through Chapman-Enskog expressions for calculating viscosity,diffusion and thermal conductivity of binary mixtures.(Eqs.(24)-(26)).In fact,the leasts quares fitting method was employed to determine most consistent potential parameters,able to reproduce all mentioned transport properties within experimental accuracies.

    Table 2 The reduced collision integrals and their ratios for NH3--Ne mixture

    Table 3 The reduced collision integrals and their ratios for NH3--Ar mixture

    Our predicted potential parameters,obtained from the above procedure have been reported in Table 4.For comparison we have added the same parameters from two references[40,41],calculated merely based on the viscosity and diffusion coefficients,respectively.

    Table 4 Potential parameters(ε12 and σ12)of studied mixtures

    As previously mentioned,the validity of any potential energy function is confirmed by its ability to reproduce thermo physical properties,within acceptable accuracies.Having the binary potential parameters,we employed the inverted pair potential energies of all five systems to the Chapman-Enskog[9,10]method to compute viscosity coefficients,binary diffusion coefficients,and thermal diffusion factors of equimolar NH3-noble gas mixtures at low density.

    Table 5Predicted low density transport properties of equimolar NH3--Ne mixture

    Moreover,the thermal conductivities of aforementioned binary gas mixtures were obtained using the Schreiber et al.method[33].The outcome of these computations for NH3--Ne,NH3--Ar,NH3--He,NH3--Kr and NH3--Xe mixtures,in a wide temperature range 250≤T≤3273.15 K,wastabulated respectively in Tables 5 and 6 and S4,S5 and S6 ofsupplementary material.

    Table 6 Predicted low density transport properties of equimolar NH3--Ar mixture

    Table 7 The non-linear least squares parameters,standard errors(SE)and correlation coefficients(R)of Eq.(27)

    The interaction viscosity of dilute gas mixtures,η12,which is the hypothetical viscosity of a gas of mass μ=m1m2/(m1+m2)in which only unlike interactions take place,was obtained through using Eq.(7)and our model potential energies.The quantity was correlated for all five studied mixtures with the following equation:

    where,η0=1 μPa·s,and T0=1 K.

    Further,the binary diffusion coefficients,thermal diffusion factors and also thermal conductivities of the five equimolar NH3-noble gas mixtures were correlated with Eqs.(27)-(30),respectively.

    where P0=101325 Pa and D0=1 cm2·s-1.Parameters of the Eqs.(27)-(30)were allowed to vary for all five systems,using nonlinear least-squares method and listed in Tables 7-9 and S7 of supplementary data.

    In order to assess the reliability of predicted transport properties and also our inverted potential energy functions,resulting transport properties were checked against the literature data.Calculated viscosities for the NH3--Ne,--Ar,--He,--Kr and--Xe mixtures were compared with experimental data[42,44-46]and the results depicted as deviation plots,in Figs.3 and 4 and S3-S5 of supplementary material,respectively.The average absolute deviations(AADs)of the calculated viscosities for aforementioned mixtures,from the experimental ones[42,44-46]were found to be 3.73%,3.57%,2.72%,4.79%and 2.68%,respectively.

    Fig.3.Deviation plot for the dilute viscosity coefficients of NH3--Ne gaseous mixture in terms of temperature at different mole fractions of Ne:()x Ne=0.1;()x Ne=0.15;()x Ne=0.25;()x Ne=0.35;()x Ne=0.45;()x Ne=0.55;()x Ne=0.65;()x Ne=0.75;()x Ne=0.85;()x Ne=0.95 compared with experiment[42,44].

    Table 9 The non-linear least squares parameter,standard errors(SE)and correlation coefficients(R)of Eq.(30)

    Fig.4.Deviation plot for the dilute viscosity coefficients of NH3--Ar gaseous mixture in terms of temperature at different mole fractions of Ar:()x Ar=0.15;()x Ar=0.195;()x Ar=0.29;()x Ar=0.41;()x Ar=0.495;()x Ar=0.65;()x Ar=0.79;()x Ar=0.90,compared with experiment[42,44-46].

    It should be mentioned that these viscosity measurements have been performed,using an oscillating disk viscometer at atmospheric pressure and in the nominal temperature range,from-35 °C to 35 °C.The accuracy of the measurements has been claimed to be of 1%for NH3--He,--Ne,--Kr and--Xe mixtures.In the case of NH3--Ar mixture,the precision of measured viscosities by Rakshit et al.[46]is 1%at-35 °C to 35 °C temperature range,and it varies from 0.2%for argonrich to 1.5%for ammonia-rich mixture,in Iwasaki et al.reported data[45].

