• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association analysis revealed importance of dominance effects on days to silk of maize nested association mapping(NAM)population

    2017-05-19 07:40:56MONIRMdMamunZHUJun
    關(guān)鍵詞:巢式加性顯性

    MONIR Md.Mamun,ZHU Jun()

    Association analysis revealed importance of dominance effects on days to silk of maize nested association mapping(NAM)population

    MONIR Md.Mamun,ZHU Jun1*(Institute of Bioinformatics,Zhejiang University,Hangzhou 310058,China)

    SummaryFull model and multi-loci additive model were used to analyze the days to silk(DS,female flowering)of maize nested association mapping(NAM)population.Analysis with the full model revealed that small effects of additive, dominance,epistasis,and their environmental interactions of many loci controlled the DS of maize NAM population. Dominance related effects had large impacts on the trait.Estimated total heritability was 79.86%,whereas 50.52%was due to dominance related effects.Environmental specific genetic effects also revealed as imperative for DS,explained 27.31% phenotypic variations.The highly significant(-log10PEW>5)quantitative trait SNPs(QTSs)identified were 50 for full model, but 47 for additive model with low heritability(31.65%).Utilizing the association analysis results of DS,genotypes and total genetic effects of superior lines,superior hybrids were predicted that could be useful for future breeding program.

    genome-wide association study;maize;days to silk;dominance effects

    Flowering time is an important trait,measuring the adaption capability of plants to local environments[1-2]. The transition from vegetative growth to flowering by integrating different environmental prompts is crucial for plant reproductive success[3].Flowering time is considered as a major selection criterion in plant breeding[4].Maize is originated from Balsas teosinte (Zea maysssp.parviglumis)in the Mexican highlands (approximately 9 000 years ago),and has evolved to adapt in diverse ecological conditions[1].Dissection ofthe genetic mechanisms of maize flowering time is crucial for evolutionary analysis and future breeding programs.Several studies have been conducted to discover the underlying genetic architecture of flowering time of maize by using quantitative trait locus(QTL)mappingand genome-wideassociation study (GWAS)[1-2,5].

    Dominance and epistasis are important phenomena in quantitative genetics area.Complexity of the genetic architecture can be largely attributed to epistasis,which plays a significant role in heterosis, inbreeding depression,adaptation,reproductive isolation,and speciation[6].However,most of the GWAS of different organisms have been analyzed by ignoring the impacts of dominance,epistasis and environmental interaction.Ignoring the important factors could be a major cause of missing heritability of GWAS.Heterozygous genotypes are generally found with high proportion in random mating and others specially designed populations.However,in whole genome sequencing data with a large number of single nucleotide polymorphisms(SNPs),a small portion of heterozygote genotypes can be found in inbred lines of animals and crops that could have large impacts on phenotypic traits[7-8].In this study,an attempt was made to discover the impacts of heterozygous genotypes on days to silk(DS)of maize nested association mapping (NAM)population.Forthat,the fullmodelapproach with additive,dominance,epistasis,and their environmental interactions was analyzed to dissect genetic architecture of DS by usingQTXNetwork[9].Maize NAM population was constructed by only five-generation self-crossing within 25 diverse families[1,5,10].However,there were no heterozygous genotypes rather than a small portion of missing genotypes.The missing genotypes were replaced by heterozygote genotypes in this study.An additive model with only additive(a)and additive by environmental interactions(ae)was also analyzed for comparison study.Genotypes and total genetic effects of best line(BL),superior line(SL),and superior hybrid(SH)were arranged to observe the scope of improvements for future maize breeding.

    1 Materials and methods

    1.1 Genotype and phenotype data

    Maize nested association mapping(NAM) population derived in the United States(US-NAM)was used in this study,which was derived by crossing 25 diverse lines with B73 and then self-pollination for five generations[5,10].Days to silk(DS)were scored over nine environments.However,to get rid from computational complexity,data from four environments were analyzed.We downloaded the genotype and phenotype data sets from http://www.panzea.org/.

    1.2 Statistical analysis

    Newly developed approach for association mapping,implemented inQTXNetwork,was used for association mapping.The approach has two distinct parts:generalized multi-factor dimensionality reduction (GMDR)method to scan SNPs by 1D for main effects, 2D and 3D for epistasis interactions using module GMDR-GPU[11]ofQTXNetwork,and then association mapping was conducted on detected SNPs by using quantitative traits SNPs(QTS)module ofQTXNetwork.Two different models for association mapping were used in this study,called full genetic model and multiloci additive model.The full genetic model includes SNP loci effects(a,d,aa,ad,da,dd)as fixed; environment(e)and loci by environment interaction (ae,de,aae,ade,dae,dde)as random effects for four environments(1 forE1,2 forE2,3 forE4,and 4 forE9).The statistical approaches of full and additive models[12]were used for conducting association analyses.

    Henderson methodⅢ[13]was used to calculate theF-statistic test for association analysis.A total of 2 000 times permutation was conducted for calculating the criticalF-value to control the experiment-wise typeⅠerror(αEW<0.05).Parameters were estimated by using the MCMC(Markov chain Monte Carlo)algorithm with 20 000 Gibbs sample iterations[9,14-16].Experiment-wise criticalPvalue(PEW-value)wascalculated bycontrolling experiment-wise typeⅠerror(PEW<0.05).

