• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    天線時域平面近場測試的誤差分析

    2017-05-19 02:42:20曹猛薛正輝任武李偉明朱若晴蔡洪偉
    電波科學(xué)學(xué)報 2017年1期
    關(guān)鍵詞:信號源頻域時域

    曹猛 薛正輝 任武 李偉明 朱若晴 蔡洪偉

    (北京理工大學(xué)信息與電子學(xué)院, 北京100081)

    天線時域平面近場測試的誤差分析

    曹猛 薛正輝 任武 李偉明 朱若晴 蔡洪偉

    (北京理工大學(xué)信息與電子學(xué)院, 北京100081)

    天線時域近場測試技術(shù)對誤差體系研究的缺失,導(dǎo)致測試結(jié)果的不確定度分析一直無法完成.為解決這一問題,以天線時域平面近場測試為例,對時域近場測試的誤差進(jìn)行研究,給出時域測試區(qū)別于頻域測試技術(shù)的四個誤差項:探頭調(diào)制誤差、信號源穩(wěn)定度誤差、時間采樣間隔誤差、時間采樣長度誤差.在給出誤差項后,對誤差的產(chǎn)生機(jī)理進(jìn)行了討論,通過仿真和實測給出了誤差對測試結(jié)果的影響.

    時域;近場測試;誤差分析;不確定度分析

    DOI 10.13443/j.cjors.2017011002

    引 言

    近場測試因其保密性高、測試距離短等優(yōu)點在天線測試中被廣泛應(yīng)用.頻域近場測試最早出現(xiàn)于20世紀(jì)50年代,在加入了近場測試的探頭誤差修正后,測試結(jié)果的精度有了質(zhì)的飛躍,近場測試技術(shù)開始被廣泛應(yīng)用.

    該項技術(shù)被大規(guī)模應(yīng)用還有一個很重要的原因是因為頻域近場測試可以對測試結(jié)果進(jìn)行不確定度的估計,估計的主要核心內(nèi)容是對頻域近場測試包含的所有誤差項的產(chǎn)生機(jī)理、誤差的評估方式、誤差對測試結(jié)果的影響即結(jié)果的不確定度進(jìn)行分析.Yaghjian首先給出了天線平面近場測試的誤差上限分析[1],Newell和Crawford在20世紀(jì)80年代對頻域近場測試完成了誤差項不確定度的分析,使得頻域近場測試技術(shù)達(dá)到了實際應(yīng)用的水平[2].IEEE對天線近場測試給出了相關(guān)的測試標(biāo)準(zhǔn)和不確定度的計算標(biāo)準(zhǔn)[3],對頻域近場測試的誤差項也有很多文章進(jìn)行分析及修正[4-6].但頻域近場測試由于是單點頻測試,在進(jìn)行寬頻帶多頻點和大口面天線測試時的效率很低,同時頻域測試是穩(wěn)態(tài)測試,對雷達(dá)等系統(tǒng)來說需要進(jìn)行瞬態(tài)的分析,因此對時域測試的需求開始出現(xiàn).

    時域近場測試?yán)碚撟钤缭?994年由Hansen提出,最初的文章給出了聲學(xué)場和電磁場的寬頻帶時域測試?yán)碚?在1995年又給出了帶有探頭修正的時域近遠(yuǎn)場變換,完善了時域近場測試?yán)碚揫7-9].此后國內(nèi)外出現(xiàn)了時域近場測試的研究熱潮,針對時域測試系統(tǒng)實現(xiàn)方式、應(yīng)用方向和部分誤差進(jìn)行了研究[10-14].對時域近場測試技術(shù)的應(yīng)用都是在采集時域信號后進(jìn)行傅里葉變換得到頻域的信息最后得到頻域的遠(yuǎn)場區(qū)方向圖,對待測天線的純時域特性的測試很少.時域近場測試技術(shù)采用時頻域相結(jié)合的方法,但想要達(dá)到頻域測試的工程應(yīng)用水平還是缺少很重要的參考項:誤差項研究和測試結(jié)果的不確定度分析.時域近場測試現(xiàn)在很重要的一個問題就是缺少對時域與頻域測試誤差項之間的相同點與不同點的歸納以及對時域近場測試技術(shù)的誤差項的系統(tǒng)總結(jié).

    Newell和Crawford總結(jié)了頻域近場測試中的18項誤差,總體而言分為兩大部分:由于探頭自身的參數(shù)導(dǎo)致的誤差和在測試過程中信號接收和空間譜計算出現(xiàn)的誤差.在時域近場測試中,誤差也可分為這兩大部分,但是兩個部分中的具體誤差項有所差別,本文給出了對兩部分誤差項的分析.

    本文針對時域平面近場測試技術(shù)進(jìn)行誤差分析.首先介紹了時域近場測試系統(tǒng)構(gòu)成,然后給出了時域區(qū)別于頻域測試技術(shù)的誤差項,最后對誤差項進(jìn)行了具體的分析.具體來說,時域近場測試技術(shù)在具有頻域測試技術(shù)的誤差項外,還有四個獨有誤差項:探頭調(diào)制誤差、信號源穩(wěn)定度誤差、時間采樣間隔誤差、時間采樣長度誤差.在給出獨有誤差項后,分別從誤差產(chǎn)生原因和誤差對測試結(jié)果的影響對誤差進(jìn)行分析.

    1 天線時域平面近場測試誤差

    時域平面近場測試系統(tǒng)如圖1所示,時域信號源作為激勵,時域激勵信號分為兩路:一路經(jīng)由待測天線發(fā)出,探頭在采樣平面上進(jìn)行采樣,最后由采樣示波器進(jìn)行實時采樣;另一路時域信號直接連接采樣示波器,作為采樣觸發(fā)信號及誤差修正的參考信號.

    圖1 天線時域平面近場測試系統(tǒng)

    由圖1可以看到,時域系統(tǒng)與頻域系統(tǒng)最大的區(qū)別就是信號源與采樣示波器代替了矢量網(wǎng)絡(luò)分析儀,時域信號源的信號穩(wěn)定度與頻域信號相比較弱,所以時域信號源穩(wěn)定度誤差是時域測試一項很重要的誤差項.時域測試采用時域信號,因此采樣信號與時間相關(guān)的誤差是時域平面測試獨有誤差項.在實際測試中探頭采樣得到的信號發(fā)生明顯的變化,所以探頭對信號的調(diào)制也是一個時域測試中出現(xiàn)的新誤差項.

    在進(jìn)行時域近場測試誤差項的總結(jié)前,需要先給出誤差項分析的前提[3]74:

    1) 所有近場測試的理論是準(zhǔn)確的,對誤差的評估計算在理想情況下進(jìn)行.

    2) 所有數(shù)值計算中因為計算精度導(dǎo)致的誤差不進(jìn)行分析,比如近遠(yuǎn)場變換時計算精度的誤差不進(jìn)行分析.在時域測試中,此類誤差還包括進(jìn)行時頻域變換時的計算精度導(dǎo)致的誤差.

    3) 假設(shè)每一個誤差項都是獨立的,與其他誤差是不相關(guān)的.

    4) 每一項誤差都會在測量和遠(yuǎn)場參數(shù)的計算過程中產(chǎn)生對應(yīng)的誤差.

    5) 在對由誤差項導(dǎo)致的測試結(jié)果的誤差進(jìn)行分析時,可以不與真實的天線結(jié)果作對比,而是與一個假定不受其他誤差影響的結(jié)果作對比.