    Predicted diffusion coefficients of ammonia-noble gas mixtures at several temperatures have been compared with experimental ones reported in the literature[43].Relative deviations of the diffusion coefficients,for NH3--Ar and NH3--Kr mixtures from experimental data[43]are plotted in Fig.5.The AADs for these mixtures were found to be 7.39%and 8%,respectively.Diffusion coefficients for mixtures of ammonia with argon and krypton have been measured using two-bulb technique in the temperature range of-20 to 60°C where the accuracy has been claimed to be within±1%.

    Fig.5.Deviation plot for the diffusion coefficients of NH3--Ar and NH3--Kr gaseous mixtures at different temperatures,compared with literature data[43]:()NH3--Ar,()NH3--Kr.

    The thermal diffusion factor describes,physically,the actual extent of the spatial separation of an initially uniform gaseous mixture of different molecular partners,which takes place whenever that mixture is subject to a temperature gradient.Unfortunately we have not found any literature values of this property for the studied mixtures.Therefore,we could not evaluate our calculated thermal diffusion factors using the MSV model potential.

    Thermal conductivities and heat capacities of pure species required by the Schreiber et al.'s method[32],were taken from NIST data[47].In order to assess the validity of predicted thermal conductivities of NH3-noble gas binary mixtures,Figs.6 and 7 and S6 of supplementary data depict the relative deviations of the calculated thermal conductivities of,NH3--Ne,NH3--Arand NH3--He mixtures from the experimental values[48],respectively.It should be cited that the hot-wire method has been used in this reference[48]to measure the thermal conductivities of aforementioned mixtures with the experimental uncertainty within 1%-1.5%at temperatures,39-199.6°C.The AAD values of our calculated thermal conductivities for NH3--He,NH3--Ne and NH3--Ar mixtures from the experimental values(each for 20 data points)were found to be 7.57%,7.83%and 10.63%,respectively.

    Fig.6.Deviation plot for the thermal conductivities of NH3--Ne gaseous mixture at different temperatures,compared with experiment[48]:()x NH3=0.194;()x NH3=0.396;()x NH3=0.614;()x NH3=0.715.

    Fig.7.Deviation plot for the thermal conductivities of NH3--Ar gaseous mixture at different temperatures,compared with experiment[48]:()x NH3=0.186;()x NH3=0.393;()x NH3=0.619;()x NH3=0.792.

    4.Conclusions

    In this study the pair interaction energies of NH3-noble gas mixtures were obtained using the inversion method,based on the corresponding states correlations of viscosity,and fitted to the MSV model potentials.Our inverted potential functions showed reasonable agreement with previously obtained potential energies,based on the molecular beam scattering measurements and infrared spectroscopic observations.

    Viscosities,diffusion coefficients,thermal diffusion factors and thermal conductivities of studied mixtures were calculated at low density and compared with literature data,where available.The acceptable agreement between calculated and experimental transport properties,provided further evidence to support the reliability of our inverted potentials for NH3-noble gas mixtures.The most important features of the inversion method are its independence on the explicit assumption about the functional form of potential model,the establishment of unique potentials,and leading to collision integrals which are prerequisite for determination of thermo physical properties.

    Supplementary Material

    Supplementary data to this articlecan be found online at http://dx.doi.org/10.1016/j.cjche.2017.07.007.

    [1]H.Feng,X.Liu,W.Gao,X.Chen,J.Wang,L.Chen,H.-D.Lüdemann,Evolution of self diffusion and local structure in some amines over a wide temperature range at high pressures:a molecular dynamics simulation study,Phys.Chem.Chem.Phys.12(45)(2010)15007-15017.

    [2]M.Mukhopadhyay,Natural Extracts Using Supercritical Carbon Dioxide,CRC Press,2000.

    [3]G.Maitland,M.Rigby,E.Smith,W.Wakeham,D.Henderson,Intermolecular Forces:Their Origin and Determination,Physics Today 36(1983)57-58.

    [4]I.A.McLure,J.E.Ramos,F.del Río,Accurate effective potentials and virial coefficients in real fluids.1.Pure noble gases and their mixtures,J.Phys.Chem.B 103(33)(1999)7019-7030.

    [5]G.Maitland,E.Smith,The intermolecular pair potential of argon,Mol.Phys.22(5)(1971)861-868.

    [6]D.Gough,G.Maitland,E.Smith,The direct determination of intermolecular potential energy functions from gas viscosity measurements,Mol.Phys.24(1)(1972)151-161.

    [7]D.Gough,E.Smith,G.Maitland,The pair potential energy function for krypton,Mol.Phys.27(4)(1974)867-872.

    [8]G.Maitland,W.Wakeham,Direct determination of intermolecular potentials from gaseous transport coefficients alone:part II.Application to unlike monatomic interactions,Mol.Phys.35(5)(1978)1443-1469.

    [9]S.Chapman,T.Cowling,The Mathematical Theory of Non-uniform Gases,Camb.Univ.Press,1939.

    [10]D.Enskog,Kinetische Theorie der Vorg?nge in m?ssig verdünnten Gasen,1917.

    [11]R.A.Aziz,V.Nain,J.Carley,W.Taylor,G.McConville,An accurate intermolecular potential for helium,J.Chem.Phys.70(9)(1979)4330-4342.

    [12]M.L.Klein,R.A.Aziz,Inert Gases:Potentials,Dynamics,and Energy Transfer in Doped Crystals,vol.34,Springer-Verlag,1984.

    [13]M.J.Slaman,R.A.Aziz,Transport properties and second virial coefficients for neon,Chem.Eng.Commun.104(1-3)(1991)139-152.

    [14]R.Eggenberger,S.Gerber,H.Huber,D.Searles,Ab initio calculation of the second virial coefficient of neon and the potential energy curve of Ne2,Chem.Phys.156(3)(1991)395-401.

    [15]J.O.Hirschfelder,C.F.Curtiss,R.B.Bird,M.G.Mayer,Molecular Theory of Gases and Liquids,vol.26,Wiley,New York,1954.

    [16]L.Monchick,E.Mason,R.Munn,F.J.Smith,Transport properties of gaseous He3and He4,Phys.Rev.139(4A)(1965)A1076.

    [17]L.Monchick,E.Mason,Transport properties of polar gases,J.Chem.Phys.35(5)(1961)1676-1697.

    [18]A.Fenghour,W.A.Wakeham,V.Vesovic,J.Watson,J.Millat,E.Vogel,The viscosity of ammonia,J.Phys.Chem.Ref.Data 24(5)(1995)1649-1667.

    [19]M.M.Papari,Transport properties of carbon dioxide from an isotropic and effective pair potential energy,Chem.Phys.288(2)(2003)249-259.

    [20]J.Moghadasi,M.M.Papari,A.Nekoie,J.V.Sengers,Transport properties of some polyatomic gases from isotropic and effective pair potential energies(part II),Chem.Phys.306(1)(2004)229-240.

    [21]M.M.Papari,D.Mohammad-aghaiee,B.Haghighi,A.Boushehri,Transportproperties of argon-hydrogen gaseous mixture from an effective unlike interaction,Fluid Phase Equilib.232(1)(2005)122-135.

    [22]M.M.Papari,D.Mohammad-Aghaie,J.Moghadasi,A.Boushehri,Semi-empirically based assessment for predicting dilute gas transport properties of F2 and Ar-F2 fluids,Bull.Chem.Soc.Jpn.79(1)(2006)67-74.

    [23]B.Haghighi,F.Heidari,B.Haghighi,M.M.Papari,B.Haghighi,Prediction of thermal conductivity of R32,R125,R134a,R143a and R152a at zero density via semiempiric ally-based assessment,Int.J.Air-Cond.Refrig.19(01)(2011)45-56.

    [24]J.Moghadasi,M.M.Papari,F.Yousefi,B.Haghighi,Transport coefficients of natural gases,J.Chem.Eng.Jpn 40(9)(2007)698-710.

    [25]J.Moghadasi,F.Youse fi,M.M.Papari,M.A.Faghihi,A.A.Mohsenipour,Transport properties in mixtures involving carbon dioxide at low and moderate density:test of several intermolecular potential energies and comparison with experiment,Heat Mass Transf.45(11)(2009)1453-1466.

    [26]S.Nikmanesh,J.Moghadasi,M.M.Papari,Calculation of transport properties of CF4+noble gas mixtures,Chin.J.Chem.Eng.17(5)(2009)814-821.

    [27]M.M.Papari,J.Moghadasi,S.Nikmanesh,E.Hosseini,A.Boushehri,Modeling thermo physical properties of noble gas involved mixtures,Int.J.Comput.Methods Sing.8(01)(2011)19-39.