    以上是對誤差進(jìn)行機(jī)理分析和對結(jié)果影響估計的一些基本原則,在以上幾個前提下,頻域近場測試給出了18項誤差.從前面對時域測試系統(tǒng)的分析可以看出時域平面測試自身還有獨有的誤差項.這些獨有誤差項包括由于探頭自身特性導(dǎo)致的誤差項及三項測試導(dǎo)致的誤差項.

    時域近場測試中探頭自身特性導(dǎo)致的誤差項與頻域中的誤差項有聯(lián)系但又不完全一致,在頻域中探頭的誤差項主要分為以下幾部分:探頭方向圖、探頭極化軸比、探頭增益等,誤差對應(yīng)單一頻點.Newell在文獻(xiàn)[2]中給出了探頭頻域誤差分析的推導(dǎo)和誤差上限估計.時域近場測試中這些誤差項同樣存在,只是對誤差項的描述方式略有不同.由于時域信號的寬頻帶特性,時域信號可以認(rèn)為是包含了工作頻帶內(nèi)所有頻點的信息,所以探頭的誤差項都變?yōu)榱藢?yīng)頻帶內(nèi)所有頻點的誤差項.除了頻域中已給出的誤差項外,探頭在時域中還有新的需要考慮的誤差——探頭調(diào)制誤差.

    時域近場測試導(dǎo)致的誤差包括以下誤差項:信號源穩(wěn)定度誤差、時間采樣間隔誤差、時間采樣長度誤差.因為時域測試的激勵信號是一個持續(xù)時間很短的高斯信號,信號的幅值和觸發(fā)時間在每一次激勵時都會有變化,每一次的信號變化都是獨立的,時域信號的幅值和相位的穩(wěn)定度都要遠(yuǎn)遠(yuǎn)低于頻域測試的激勵信號,所以在時域測試中時域激勵信號的幅值和觸發(fā)時間還有脈寬會對測試結(jié)果產(chǎn)生影響,而這三項誤差組成了信號源穩(wěn)定度誤差.時間采樣間隔誤差也是時域測試的獨有誤差,在頻域測試中采樣點的空間采樣間隔需要滿足奈奎斯特采樣定律,采樣間隔要小于最小波長的一半,而在時域測試中,對信號的采樣間隔也需要滿足奈奎斯特采樣定律,時間的采樣間隔要小于最高采樣頻率倒數(shù)的一半,或者說信號采樣率(時間采樣間隔的倒數(shù))要大于采樣頻率的二倍,否則采樣信號的頻譜會發(fā)生混疊.三項誤差的最后一項誤差是時間采樣長度誤差.因為時域激勵信號是周期信號,通過觸發(fā)信號控制采樣示波器進(jìn)行信號采集,如果采樣信號時間過長會導(dǎo)致采集到下一周期的信號,而如果采樣時間過短會導(dǎo)致信號采集不完整,過長或過短都會影響時域信號完成度和信號的頻域信息.

    2 誤差機(jī)理研究及結(jié)果影響分析

    2.1 探頭調(diào)制誤差

    探頭作為近場測試的信號采集工具,探頭誤差對測試結(jié)果的影響是所有誤差項中最大的,而所有探頭誤差中最重要的就是探頭的方向圖誤差.由于近場測試的探頭不是一個理想點源,接收到的能量強(qiáng)度會受到自身空間接收能力的限制,所以頻域近場測試對探頭的修正主要就是對方向圖的修正.

    頻域近場測量的探頭修正首先要得到探頭的方向圖逆接收特性,然后再對空間譜進(jìn)行修正,從而達(dá)到修正探頭誤差的目的.探頭的逆接收特性表達(dá)式為[9]573

    (1)

    從式(1)可以看出頻域?qū)μ筋^的修正就是方向圖的修正,但是在時域近場測試中,除了方向圖誤差外,由于寬頻帶特性、波導(dǎo)同軸轉(zhuǎn)換匹配、探頭傳遞函數(shù)導(dǎo)致的信號變形等方面的影響也需要考慮.其中在寬頻帶測試條件下由于探頭傳遞函數(shù)導(dǎo)致信號發(fā)生變形的誤差可以認(rèn)為是探頭對接收信號進(jìn)行了調(diào)制,因此可以定義為探頭調(diào)制誤差.

    首先是探頭的波導(dǎo)同軸轉(zhuǎn)換匹配,由于探頭對不同頻點駐波是不一致的,所以會對信號造成一定的影響,在時域上的直接表現(xiàn)就是信號會發(fā)生變形.但是Newell認(rèn)為在測試中,探頭的阻抗在所有頻帶范圍內(nèi)都認(rèn)為是固定的50 Ω,工作頻帶內(nèi)的所有頻點都是理想的阻抗匹配,否則無法繼續(xù)進(jìn)行分析,所以工作頻帶內(nèi)不會出現(xiàn)因為端口的反射系數(shù)不同而導(dǎo)致接收信號出現(xiàn)誤差.在實際測試中,可以采用駐波較好的探頭,這樣在能量損失很小的情況下信號的變形可以忽略不計.

    時域近場測試最重要的誤差項就是探頭對接收信號的調(diào)制誤差.由于探頭有自身的系統(tǒng)響應(yīng),所以一個時域信號進(jìn)入探頭后會與探頭的系統(tǒng)響應(yīng)函數(shù)進(jìn)行卷積最后在端口輸出,因此得到的采樣信號會發(fā)生變形,最終影響時域方向圖的計算結(jié)果.

    根據(jù)波導(dǎo)的相關(guān)理論[15]63可以得到開口波導(dǎo)探頭在頻域時的傳遞函數(shù)為

    Swg=e-γz=e-(αc+αd+jβ)·d.

    (2)

    式中:γ為傳播常數(shù);αc為波導(dǎo)壁所引起的導(dǎo)體衰減常數(shù);αd為由波導(dǎo)中填充介質(zhì)所引起的介質(zhì)衰減常數(shù);β為相位常數(shù),是信號相位的變化量;d為波導(dǎo)探頭長度.根據(jù)αc、αd和β的定義[16]將這幾項展開后得到傳遞函數(shù)具體表達(dá)式為

    (3)

    探頭調(diào)制誤差對采集信號造成的影響可以通過仿真得到.仿真結(jié)果如圖2所示,圖2(a)為輸入信號,是一個工作頻段為2~5 GHz的調(diào)制高斯信號,對一個S波段標(biāo)準(zhǔn)喇叭進(jìn)行激勵.圖2(b)分別為理想探針得到的信號和波導(dǎo)探頭采集到的信號,可以看到因為探頭的調(diào)制,信號發(fā)生了變形.圖2(c)給出了兩種采樣方式采集到的信號的頻譜.可以看到兩種情況的頻譜只有幅值略有不同,工作頻帶沒有變化.由于波導(dǎo)是一個無源器件,信號在相同頻點的幅值的衰減(以dB為單位)和相位的變化都是一致的.將信號變換到頻域后,信號與頻域近場測試得到的信號沒有區(qū)別,這也是時域近場測試技術(shù)可以采用時頻域結(jié)合的辦法進(jìn)行近遠(yuǎn)場變換和計算的原因.