    [28]D.Mohammad-Aghaie,M.M.Papari,F.Zargari,Modeling transport properties of N2-noble gas mixtures at low and moderate densities,Bull.Chem.Soc.Jpn.85(5)(2012)563-575.

    [29]J.Moghadasi,M.M.Papari,D.Mohammad-Aghaie,A.Campo,Gas transport coefficients of light hydrocarbons.Halogenated methane and ethane as candidates for new refrigerants,Bull.Chem.Soc.Jpn.81(2)(2008)220-234.

    [30]J.Moghadasi,D.Mohammad-Aghaie,M.Papari,Predicting gas transport coefficients of alternative refrigerant mixtures,Ind.Eng.Chem.Res.45(26)(2006)9211-9223.

    [31]J.Moghadasi,D.Mohammad-Aghaie,M.M.Papari,M.A.Faghihi,Predicting gas transport properties of light hydrocarbon mixtures as candidates for new refrigerants,High Temp.High Pressures 37(4)(2008)299-316.

    [32]M.Schreiber,V.Vesovic,W.Wakeham,Thermal conductivity of multicomponent polyatomic dilute gas mixtures,Int.J.Thermophys.18(4)(1997)925-938.

    [33]K.Shukla,A.Firoozabadi,Anew model of thermal diffusion coefficients in binary hydrocarbon mixtures,Ind.Eng.Chem.Res.37(8)(1998)3331-3342.

    [34]B.Thijsse,G.t.Hooft,D.Coombe,H.Knaap,J.Beenakker,Some simplified expressions for the thermal conductivity in an external field,Phys.A 98(1-2)(1979)307-312.

    [35]J.Millat,V.Vesovic,W.Wakeham,On the validity of the simplified expression for the thermal conductivity of Thijsse et al,Phys.A 148(1)(1988)153-164.

    [36]V.Vesovic,W.Wakeham,Practical,accurate expressions for the thermal conductivity of atom-diatom gas mixtures,Phys.A 201(4)(1993)501-514.

    [37]M.Schreiber,V.Vesovic,W.A.Wakeham,Thermal conductivity of atom-molecule dilute gas mixtures,High Temp.High Pressures 29(6)(1997)653-658.

    [38]B.Naja fi,E.Mason,J.Kestin,Improved corresponding states principle for the noble gases,Phys.A 119(3)(1983)387-440.

    [39]F.Pirani,L.F.Roncaratti,L.Belpassi,F.Tarantelli,D.Cappelletti,Molecular-beam study of the ammonia-noble gas systems:characterization of the isotropic interaction and insights into the nature of the intermolecular potential,J.Chem.Phys.135(19)(2011)194301.

    [40]J.E.Ramos,F.del Río,I.A.McLure,Nonc on formal potentials and second virial coefficients in molecular fluids.II.Applications to nonspherical molecules,J.Phys.Chem.B 102(51)(1998)10576-10585.

    [41]F.del Río,J.E.Ramos,A.Gil-Villegas,I.A.McLure,Collision diameters,interaction potentials,and virial coefficients of small quasi-spherical molecules,J.Phys.Chem.100(21)(1996)9104-9115.

    [42]A.Rakshit,C.Roy,Viscosity and polar-nonpolar interactions in mixtures of inert gases with ammonia,Physica 78(1)(1974)153-164.

    [43]B.Srivastava,I.Srivastava,Studies on mutual diffusion of polar-nonpolar gas mixtures,J.Chem.Phys.36(10)(1962)2616-2620.

    [44]K.Stephan,T.Heckenberger,Thermal Conductivity and Viscosity Data of Fluid Mixtures:Tables,Diagrams,Correlations,and Literature Survey,vol.10,Scholium International,1988.

    [45]H.Iwasaki,J.Kestin,A.Nagashima,Viscosity of argon—ammonia mixtures,J.Chem.Phys.40(10)(1964)2988-2995.

    [46]A.Rakshit,C.Roy,A.Barua,Viscosity of the binary gas mixtures argon-methane and argon-ammonia,J.Chem.Phys.59(7)(1973)3633-3638.

    [47]E.Lemmon,M.McLinden,D.Friend,P.Linstrom,W.Mallard,NIST Chemistry WebBook,Nist Standard Reference Database Number 69,National Institute of Standards and Technology,Gaithersburg,2011.