    (a) 激勵信號 (b) 接收信號對比

    (c) 接收信號品頻譜 (d) 遠(yuǎn)場區(qū)時域信號對比圖2 波導(dǎo)調(diào)制誤差

    從頻域角度分析,頻域信號的幅值相位會發(fā)生變化,但是因為頻域測試是針對單頻點的測試,同一頻點信號的幅值相位在同一個邊界條件中的變化是相同的;而時域信號在頻域上是多個離散頻點的組合,首先探頭要在頻域上對信號進(jìn)行截斷,只允許工作頻段內(nèi)的信號通過,然后由于相速度不同,導(dǎo)致信號的色散,變換到時域上就是信號變形.而從時域角度分析,信號傳播的邊界條件及模式發(fā)生變化后的表現(xiàn)就是信號被調(diào)制后發(fā)生變形,信號的輻射功率在不考慮損耗的情況下不變,但是信號的持續(xù)時間與信號的峰峰值都會發(fā)生變化.這樣的變化在變換到頻域計算時不會有影響,但是對時域測試來說,信號的持續(xù)時間是一個很重要的測試指標(biāo),因為它可以表征待測天線的口面能量達(dá)到穩(wěn)態(tài)的時間;同時如果不將波導(dǎo)的調(diào)制解調(diào)出去的話,表征待測天線的輻射能力的時域方向圖會出現(xiàn)極大誤差.圖2(d)給出了圖2(b)中兩種采樣信號計算得到的遠(yuǎn)場區(qū)(θ=0,φ=0)點處時域波形,可以看到利用探頭采樣信號計算得到的時域遠(yuǎn)場波形與理想情況下的時域遠(yuǎn)場波形有很明顯的區(qū)別,遠(yuǎn)場波形的峰峰值差值達(dá)到了0.25 V,波形持續(xù)時間差值為0.53 ns.由對比可以看出探頭調(diào)制誤差會導(dǎo)致計算結(jié)果的誤差.

    下面給出S波段標(biāo)準(zhǔn)喇叭天線在同一時刻的采樣平面的瞬時電場分布,利用最高工作頻率為12 GHz的高斯脈沖對喇叭進(jìn)行激勵.圖3(a)為理想情況下的近場能量分布,圖3(b)為波導(dǎo)探頭采樣得到的近場能量分布.

    (a) 理想情況 (b) 波導(dǎo)探頭圖3 時域信號在近場采樣面瞬時能量分布

    通過瞬時的能量分布對比可以看出無論是能量幅值的數(shù)量級還是能量分布都有很大區(qū)別,場強(qiáng)的差值達(dá)到了4.16×109V/m.理想情況的場值有兩個明顯的波峰,采樣面正中是波峰;探頭采樣得到的場值只有一個明顯的波峰,采樣面正中是波谷.這樣的誤差會對時域的遠(yuǎn)場區(qū)方向圖的結(jié)果造成影響.

    2.2 信號源穩(wěn)定度誤差

    信號穩(wěn)定度的誤差可以歸納為兩部分原因:激勵信號源的不穩(wěn)定及采樣設(shè)備的不穩(wěn)定.首先時域近場測試采用的信號源大多是脈沖發(fā)生器,通過晶體振蕩產(chǎn)生得到的是一個近似的高斯脈沖信號,因為這是一個脈沖信號,所以這種信號的穩(wěn)定度遠(yuǎn)遠(yuǎn)低于穩(wěn)態(tài)的頻域信號,同時由于信號源要在極限工作狀態(tài)運(yùn)轉(zhuǎn),信號的幅值、脈寬和觸發(fā)時間都會變得不穩(wěn)定,在信號源工作較長時間后這種誤差會非常大,這樣會造成接收信號的變形,嚴(yán)重地影響測試結(jié)果.另外,為了對信號進(jìn)行修正,需要建立信號源與采樣設(shè)備之間的參考信道,根據(jù)參考信道得到的信號來進(jìn)行修正,對采樣接收設(shè)備來說,即使輸入相同的信號,接收到的信號也會由于各項誤差發(fā)生變化,這兩個方面的誤差組合起來就是信號的穩(wěn)定度誤差.

    由于對采樣信號和激勵信號是同時采集的,這樣激勵信號的變化和采樣設(shè)備的誤差可以通過對參考信道的激勵信號的修正來完成對采樣信號的修正.這是對時域采樣信號進(jìn)行信號源不穩(wěn)定造成的誤差修正的前提.

    下面以高斯脈沖源為例進(jìn)行信號源穩(wěn)定度的誤差分析.高斯信號的表達(dá)式為

    g(t)=Ate-4t2/τ2+tr.

    (4)

    式中:At是信號的幅值;tr是信號的觸發(fā)時間;τ是信號的脈寬.信號源誤差分別為A't、Δtr、τ',其中A't=At+ΔA,ΔA為幅值變化量,τ'=τ+Δτ.

    在這一節(jié)里,將對激勵信號的峰值、脈寬和觸發(fā)時間進(jìn)行分析,進(jìn)而顯示出信號源誤差對測試的影響.圖4給出了不同情況下激勵信號和接收信號的變化.

    (a) 幅值誤差

    (b) 觸發(fā)時間誤差

    (c) 信號脈寬誤差圖4 信號源誤差對激勵信號及接收信號的影響

    從圖4的結(jié)果可以看出:信號源的幅值改變會造成接收信號的幅值改變,接收信號的變化與信號源的變化成正比;信號源觸發(fā)時間的變化則會影響接收信號的觸發(fā)時間;而信號源脈寬的變化會導(dǎo)致接收信號發(fā)生變形,兩者的變化量之間不是簡單的比值關(guān)系.時域信號的幅值和觸發(fā)時間分別對應(yīng)了頻域信號的幅值和相位,脈寬改變會改變信號的工作頻帶,而信號源的這三個誤差都會極大影響信號的準(zhǔn)確性,進(jìn)而嚴(yán)重影響最后的測試結(jié)果.

    圖5給出了實際測試中信號源誤差對方向圖的影響.待測天線為S波段標(biāo)準(zhǔn)喇叭,采樣面邊長為1 089.6mm,采樣間隔為22.7mm,探頭與待測天線之間距離為350mm,激勵信號與圖2(a)中高斯調(diào)制信號一致,信號源信號的峰峰值為20V,信號寬度為1.5ns,信號源幅值誤差最大值為4V,信號寬度誤差最大值為0.03ns,觸發(fā)時間誤差最大為0.2ns.圖5(a)分別給出信號源誤差修正前后的3.3GHz頻率處的E面遠(yuǎn)場區(qū)方向圖和待測天線的遠(yuǎn)場測試得到的相應(yīng)頻率的遠(yuǎn)場方向圖.圖5(b)分別給出了兩種方向圖與遠(yuǎn)場測試方向圖的差值.由圖5(a)可以看出在置信角域內(nèi)(±40°左右),對信號源誤差進(jìn)行修正后方向圖與遠(yuǎn)場測試得到的方向圖擬合很好,而誤差未修正前計算得到的方向圖主瓣指向與副瓣都發(fā)生了很明顯的變化,主瓣與遠(yuǎn)場測試結(jié)果的主瓣近似,而副瓣則完全不一致.由圖5(b)可以看出修正后方向圖與遠(yuǎn)場測試方向圖的差值在置信角域內(nèi)最大值為0.4dBm,而未修正方向圖的差值最大值可以達(dá)到9.6dBm.誤差修正后的方向圖副瓣電平誤差主要來源于探頭對準(zhǔn)和探頭采樣位置等誤差,這些誤差帶來了方向圖的誤差.