    [48]B.Srivastava,A.D.Gupta,Thermal conductivity of binary mixtures of ammonia and inert gases,Br.J.Appl.Phys.18(7)(1967)945.

    成人av在线播放网站| 亚洲av熟女| 日韩强制内射视频| 国产精品一区www在线观看 | 久久人人精品亚洲av| 能在线免费观看的黄片| 少妇裸体淫交视频免费看高清| 久久天躁狠狠躁夜夜2o2o| 99在线视频只有这里精品首页| 国产69精品久久久久777片| 免费看av在线观看网站| 亚洲图色成人| 日本熟妇午夜| 精品人妻1区二区| 男人舔女人下体高潮全视频| 天美传媒精品一区二区| 久久精品国产亚洲网站| 久久国产精品人妻蜜桃| 在线a可以看的网站| 欧美又色又爽又黄视频| 国产成人福利小说| 久久久久久久精品吃奶| 成人av在线播放网站| 国内久久婷婷六月综合欲色啪| 免费一级毛片在线播放高清视频| 亚洲专区国产一区二区| 成人国产麻豆网| 亚洲最大成人av| 日韩高清综合在线| 婷婷丁香在线五月| 天堂网av新在线| 国产精品99久久久久久久久| 91午夜精品亚洲一区二区三区 | 91麻豆精品激情在线观看国产| 91av网一区二区| 波多野结衣高清作品| 久久天躁狠狠躁夜夜2o2o| 国产久久久一区二区三区| 黄色配什么色好看| 黄色女人牲交| 久久国内精品自在自线图片| 精品国内亚洲2022精品成人| 日韩精品青青久久久久久| 国产成人福利小说| 国产精品一区www在线观看 | 日日干狠狠操夜夜爽| 欧美激情在线99| 干丝袜人妻中文字幕| 午夜福利成人在线免费观看| 黄色配什么色好看| 91麻豆精品激情在线观看国产| 一边摸一边抽搐一进一小说| 亚洲美女搞黄在线观看 | avwww免费| 日日干狠狠操夜夜爽| 极品教师在线视频| 在线观看66精品国产| 亚洲美女视频黄频| 毛片一级片免费看久久久久 | 日本五十路高清| 综合色av麻豆| xxxwww97欧美| 黄色配什么色好看| 国产精品免费一区二区三区在线| 高清毛片免费观看视频网站| 大又大粗又爽又黄少妇毛片口| 身体一侧抽搐| 床上黄色一级片| 在线免费十八禁| 精品国内亚洲2022精品成人| 欧美日本亚洲视频在线播放| 99久久无色码亚洲精品果冻| 99热这里只有是精品50| 国产乱人视频| 一个人免费在线观看电影| 久久久国产成人精品二区| 久久久久久久久久成人| 黄色女人牲交| 国产精品美女特级片免费视频播放器| av在线亚洲专区| 日韩欧美精品v在线| 深爱激情五月婷婷| 内地一区二区视频在线| 国产精品一区二区性色av| 国产男人的电影天堂91| 欧美色欧美亚洲另类二区| 亚洲国产日韩欧美精品在线观看| 国产黄a三级三级三级人| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 免费看av在线观看网站| 99视频精品全部免费 在线| 国产91精品成人一区二区三区| 俺也久久电影网| 久久久久久久亚洲中文字幕| 久久热精品热| 亚洲18禁久久av| 国产人妻一区二区三区在| 日日摸夜夜添夜夜添小说| 又粗又爽又猛毛片免费看| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 天天躁日日操中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 女同久久另类99精品国产91| 国产一区二区亚洲精品在线观看| 色av中文字幕| 一区二区三区激情视频| 久久久久久国产a免费观看| x7x7x7水蜜桃| 成人永久免费在线观看视频| 丰满的人妻完整版| 能在线免费观看的黄片| 熟妇人妻久久中文字幕3abv| 亚洲综合色惰| 嫩草影院精品99| 最后的刺客免费高清国语| 最好的美女福利视频网| 日韩欧美三级三区| 欧美xxxx黑人xx丫x性爽| 成熟少妇高潮喷水视频| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区 | 中国美女看黄片| 亚洲不卡免费看| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观| 久久久久久国产a免费观看| 亚洲欧美日韩高清专用| 真实男女啪啪啪动态图| 天天一区二区日本电影三级| 亚洲成人免费电影在线观看| 精品乱码久久久久久99久播| 久久精品国产亚洲网站| 女同久久另类99精品国产91| 深夜精品福利| 欧美中文日本在线观看视频| av.