    (a) 方向圖計算結(jié)果 (b) 方向圖差值圖5 信號源誤差對方向圖的影響

    2.3 時間采樣間隔誤差

    時域測試的時間采樣間隔誤差包含兩類誤差:第一類是指在對時域信號進(jìn)行采集時所采用的時間采樣間隔的選取,第二類是指對時域信號進(jìn)行采樣時由于儀器自身誤差導(dǎo)致的采樣點的漂移.

    第一類誤差是時域測試獨有的誤差,是在某一空間采樣點上進(jìn)行時域采樣時的時間步長,即采樣示波器的采樣間隔.在頻域測試中,空間采樣間隔要小于奈奎斯特的抽樣間隔(NyquistSamplingInterval)即Δλ≤1/(2λmin).而在時域測試中,除了空間采樣間隔需要繼續(xù)遵循這一原則外,時間的采樣間隔即信號的分辨率也要進(jìn)行考慮.根據(jù)用信號樣本表示連續(xù)時間信號的抽樣定理, 應(yīng)小于奈奎斯特抽樣間隔,即Δt≤1/(2fmax),其中fmax為測試頻帶的最高頻率.這樣將采集得到的時域信號進(jìn)行頻域頻譜分析時,不會出現(xiàn)頻譜重疊,沒有混疊誤差存在.而當(dāng)時間采樣間隔過大時就會發(fā)生頻譜重疊,產(chǎn)生混疊誤差.

    (a) 信號的頻譜

    (b) 時域信號波形

    (c) 不同采樣率3 GHz頻點方向圖實測結(jié)果圖6 不同采樣率采樣結(jié)果

    圖6給出了第一類時間采樣間隔誤差對采樣信號的影響.采樣信號為圖5中測試得到的采樣信號,采樣信號的頻譜為2~5 GHz,實線為實測結(jié)果的頻譜,時間采樣間隔Δt=0.05 ns(采樣率為20 GHz),實心方塊線為Δt=0.1 ns(采樣率為10 GHz)時采樣信號的頻譜,空心菱形線為Δt=0.2 ns(采樣率為5 GHz)時采樣信號的頻譜,空心圓形線為Δt=0.25 ns(采樣率為4 GHz)時采樣信號的頻譜.從圖6(a)的頻譜對比可以看到:在不滿足奈奎斯特采樣定律時信號的頻譜會發(fā)生混疊,這樣的采樣信號在進(jìn)行最后遠(yuǎn)場區(qū)方向圖計算時會嚴(yán)重影響結(jié)果的準(zhǔn)確性.而在滿足奈奎斯特采樣定律時,采樣信號的采樣率越高,信號頻譜的幅值越高,這樣信號的分辨率會越高.從圖6(b)可以看出,在采樣率為10 GHz(最大頻率的2倍,滿足奈奎斯特采樣定律的最小采樣率)時信號波形基本沒有發(fā)生變化,只是幅值有所變化,而在采樣率繼續(xù)降低后,信號的波形發(fā)生了變化,這樣會丟失很多信息,也對應(yīng)了圖6(a)中頻譜混迭丟失頻域信息的現(xiàn)象.

    圖6(c)給出了根據(jù)不同采樣率采集到的信號計算得到的3 GHz頻點的E面方向圖. 可以看出在采樣率為5 GHz時,信號從主瓣開始就出現(xiàn)了明顯的偏差,在采樣率為10 GHz時副瓣電平的誤差大概為0.7 dB,在采樣率為20 GHz時副瓣電平的誤差在0.3 dB以下.所有計算結(jié)果都包含了探頭位置誤差等誤差,計算結(jié)果已經(jīng)針對信號源穩(wěn)定度誤差進(jìn)行了修正.5 GHz采樣率的計算結(jié)果出現(xiàn)比較大誤差的原因是因為信號的頻譜出現(xiàn)了混迭,信號的頻域不是真實的頻譜,信號頻譜幅值較低,導(dǎo)致接收信號的信噪比很低,從而導(dǎo)致了結(jié)果出現(xiàn)明顯的誤差.10 GHz采樣率的計算結(jié)果與20 GHz采樣率的計算結(jié)果相比誤差較大,在實際測試中不能被接受,導(dǎo)致10 GHz采樣率計算結(jié)果的誤差的主要原因是接收機(jī)為數(shù)字采樣示波器,在進(jìn)行采樣時示波器的采樣率并不能完全保證精確達(dá)到要求的采樣率,所以采樣率在滿足奈奎斯特采樣定律的下限時,有可能實測信號中的采樣點沒有滿足采樣率,從而導(dǎo)致計算結(jié)果出現(xiàn)誤差.

    當(dāng)測試過程中的時域采樣間隔Δt發(fā)生漂移時,也會導(dǎo)致最終的測試結(jié)果存在誤差.這個漂移誤差就是第二類時間采樣間隔誤差項.采樣示波器在進(jìn)行采樣時,信號采樣間隔為固定值,但是實際采樣間隔有一定誤差,這樣會導(dǎo)致采樣信號產(chǎn)生誤差,進(jìn)而影響最后的測試結(jié)果.這類誤差對測試結(jié)果的影響體現(xiàn)在對信號進(jìn)行頻域計算時,需要對時域信號進(jìn)行離散傅里葉變換(Discrete Fourier Transform,DFT),采樣點間隔和對應(yīng)采樣數(shù)值決定了頻域信號的幅值相位,采樣示波器的采樣點間隔誤差會導(dǎo)致采樣信號幅值相位的錯誤,進(jìn)而導(dǎo)致頻域結(jié)果的誤差.由于信號的頻域信息是通過傅里葉變換得到的,時間點對應(yīng)頻域上的頻點,時間采樣間隔誤差在頻域上會造成在對應(yīng)頻點處的頻譜信息的誤差,影響時域信號的頻域信息.第二類誤差屬于系統(tǒng)的隨機(jī)誤差,可以參照類似頻域誤差項進(jìn)行測試得到誤差導(dǎo)致的不確定度,在采樣示波器靈敏度很高時甚至可以忽略不計.

    在實際測試中,對時間采樣間隔即信號采樣率的選取并非越高越好,上面的計算是在沒有噪聲等干擾信號的情況下得到的,在實際測試中,當(dāng)信號長度一定時,采樣率越高,采樣信號中的噪聲對正確的采樣信號的影響會越嚴(yán)重,同時第二類時間采樣間隔誤差對信號的影響也會越明顯,因此時間采樣間隔的選擇需要綜合考慮儀器的性能以及采樣信號的時間長度.

    2.4 采樣時間長度誤差

    時域近場測試最后的一項誤差就是采樣時間長度誤差.因為時域測試的信號是一個連續(xù)信號,不同于頻域的點頻采樣,時域采樣信號需要完整地將信號采集,就需要一定的信號采集時間,采集時間過長,會將下一個周期的采樣信號采集進(jìn)來,而采集時間過短則會無法采集到完整信號波形.所以采樣時間長度誤差的實質(zhì)是采樣時間長度的上限和下限對采樣信號造成的影響.

    采樣時間長度的上限就是前面所說的采集到下一周期信號的第一個信號點,在這個長度之內(nèi)的采樣信號時間長度理論上來說都是可以的.但是在實際測試中待測天線的輻射信號長度是一定的,采樣時間長度越長,采集的信號的數(shù)據(jù)越大,會影響計算效率,采樣的結(jié)果也會包含越多的系統(tǒng)噪聲,在計算遠(yuǎn)場區(qū)方向圖時會影響計算結(jié)果的準(zhǔn)確性,所以需要根據(jù)采樣信號的信噪比來選擇時間的最長采樣長度.采樣時間長度的下限就是從開始采樣到將待測天線的輻射信號完全采樣完畢的時間,如果采樣時間長度過短,會導(dǎo)致采樣信號失真,對最終結(jié)果的準(zhǔn)確性造成影響.

    圖7模擬了采樣到兩個周期信號時間采樣長度上限和下限長度的選取,三條線分別表示信號的三個時間截斷點,截斷點后的信號不再采樣,最左側(cè)折線表示時間采樣長度的下限值,即本周期內(nèi)截斷時間點后的信號為零;最右側(cè)點狀線表示采樣時間長度的上限值,即采樣進(jìn)入下一周期,信號不再為零;中間點折線代表的是考慮實際測試中噪聲存在情況下采樣長度,處于采樣時間長度上下限之間.

    圖7 不同采樣長度示意圖

    在時域測試中用來控制采樣時間長度的方法一般是采用“時間門”技術(shù),即對采樣進(jìn)行時間上的截斷,只保留截斷時間內(nèi)的信號,其他時間點上的信號不再進(jìn)行計算.在實際測試中出于數(shù)據(jù)處理方面的考慮,將時間截斷內(nèi)的信號進(jìn)行保留,時間截斷外的信號置零,這樣采樣信號的長度統(tǒng)一同時去掉了大量的系統(tǒng)噪聲.通過合理地對信號進(jìn)行時間上的截斷,可以有效地降低反射信號和系統(tǒng)噪聲對測試的影響,但是將信號進(jìn)行截斷也會對信號造成一定影響,導(dǎo)致信號頻譜的缺失,進(jìn)而影響測試的精度.

    下面給出利用不同長度的時間門對同一個接收信號進(jìn)行截斷,將截斷后的信號在頻域進(jìn)行分析,給出時間采樣長度誤差對測試的影響.為了避免實際測試中噪聲對測試結(jié)果的影響,只單純考慮不合理的時間截斷對采樣信號造成的影響,這里采用軟件仿真的形式模擬對S波段標(biāo)準(zhǔn)喇叭在近場進(jìn)行采樣.激勵信號采用圖2(a)中高斯調(diào)制源.

    如圖8(a)所示,采樣信號是一個持續(xù)40 ns的信號,分別利用長度為3 ns、5 ns(去除天線與探頭之間多重反射))、10 ns(信號幅值趨于穩(wěn)定)、15 ns(信號幅值穩(wěn)定)、20 ns(信號幅值極小可以近似忽略不計)的時間門進(jìn)行截斷,時間門外的信號全部填充為0.圖8(b)給出了不同采樣時間長度對信號進(jìn)行截斷后計算得到的在3 GHz頻點的E面遠(yuǎn)場區(qū)方向圖,圖8(c)為所有方向圖與仿真方向圖差值的局部放大圖.

    由圖8(b)可以看到:采樣長度為3 ns的信號計算得到的遠(yuǎn)場區(qū)方向圖的副瓣明顯與仿真結(jié)果不符,最大差值達(dá)到了2.8 dBm,采樣長度為5 ns和10 ns的信號計算得到的遠(yuǎn)場區(qū)方向圖與仿真結(jié)果較為擬合,副瓣差值最大為1.5 dBm,而采樣長度為20 ns和40 ns的信號對應(yīng)的方向圖副瓣差值最大值為0.4 dBm.由上面的仿真計算結(jié)果可以看到,如果采樣時間過短會導(dǎo)致計算結(jié)果產(chǎn)生嚴(yán)重的誤差,而采樣時間長度應(yīng)該為截斷點外的采樣信號基本為零或者可忽略不計時的信號長度.

    圖9給出了實際測試中利用不同時間采樣長度得到的計算結(jié)果.圖9(a)給出了時間門長度分別為40 ns(去除多重反射)、45 ns(基本完整信號)、95 ns(全部信號)的信號截取示意圖.圖9(b)給出了截斷后信號計算得到的3 GHz的E面方向圖的對比結(jié)果,圖9(c)給出了所有方向圖與仿真方向圖差值的局部放大圖.

    (a) 不同時間長度截取信號示意圖

    (b) 遠(yuǎn)場方向圖 (c) 方向圖差值局部放大圖圖8 時間采樣長度計算結(jié)果

    (a) 不同時間長度截取信號示意圖

    (b) 遠(yuǎn)場方向圖 (c) 差值局部放大圖圖9 時間采樣長度實測計算結(jié)果

    由圖9(b)可以看到,采樣長度為45 ns的信號計算得到的結(jié)果與仿真方向圖的結(jié)果比較吻合,副瓣電平誤差在0.4 dB左右,而采樣時間過短(40 ns)或過長(95 ns)的計算結(jié)果與仿真結(jié)果的誤差都要大于45 ns長度的信號計算結(jié)果,誤差分別在1.2 dB和0.9 dB左右.這是因為采樣時間過短,信號信息丟失,與仿真結(jié)果一致;采樣時間過長會因為過多噪聲進(jìn)入數(shù)據(jù)計算過程,導(dǎo)致計算出現(xiàn)較大誤差,因此在實際測試中時間采樣長度應(yīng)盡量選取完整信號長度,避免因為信號采樣長度過短或者過長導(dǎo)致結(jié)果出現(xiàn)較大的誤差.

    3 結(jié) 論

    本文通過參考頻域近場測試中誤差項的分類及分析過程,給出了時域近場測試技術(shù)在具有頻域測試技術(shù)的誤差項外,還具有的四個獨有誤差項:探頭調(diào)制誤差、信號源穩(wěn)定度誤差、時間采樣間隔誤差、時間采樣長度誤差.在給出這四項獨有誤差項后,分別在機(jī)理上給出了誤差產(chǎn)生的原因及誤差對測試結(jié)果造成的影響,并通過仿真和實測的方式給出了在理想情況下的結(jié)果和包含誤差項時的結(jié)果的對比.下一步工作是在明確誤差項后對各個誤差項進(jìn)行定量分析并進(jìn)行誤差修正,給出誤差不確定度分析.

    [1] YAGHJIAN D. Upper-bound errors in far-field antenna parameters determined from planar near-field measurements, part 1: analysis[S]. Washington D. C.: Natational Bureau Stand, Tech Note 667, 1975.

    [2] NEWELL A C. Error analysis techniques for planar near-field measurements[J]. IEEE transactions on antennas and propagation, 1988, 36(6): 754-768.

    [3] IEEE Recommended practice for near-field antenna measurements[S/OL]. IEEE 1720-2012, 2012.[2017-01-10]. IEEE Recommended practice for near-field antenna measurements

    [4] BUCCI O M, MIGLIORE M D. A new method for avoiding the truncation error in near-field antennas measurements[J]. IEEE transactions on antennas and propagation, 2006, 54(10): 2940-2952.

    [5] KIM K T. Truncation-error reduction in 2D cylindrical/spherical near-field scanning[J]. IEEE transactions on antennas and propagation, 2010, 58 (6): 2153-2158.

    [6] CANO-FACILA F J, PIVNENKO S, SIERRA-CASTANER M. Reduction of truncation errors in planar, cylindrical, and partial spherical near-field antenna measurements[J]. International journal of antennas and propagation, 2012, 42(6): 1-19.

    [7] HANSEN T B, YAGHJIAN A D. Planar near-field scanning in the time domain 1:formulation[J]. IEEE transactions on antennas and propagation, 1994, 42(9): 1280-1291.