在线天堂| 变态另类丝袜制服| 国产v大片淫在线免费观看| 又紧又爽又黄一区二区| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 国产精品98久久久久久宅男小说| 精品久久久久久久久av| 午夜福利成人在线免费观看| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 国产高清三级在线| 波多野结衣高清无吗| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 黄片wwwwww| 高清毛片免费观看视频网站| 午夜视频国产福利| 精品一区二区免费观看| 免费在线观看成人毛片| 欧美区成人在线视频| 色哟哟·www| 韩国av在线不卡| 黄色配什么色好看| 国产精品三级大全| 亚洲国产色片| 99久久精品一区二区三区| 亚洲精品在线观看二区| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 91狼人影院| 久久国产乱子免费精品| 97热精品久久久久久| av专区在线播放| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 国产成人一区二区在线| 国产男人的电影天堂91| 内地一区二区视频在线| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 久久久久久久久中文| 少妇被粗大猛烈的视频| 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 成年女人永久免费观看视频| 一本精品99久久精品77| 精华霜和精华液先用哪个| 一本一本综合久久| 婷婷亚洲欧美| 有码 亚洲区| 中出人妻视频一区二区| 精品人妻偷拍中文字幕| 97热精品久久久久久| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 久9热在线精品视频| 欧美人与善性xxx| 色吧在线观看| 极品教师在线视频| 波多野结衣高清无吗| 一区二区三区免费毛片| 久久久久久久久久成人| 欧美精品国产亚洲| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 91在线精品国自产拍蜜月| 久久久精品大字幕| 热99在线观看视频| 最新在线观看一区二区三区| 国产高清视频在线播放一区| 国产精品久久视频播放| 日本熟妇午夜| 少妇的逼好多水| 老司机福利观看| 色哟哟哟哟哟哟| 岛国在线免费视频观看| 成人一区二区视频在线观看| 色综合亚洲欧美另类图片| 国产成人av教育| 小说图片视频综合网站| 黄色视频,在线免费观看| 久久人妻av系列| 午夜影院日韩av| 国产精华一区二区三区| 不卡视频在线观看欧美| a级毛片a级免费在线| 久久精品国产鲁丝片午夜精品 | 男人狂女人下面高潮的视频| 一进一出抽搐gif免费好疼| av视频在线观看入口| 可以在线观看毛片的网站| 成年版毛片免费区| 国产男人的电影天堂91| 级片在线观看| 精品人妻1区二区| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| or卡值多少钱| 窝窝影院91人妻| 久久亚洲精品不卡| 婷婷丁香在线五月| 亚洲自拍偷在线| 最近在线观看免费完整版| 人妻制服诱惑在线中文字幕| 嫩草影院精品99| 久久久久久久亚洲中文字幕| 99久久精品热视频| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 女人十人毛片免费观看3o分钟| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 国产v大片淫在线免费观看| 久久热精品热| 99在线视频只有这里精品首页| 国产白丝娇喘喷水9色精品| 最近视频中文字幕2019在线8| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 国产精品久久久久久久久免| 色在线成人网| 国产中年淑女户外野战色| 精品一区二区三区视频在线观看免费| 毛片一级片免费看久久久久 | 国产一区二区在线av高清观看| 国产av一区在线观看免费| 自拍偷自拍亚洲精品老妇| 国产淫片久久久久久久久| 变态另类成人亚洲欧美熟女| 啪啪无遮挡十八禁网站| 内射极品少妇av片p| 色综合站精品国产| 成人美女网站在线观看视频| 99热只有精品国产| 国产精品久久电影中文字幕| 国产 一区精品| 国产中年淑女户外野战色| 国产极品精品免费视频能看的| 亚洲欧美日韩卡通动漫| 老司机深夜福利视频在线观看| 精品久久久久久久久av| 久久久精品大字幕| 日本精品一区二区三区蜜桃| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆| 麻豆精品久久久久久蜜桃| 国产高清视频在线播放一区| 日本一二三区视频观看| 国产精品久久久久久久电影| 午夜福利在线观看吧| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 久久久久久久久久成人| 久久久久久大精品| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 精品久久久噜噜| 精品一区二区免费观看| 高清在线国产一区| 国产不卡一卡二| 