    [8] HANSEN T B, YAGHJIAN A D. Planar near-field scanning in the time-domain part 2: sampling theorems and computation schemes[J]. IEEE transactions on antennas and propagation, 1994, 42(9): 1292-1300.

    [9] HANSEN T B, YAGHJIAN A D. Formulation of probe-corrected planar near-field scanning in the time domain[J]. IEEE transactions on antennas and propagation, 1995, 43(6): 569-584.

    [10]劉超, 薛正輝, 高本慶, 等. 時域近場測量采樣平面選擇分析[J]. 電波科學(xué)學(xué)報, 2001, 15(4): 512-516.

    LIU C, XUE Z H, GAO B Q, et al. The analysis and selection of sampling plane in time-domain near-field measurement[J]. Chinese journal of radio science, 2001, 15(4): 512-516. (in Chinese)

    [11]WANG N, XUE Z H, YANG S M, et al. Antenna time domain planar near field measurement system[J]. International journal on wireless and optical communications, 2006, 3(2): 1-7.

    [12]薛正輝, 樓世平, 楊仕明, 等.“時間窗”對天線時域平面近場測試結(jié)果的影響[J]. 電波科學(xué)學(xué)報, 2007 22(1): 158-165.

    XUE Z H, LOU S P, YANG S M, et al. Effect of time-gate on antenna planar near-field measurement in time domain[J]. Chinese journal of radio science, 2007, 22(1): 158-165. (in Chinese)

    [13]GUY A E,VANDENBOSCH. Radiators in time domain-part I: electric, magnetic, and radiated energies[J]. IEEE transactions on antennas and propagation, 2013, 61(8): 3995-4003.

    [14]吳洋, 薛正輝, 任武, 等. 時域平面近場散射測量研究[J]. 電波科學(xué)學(xué)報, 2015, 30(2): 351-356.

    WU Y, XUE Z H, REN W, et al. Time domain planar near field scattering measurement[J]. Chinese journal of radio science, 2015, 30(2): 351-356. (in Chinese)

    [15]閆潤卿, 李英惠. 微波技術(shù)基礎(chǔ)[M]. 3版. 北京: 北京理工大學(xué)出版社, 2004: 63-77.

    曹猛 (1986—),男(蒙古族),內(nèi)蒙古人,北京理工大學(xué)電磁場微波技術(shù)專業(yè)在讀博士,主要從事天線近場測試方向研究.

    薛正輝 (1970—),男,北京人,北京理工大學(xué)信息與電子學(xué)院副教授,主要從事陣列天線及天線近場測試方向研究.

    任武 (1976—),男,山西人,北京理工大學(xué)信息與電子學(xué)院副教授,主要從事近場測試和電磁計算方向研究.

    Error analysis on time domain planar near-field antenna measurement

    CAO Meng XUE Zhenghui REN Wu LI Weiming ZHU Ruoqing CAI Hongwei

    (BeijingInstituteofTechnology,Beijing100081,China)

    Due to less researches on the error terms, the uncertainty analysis of the test results in time domain near-field antenna measurement remains uncompleted. To solve this problem, this paper presents four error terms which are ignored or inexistent in frequency domain near-field antenna measurement: probe modulation error, source stability error, time sampling interval error and time sampling length error, and the mechanisms of these errors are discussed. Finally, influence of the errors on the experimental results is present by simulation and test after the error terms are given.

    time domain; near field measurement; error analysis;uncertainty analysis

    2017-01-10

    國家自然科學(xué)基金(No.61971003)

    10.13443/j.cjors.2017011002

    TN82

    A

    1005-0388(2017)01-0112-09

    聯(lián)系人: 薛正輝 E-mail:zhxue@bit.edu.cn

    曹猛,薛正輝,任武,等. 天線時域平面近場測試的誤差分析[J]. 電波科學(xué)學(xué)報,2017,32(1):112-120.

    CAO M,XUE Z H,REN W,et al. Error analysis on time domain planar near-field antenna measurement[J]. Chinese journal of radio science,2017,32(1):112-120. (in Chinese). DOI: 10.13443/j.cjors.2017011002

    猜你喜歡
    信號源頻域時域
    一種基于可編程邏輯器件的多功能信號源設(shè)計
    基于時域信號的三電平逆變器復(fù)合故障診斷
    頻域稀疏毫米波人體安檢成像處理和快速成像稀疏陣列設(shè)計
    聚焦4K視頻播放展望未來信號源發(fā)展
    基于極大似然準(zhǔn)則與滾動時域估計的自適應(yīng)UKF算法
    基于改進(jìn)Radon-Wigner變換的目標(biāo)和拖曳式誘餌頻域分離
    基于時域逆濾波的寬帶脈沖聲生成技術(shù)
    發(fā)射機(jī)信號源的自動處理和控制系統(tǒng)
    一種基于頻域的QPSK窄帶干擾抑制算法
    基于DDS的PCM數(shù)字信號源設(shè)計與實現(xiàn)
    電測與儀表(2015年8期)2015-04-09 11:50:18
    曰老女人黄片| 午夜影院在线不卡| 日韩熟女老妇一区二区性免费视频| 国产女主播在线喷水免费视频网站| 美女主播在线视频| 中文字幕av电影在线播放| 精品国产超薄肉色丝袜足j| h视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲人成电影观看| 美女xxoo啪啪120秒动态图| av不卡在线播放| 久久人人97超碰香蕉20202| 免费在线观看完整版高清| 久久99一区二区三区| 亚洲国产av新网站| 少妇猛男粗大的猛烈进出视频| 亚洲精品在线美女| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 久久久精品国产亚洲av高清涩受| 亚洲欧美一区二区三区久久| 亚洲图色成人| 波野结衣二区三区在线| 日本wwww免费看| 9色porny在线观看| 免费黄色在线免费观看| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 亚洲国产精品一区三区| 性色av一级| 考比视频在线观看| 亚洲av中文av极速乱| 又粗又硬又长又爽又黄的视频| 91精品伊人久久大香线蕉| 在线观看www视频免费| 精品国产一区二区三区四区第35| 久久毛片免费看一区二区三区| 永久免费av网站大全| 日韩大片免费观看网站| 亚洲精品国产av成人精品| 亚洲伊人色综图| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 咕卡用的链子| 青春草视频在线免费观看| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 高清不卡的av网站| 九九爱精品视频在线观看| kizo精华| 亚洲av国产av综合av卡| 亚洲欧洲精品一区二区精品久久久 | 久久久精品国产亚洲av高清涩受| 午夜91福利影院| 亚洲精品国产av蜜桃| 欧美日本中文国产一区发布| 搡女人真爽免费视频火全软件| 久久久久久久精品精品| 妹子高潮喷水视频| 1024香蕉在线观看| 国产熟女午夜一区二区三区| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 亚洲欧美清纯卡通| 午夜福利乱码中文字幕| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久| 青春草国产在线视频| 国产不卡av网站在线观看| 男女边摸边吃奶| 伦理电影免费视频| 啦啦啦啦在线视频资源| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 午夜91福利影院| 丝袜喷水一区| 高清黄色对白视频在线免费看| 欧美精品国产亚洲| 国产精品国产三级国产专区5o| 日韩在线高清观看一区二区三区| 观看av在线不卡| 中文字幕av电影在线播放| 韩国精品一区二区三区| 色网站视频免费| 女人精品久久久久毛片| 在线免费观看不下载黄p国产| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 亚洲,一卡二卡三卡| 男人舔女人的私密视频| 永久网站在线| 亚洲内射少妇av| 欧美日韩av久久| 赤兔流量卡办理| 超色免费av| 人人澡人人妻人| 香蕉精品网在线| 美女高潮到喷水免费观看| 精品国产一区二区久久| 一本久久精品| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| xxxhd国产人妻xxx| 亚洲第一av免费看| 午夜日本视频在线| 亚洲国产欧美网| 国产亚洲av片在线观看秒播厂| 午夜福利在线观看免费完整高清在| 777米奇影视久久| 男人爽女人下面视频在线观看| 一区福利在线观看| 免费在线观看黄色视频的| 9191精品国产免费久久| 美女中出高潮动态图| 日韩一本色道免费dvd| 美女xxoo啪啪120秒动态图| 18禁动态无遮挡网站| 久久精品人人爽人人爽视色| 国产精品亚洲av一区麻豆 | 天天影视国产精品| 成人手机av| 一区二区三区四区激情视频| 久久精品国产鲁丝片午夜精品| 精品国产乱码久久久久久男人| 高清av免费在线| 国产日韩欧美视频二区| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 激情视频va一区二区三区| 免费大片黄手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 亚洲第一青青草原| 国产成人免费观看mmmm| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 亚洲欧洲日产国产| 激情视频va一区二区三区| 久久久久久久久久久免费av| 色哟哟·www| 亚洲三区欧美一区| 国产有黄有色有爽视频| 观看美女的网站| www.自偷自拍.com| 久久99一区二区三区| 中国国产av一级| 久久人人97超碰香蕉20202| 永久网站在线| 高清不卡的av网站| 久久毛片免费看一区二区三区| 观看av在线不卡| 婷婷色综合www| 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 人妻系列 视频| 欧美激情极品国产一区二区三区| 99久久中文字幕三级久久日本| 国产片特级美女逼逼视频| 亚洲男人天堂网一区| 极品人妻少妇av视频| 女性被躁到高潮视频| 国产又色又爽无遮挡免| 国产一区二区在线观看av| 女性被躁到高潮视频| 亚洲,欧美,日韩| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 岛国毛片在线播放| 色哟哟·www| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| 9191精品国产免费久久| 人人妻人人爽人人添夜夜欢视频| 久久久久久伊人网av| 亚洲一区中文字幕在线| 久久女婷五月综合色啪小说| 中文字幕最新亚洲高清| 高清在线视频一区二区三区| 汤姆久久久久久久影院中文字幕| 最近手机中文字幕大全| 国产探花极品一区二区| 在线观看三级黄色| 久久精品久久久久久久性| 亚洲成人av在线免费| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 精品国产露脸久久av麻豆| 欧美精品av麻豆av| 午夜福利视频在线观看免费| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 日韩一区二区视频免费看| 午夜av观看不卡| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| 亚洲精品国产一区二区精华液| 亚洲成人一二三区av| 美女脱内裤让男人舔精品视频| 一级毛片电影观看| 精品亚洲成a人片在线观看| 男女边摸边吃奶| 色播在线永久视频| 另类亚洲欧美激情| 成人国产av品久久久| 一个人免费看片子| 欧美日韩精品成人综合77777| 欧美人与性动交α欧美软件| 黄色配什么色好看| 国产视频首页在线观看| 精品亚洲成a人片在线观看| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 波野结衣二区三区在线| 观看美女的网站| 亚洲第一av免费看| 亚洲综合色惰| 国产精品久久久久久久久免| 亚洲精品日韩在线中文字幕| 女性被躁到高潮视频| 九草在线视频观看| 国产视频首页在线观看| 丁香六月天网| 国产极品粉嫩免费观看在线| 国产乱来视频区| 99国产综合亚洲精品| av天堂久久9| 亚洲少妇的诱惑av| 美女主播在线视频| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人 | 叶爱在线成人免费视频播放| 精品少妇久久久久久888优播| 欧美在线黄色| 美女国产视频在线观看| 成年av动漫网址| 汤姆久久久久久久影院中文字幕| 久久久久精品性色| 国产精品.