性欧美人与动物交配| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 免费观看在线日韩| 嫁个100分男人电影在线观看| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 日韩一区二区视频免费看| 97超视频在线观看视频| 九色国产91popny在线| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产99精品国产亚洲性色| 在线观看av片永久免费下载| bbb黄色大片| 精品一区二区三区人妻视频| 久久久国产成人免费| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 欧美激情国产日韩精品一区| 免费观看人在逋| 欧美日本视频| 美女xxoo啪啪120秒动态图| 人人妻人人看人人澡| 亚洲内射少妇av| 黄色欧美视频在线观看| 国产成人福利小说| 成人精品一区二区免费| 久久久久久国产a免费观看| 精品国内亚洲2022精品成人| 床上黄色一级片| 成人综合一区亚洲| 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清| 亚洲av美国av| 国产在线精品亚洲第一网站| 国产亚洲91精品色在线| 日韩一区二区视频免费看| 亚洲熟妇熟女久久| 精品久久久久久久人妻蜜臀av| 久久精品影院6| 国内精品久久久久精免费| 97超视频在线观看视频| 国产色爽女视频免费观看| 99久久中文字幕三级久久日本| 久久久久精品国产欧美久久久| 国产蜜桃级精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 日日撸夜夜添| 成人美女网站在线观看视频| 精品久久久久久久久av| 午夜免费男女啪啪视频观看 | 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 在现免费观看毛片| 悠悠久久av| 欧美色视频一区免费| 我的老师免费观看完整版| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 午夜免费激情av| 亚洲人成网站在线播放欧美日韩| 久久午夜亚洲精品久久| 91久久精品电影网| 国内精品久久久久久久电影| 日本与韩国留学比较| 亚洲欧美激情综合另类| 国产 一区精品| 99久国产av精品| 少妇被粗大猛烈的视频| 高清在线国产一区| 精品午夜福利在线看| 国内精品久久久久精免费| 免费高清视频大片| 99久久精品一区二区三区| 欧美一区二区国产精品久久精品| 欧美高清成人免费视频www| 舔av片在线| 国产亚洲精品av在线| 免费大片18禁| 亚洲av五月六月丁香网| 俺也久久电影网| 久久精品91蜜桃| 亚洲最大成人手机在线| 国产乱人视频| 免费看av在线观看网站| 成人国产麻豆网| 欧美国产日韩亚洲一区| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 欧美日韩中文字幕国产精品一区二区三区| 色5月婷婷丁香| 欧美日韩乱码在线| 亚洲av二区三区四区| 日韩高清综合在线| 永久网站在线| 午夜激情福利司机影院| 国产 一区精品| 亚洲avbb在线观看| 在线免费观看的www视频| 成人美女网站在线观看视频| 亚洲无线在线观看| 久久久久久久久久成人| 色精品久久人妻99蜜桃| 欧美三级亚洲精品| 精品人妻熟女av久视频| 最好的美女福利视频网| 精品久久久久久成人av| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| 免费看美女性在线毛片视频| 国产黄片美女视频| 国产亚洲av嫩草精品影院| 成人av一区二区三区在线看| 色视频www国产| 美女免费视频网站| 一本精品99久久精品77| 男女边吃奶边做爰视频| 久久精品国产亚洲av涩爱 | 国产精品日韩av在线免费观看| 亚洲午夜理论影院| 欧美日韩乱码在线| av天堂中文字幕网| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 91麻豆av在线| 国产精品一及| 啦啦啦观看免费观看视频高清| 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添av毛片 | 又黄又爽又免费观看的视频| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 成人av一区二区三区在线看| 韩国av在线不卡| 欧美日本亚洲视频在线播放| 中文字幕免费在线视频6| 丰满的人妻完整版| 精品国内亚洲2022精品成人| 乱人视频在线观看| 又黄又爽又免费观看的视频| 国产成人影院久久av| 国产极品精品免费视频能看的| 亚洲国产色片| 欧美日本亚洲视频在线播放| 亚洲人成网站在线播| 99热网站在线观看| 国产精品永久免费网站| 黄色日韩在线| 