久久久| √禁漫天堂资源中文www| 99久久人妻综合| 午夜日本视频在线| 久久久久精品性色| 国产成人精品久久久久久| 日本av手机在线免费观看| 亚洲三级黄色毛片| 亚洲av.av天堂| 韩国高清视频一区二区三区| 精品福利永久在线观看| 婷婷色综合www| 国产欧美亚洲国产| 天堂8中文在线网| 国产日韩欧美在线精品| 亚洲国产av影院在线观看| 99热全是精品| 男女啪啪激烈高潮av片| 不卡av一区二区三区| 欧美人与善性xxx| 大码成人一级视频| av在线app专区| 中文欧美无线码| www日本在线高清视频| 免费大片黄手机在线观看| 国产人伦9x9x在线观看 | 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 欧美少妇被猛烈插入视频| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 咕卡用的链子| 亚洲人成77777在线视频| 久久综合国产亚洲精品| 亚洲第一青青草原| 久久久久人妻精品一区果冻| 另类亚洲欧美激情| 欧美另类一区| 日韩电影二区| 国产一区亚洲一区在线观看| av在线app专区| 欧美bdsm另类| 久久人人爽人人片av| 黄频高清免费视频| 一区二区三区乱码不卡18| 黄色一级大片看看| 国精品久久久久久国模美| a级片在线免费高清观看视频| 国产一区亚洲一区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区免费观看| 免费黄网站久久成人精品| 91aial.com中文字幕在线观看| 水蜜桃什么品种好| 天天操日日干夜夜撸| 一本大道久久a久久精品| 看免费成人av毛片| 午夜免费鲁丝| 不卡视频在线观看欧美| 亚洲情色 制服丝袜| h视频一区二区三区| 可以免费在线观看a视频的电影网站 | 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 极品少妇高潮喷水抽搐| 搡女人真爽免费视频火全软件| 国产一级毛片在线| 亚洲美女黄色视频免费看| 国产成人aa在线观看| 国产成人精品久久久久久| 久久精品国产综合久久久| 日韩,欧美,国产一区二区三区| 伦理电影免费视频| 亚洲精华国产精华液的使用体验| 国产精品 欧美亚洲| 国产色婷婷99| 一边亲一边摸免费视频| tube8黄色片| 美女国产视频在线观看| 免费黄网站久久成人精品| 欧美人与性动交α欧美精品济南到 | 国产av一区二区精品久久| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 搡女人真爽免费视频火全软件| 欧美 日韩 精品 国产| 亚洲美女黄色视频免费看| 亚洲三区欧美一区| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 免费人妻精品一区二区三区视频| 性色av一级| 亚洲人成电影观看| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看 | 精品人妻在线不人妻| 国产精品人妻久久久影院| 国产乱人偷精品视频| 久久精品国产自在天天线| 精品国产超薄肉色丝袜足j| 超色免费av| 欧美成人午夜精品| 国产精品无大码| 少妇熟女欧美另类| 欧美亚洲 丝袜 人妻 在线| 欧美精品亚洲一区二区| 天天躁夜夜躁狠狠久久av| 欧美国产精品va在线观看不卡| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| videosex国产| 大片免费播放器 马上看| 看十八女毛片水多多多| 精品少妇内射三级| 波野结衣二区三区在线| 国语对白做爰xxxⅹ性视频网站| 成人亚洲精品一区在线观看| 精品少妇内射三级| 精品国产露脸久久av麻豆| 咕卡用的链子| 寂寞人妻少妇视频99o| 精品少妇内射三级| 久久国产精品大桥未久av| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色综合www| 中文字幕人妻丝袜制服| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 热re99久久国产66热| 国产精品一区二区在线观看99| 亚洲婷婷狠狠爱综合网| 99精国产麻豆久久婷婷| 久久狼人影院| 成人黄色视频免费在线看| 性色av一级| 国产精品一国产av| 18禁动态无遮挡网站| 久久精品久久久久久噜噜老黄| 国产精品蜜桃在线观看| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃| 少妇人妻久久综合中文| 久久久国产欧美日韩av| 大码成人一级视频| 少妇被粗大的猛进出69影院| 青春草亚洲视频在线观看| 午夜福利,免费看| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区| 啦啦啦视频在线资源免费观看| 欧美激情 高清一区二区三区| 久久影院123| 黄片小视频在线播放| 青春草亚洲视频在线观看| 国产精品二区激情视频| 中文字幕av电影在线播放| 亚洲经典国产精华液单| 人妻人人澡人人爽人人| 边亲边吃奶的免费视频| 亚洲三区欧美一区| 99热国产这里只有精品6| 久久久久久久国产电影| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 国产色婷婷99| 搡老乐熟女国产| 欧美黄色片欧美黄色片| 一区二区三区四区激情视频| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频| 成人毛片60女人毛片免费| 一级a爱视频在线免费观看| 午夜日本视频在线| 国产精品蜜桃在线观看| 日日撸夜夜添| 日韩精品免费视频一区二区三区| 国产亚洲最大av| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 国产在线免费精品| 高清欧美精品videossex| 男女免费视频国产| 日韩一区二区三区影片| 免费在线观看黄色视频的| 极品少妇高潮喷水抽搐| 有码 亚洲区| 黄片小视频在线播放| 久久97久久精品| 亚洲成人av在线免费| 亚洲av免费高清在线观看| a级毛片在线看网站| 麻豆乱淫一区二区| 国产极品粉嫩免费观看在线| 国产精品麻豆人妻色哟哟久久| 一级片'在线观看视频| 成人午夜精彩视频在线观看| 人人澡人人妻人| 日韩熟女老妇一区二区性免费视频| 一区二区三区乱码不卡18| 成人毛片60女人毛片免费| 久久人人爽人人片av| 国产熟女午夜一区二区三区| 91成人精品电影| 啦啦啦在线观看免费高清www| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 成人亚洲欧美一区二区av| 久久久久网色| 超色免费av| 成年av动漫网址| 各种免费的搞黄视频| 一区福利在线观看| 精品少妇久久久久久888优播| 午夜福利在线免费观看网站| 在现免费观看毛片| 青草久久国产| 国产深夜福利视频在线观看| 高清av免费在线| 人妻一区二区av| 黄色毛片三级朝国网站| 免费观看av网站的网址| 人妻一区二区av| 黄色怎么调成土黄色| 免费大片黄手机在线观看| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 久久99蜜桃精品久久| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 久久精品国产鲁丝片午夜精品| 成人国语在线视频| 日韩一区二区视频免费看| 国产精品一区二区在线不卡| 人人妻人人爽人人添夜夜欢视频| 国产1区2区3区精品| 人人妻人人澡人人爽人人夜夜| 国产免费一区二区三区四区乱码| 亚洲国产精品一区二区三区在线| 精品少妇一区二区三区视频日本电影 | 国产精品麻豆人妻色哟哟久久| 日韩av免费高清视频| 欧美变态另类bdsm刘玥| 校园人妻丝袜中文字幕| 久久国产精品大桥未久av| 亚洲一区中文字幕在线| 一区二区三区精品91| 成人二区视频| 搡女人真爽免费视频火全软件| tube8黄色片| 国产精品 欧美亚洲| 深夜精品福利| 久久韩国三级中文字幕| 在线天堂最新版资源| 五月天丁香电影| 日韩一本色道免费dvd| 另类精品久久| 少妇人妻久久综合中文| 日韩精品免费视频一区二区三区| 9色porny在线观看| 亚洲成色77777| 在现免费观看毛片| 亚洲美女黄色视频免费看| 精品99又大又爽又粗少妇毛片| 国产一区亚洲一区在线观看| 久久精品熟女亚洲av麻豆精品| 最近中文字幕高清免费大全6| 久久人妻熟女aⅴ| 免费看av在线观看网站| 精品久久久久久电影网| 18+在线观看网站| 毛片一级片免费看久久久久| 黑丝袜美女国产一区| av国产久精品久网站免费入址| 国产有黄有色有爽视频| 丰满饥渴人妻一区二区三| 丝袜人妻中文字幕| 久久久久国产精品人妻一区二区| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 国产亚洲欧美精品永久| 日本黄色日本黄色录像| 日本欧美国产在线视频| 五月伊人婷婷丁香| 在线观看免费视频网站a站| 欧美日韩视频高清一区二区三区二| 国产免费现黄频在线看| 午夜激情av网站| 日本午夜av视频| 亚洲第一av免费看| 黄片播放在线免费| av.在线天堂| 亚洲欧美精品综合一区二区三区 | 国产日韩欧美视频二区| av免费在线看不卡| 宅男免费午夜| 性色avwww在线观看| 久久免费观看电影| 午夜精品国产一区二区电影| 亚洲av男天堂| 国产精品国产av在线观看| 精品少妇内射三级| 满18在线观看网站| 亚洲精品国产av蜜桃| √禁漫天堂资源中文www| 欧美日本中文国产一区发布| 国产精品久久久久久精品电影小说| 99热国产这里只有精品6| 人妻 亚洲 视频| 高清不卡的av网站| 欧美精品一区二区大全| 老熟女久久久| 成人18禁高潮啪啪吃奶动态图| 大陆偷拍与自拍| 久久久久久免费高清国产稀缺| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 人妻少妇偷人精品九色| 国产国语露脸激情在线看| 久久久欧美国产精品| 青青草视频在线视频观看| 免费女性裸体啪啪无遮挡网站| 黄色 视频免费看| 国产精品三级大全| 人人妻人人澡人人爽人人夜夜| 日韩一区二区三区影片| 日韩三级伦理在线观看| 精品人妻熟女毛片av久久网站| 下体分泌物呈黄色| 菩萨蛮人人尽说江南好唐韦庄| 欧美激情 高清一区二区三区| 日本欧美国产在线视频| 国产极品粉嫩免费观看在线| 亚洲视频免费观看视频| 亚洲四区av| 国产国语露脸激情在线看| 亚洲欧美成人精品一区二区| av不卡在线播放| 又大又黄又爽视频免费| 久久亚洲国产成人精品v| 热re99久久精品国产66热6| 一级片'在线观看视频| 人人妻人人澡人人爽人人夜夜| 青春草国产在线视频| xxx大片免费视频| 久久精品人人爽人人爽视色| 国产亚洲一区二区精品| 日韩av免费高清视频| 久久久久久久久久人人人人人人| 久久久久久免费高清国产稀缺| 日韩av免费高清视频| 黑丝袜美女国产一区| 国产成人欧美| 亚洲欧洲日产国产| 黑丝袜美女国产一区| 丝袜在线中文字幕| 男女国产视频网站| 熟女电影av网| 国产欧美日韩一区二区三区在线| 多毛熟女@视频| 免费女性裸体啪啪无遮挡网站| 天天躁夜夜躁狠狠躁躁| 久久热在线av| 成人毛片a级毛片在线播放|