黄色视频,在线免费观看| 伊人久久精品亚洲午夜| 色精品久久人妻99蜜桃| 国产一级毛片七仙女欲春2| 成人性生交大片免费视频hd| 亚洲乱码一区二区免费版| 老司机福利观看| 国产免费av片在线观看野外av| 99热这里只有是精品50| 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 嫁个100分男人电影在线观看| 国产一级毛片七仙女欲春2| av女优亚洲男人天堂| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 一区福利在线观看| 欧美一级a爱片免费观看看| 精品久久国产蜜桃| 内射极品少妇av片p| 中国美女看黄片| 国产爱豆传媒在线观看| 国产精品久久久久久久久免| 亚州av有码| 亚洲精华国产精华液的使用体验 | 国产精品三级大全| 欧美日韩瑟瑟在线播放| 亚洲四区av| 神马国产精品三级电影在线观看| 女人被狂操c到高潮| 男女做爰动态图高潮gif福利片| 99热这里只有是精品50| 中文字幕熟女人妻在线| 国产毛片a区久久久久| 男人和女人高潮做爰伦理| 波多野结衣高清无吗| 99热这里只有精品一区| 亚洲av成人av| 亚洲,欧美,日韩| 一边摸一边抽搐一进一小说| 午夜福利高清视频| 欧美成人免费av一区二区三区| 日日撸夜夜添| 亚洲成av人片在线播放无| 亚洲精品影视一区二区三区av| 人妻夜夜爽99麻豆av| 久久精品国产99精品国产亚洲性色| 高清日韩中文字幕在线| 欧美高清成人免费视频www| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 国产成人av教育| 一区福利在线观看| 国产激情偷乱视频一区二区| 岛国在线免费视频观看| 1000部很黄的大片| 欧美成人免费av一区二区三区| 亚洲国产欧洲综合997久久,| 欧美+日韩+精品| 性色avwww在线观看| 99国产极品粉嫩在线观看| 国产精品永久免费网站| 91久久精品国产一区二区三区| 精品福利观看| 日韩 亚洲 欧美在线| 一区福利在线观看| 欧美最黄视频在线播放免费| 亚洲欧美日韩卡通动漫| 成人毛片a级毛片在线播放| 一级av片app| 日本精品一区二区三区蜜桃| 久久久久久久久久成人| 亚洲四区av| 久久国产乱子免费精品| 啦啦啦观看免费观看视频高清| 69人妻影院| 亚洲成人久久性| 欧美日韩亚洲国产一区二区在线观看| 亚洲自偷自拍三级| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区精品| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 精品免费久久久久久久清纯| 免费在线观看影片大全网站| 一卡2卡三卡四卡精品乱码亚洲| 免费高清视频大片| 伦理电影大哥的女人| 国产精品一区www在线观看 | 日韩一区二区视频免费看| 色播亚洲综合网| 又粗又爽又猛毛片免费看| 亚洲不卡免费看| 露出奶头的视频| 精品不卡国产一区二区三区| xxxwww97欧美| 欧美黑人欧美精品刺激| 日韩国内少妇激情av| 久久久国产成人免费| 最新中文字幕久久久久| 99久久精品一区二区三区| 色精品久久人妻99蜜桃| 人人妻人人澡欧美一区二区| 成人美女网站在线观看视频| 女人十人毛片免费观看3o分钟| 午夜福利高清视频| 久久精品国产鲁丝片午夜精品 | 黄色日韩在线| 国产视频内射| 国产精品人妻久久久影院| 亚洲va日本ⅴa欧美va伊人久久| av女优亚洲男人天堂| 亚洲美女视频黄频| 韩国av一区二区三区四区| 午夜免费激情av| 一级a爱片免费观看的视频| 美女被艹到高潮喷水动态| 色精品久久人妻99蜜桃| 午夜影院日韩av| 大又大粗又爽又黄少妇毛片口| 免费搜索国产男女视频| 人人妻,人人澡人人爽秒播| av在线老鸭窝| 嫩草影院新地址| 国产爱豆传媒在线观看| 精品人妻一区二区三区麻豆 | 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩无卡精品| 国产欧美日韩精品一区二区| 97热精品久久久久久| 亚洲欧美日韩无卡精品| 日韩一区二区视频免费看| 成人无遮挡网站| 亚洲自拍偷在线| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品sss在线观看| 日日摸夜夜添夜夜添小说| 午夜老司机福利剧场| 少妇人妻一区二区三区视频| 日日摸夜夜添夜夜添小说| www.www免费av| 亚洲自拍偷在线| 99久久精品一区二区三区| 国产成人影院久久av| 五月伊人婷婷丁香| 色综合婷婷激情| 久久午夜亚洲精品久久| 男女做爰动态图高潮gif福利片| 亚洲性久久影院| 能在线免费观看的黄片| 国产精品一及| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久久久免| a级毛片免费高清观看在线播放| 成年女人看的毛片在线观看| 内地一区二区视频在线|