    2 Results

    2.1 Estimated heritability using full model

    Days to silk(DS)of maize NAM population is highly heritable trait[5].Estimated total heritability by using full model approach was 79.86%for DS,mostly due to dominance and dominance related epistasis effects(Table 1),referring the importance of analyzing dominance-related effects even ifin inbred lines.Recentstudy showsthatenvironmental specific effects are relatively unimportant for leaf orientation traits of maize NAM population,contributing to only 4.98%-7.32%phenotypic variation[7].Unlike the maize leaf orientation traits,large amount of heritability was estimated due to environmental specific effectswhich refer the genetic effects varied acrossdifferentenvironments.

    Table 1 Estimated heritability(%)of genetic effects for days to silk using full model and additive model

    2.2 Genetic architecture of DS

    Association analyses for DS identified multiple loci with different genetic effects.Full model approach identified total 50 highly significant(-log10PEW>5) QTSs(Fig.1,Table S1 available at http://www. zjujournals.com/agr/EN/article/showSupportInfo.do?id= 10459).The identified QTSs had 64 genetic main effects and 54 environmental specific effects. Therefore,environmental specific effects of QTSs play important roles in DS of NAM population.Despite of the low frequency of heterozygote genotypes of the identified loci(8.21%-9.24%for the loci which had dominant effects,and 3.51%-9.03%for the loci which had dominance related epistasis interaction),we observed large impacts of dominance related effects on DS;though only three QTSs had highly significant dominant effects,there were five pairs of QTSs with highly significant dominance related epistasis interactions(Table S1 available at http:// www.zjujournals.com/agr/EN/article/showSupportInfo. do?id=10459).Flowering time in plants results from interactive molecular pathways[17],and epistasis effects have been observed inArabidopsis[18]and rice[19].In this study,the full model identified total 24 pairs of highly significant epistasis effects for DS of NAM population. In converse to self-fertilizing crop species,small effects of many loci were reported to control the flowering time using QTL mapping of maize NAM population[5]. Similar to previous QTL mapping of DS of NAM population,association analysis with the full model estimated small genetic effects of DS QTSs.The largest positive individual effect of QTS(S10_ 113745101)had a dominant effect of only 1.43 days (-log10PEW=47.3)that could explain 2.92%phenotypic variation.Again,the largest negative individual effect of QTS(S1_172281879)had an additive× environment 1(ae1)effect of-0.912 day(-log10PEW=51.5)that contributed to 0.85%phenotypic variation, though total additive effect of the QTS in environment 1(a+ae1)was only-0.559 day.Similar to individualgenetic effects of loci,estimated epistasis effects were also small.The largest epistasis effects of QTSs(S4_ 53677782 and S8_37237820)had a dominance× dominance(dd)effect of only 2.688 days(-log10PEW=22.3),which could explain 10.31%phenotypic variation.The identified QTS S3_159869611 had the largestpositive additiveeffect61.1),and the QTS S2_109001252 had the largest negative additive effect43.3).

    Fig.1 G×G p lot of detected significant QTSs(PEW<0.05)for DS by using fu ll model(DS_ADI)and additive model (DS_A)app roaches

    2.3 Candidate gene annotation

    Candidate genes corresponding to DS QTSs were collected from Gramene database(http://ensembl. gramene.org/Zea_mays/).Functions of candidate genes were searched in the UniProt(http://www.uniprot.org/ uniprot/)with the accession number of the genes collected from Gramene database.Descriptions of some of the candidate genes were collected from NCBI gene database.Moreover,the functions of candidate genes were collected via literature search in Google. Functions of some candidate genes were tabulated in supplementary Table2(Table S2 availableathttp://www. zjujournals.com/agr/EN/article/showSupportInfo.do?id= 10459).We observed that some of the candidate genes were members of well-known gene families that have crucial functions in plant life.For example,QTS S1_ 172281879 is the near variant of C3HC4-type RING finger family protein geneGRMZM2G116714.The C3HC4-type RING finger genes play important roles in various physiological processes including growth, development,and stress responses[20].QTS S3_ 54472637 is the variant of MYB transcription factor protein geneGRMZM2G051256.The MYB transcription factor proteins play regulatory roles in development processesand defenseresponsesin plants[21].Functions of most of the candidate genes are still unknown.

    2.4 Prediction of best line,superior line,and superior hybrid for DS

    Along with the provided association mapping results,best line(BL),superior line(SL),and superior hybrid(SH)can be predicted for DS that may help breeders for future breeding program(Table 2).Overall total genetic effect of the non-B73 allele homozygous (QQ)combinations was 2.25 days across environments, but variant from 0.20 to 4.18 days in four environments. Predicted total genetic effect forF1hybrid(1.95 days) was smaller than non-B73 allele homozygous(QQ) genotypes.

    Table 2 Prediction of total genetic effects of days to silk

    Maximum positive total genetic effect across environments was revealed for the line Z012E0020 (6.83 days)called as the positive best line(best line(+)),whereas environment specific positive best lines were Z008E0050(9.89 days)in environment 1,Z012E0124(9.72 days)in environment 2, Z007E0043(6.89 days)in environment 3,and Z012E0058(9.27 days)in environment 4(Table S3 available at http://www.zjujournals.com/agr/EN/article/ showSupportInfo.do?id=10459).Maximum negative total genetic effect across environments was revealed for the line Z019E0177(-5.72 days)called as negative best line(best line(-)),and its total genetic values were varied to(-1.87--8.56)days under four different environments.Environmental specific negative best lines were Z024E0182(-9.05 days)in environment 1,Z024E0114(-6.16 days)in environment 2, Z010E0020(-5.48 days)in environment 3,and Z024E0094(-8.69 days)in environment 4.Total genetic values of environmental specific best lines were largely varied,(-2.50--9.05)days for line Z024E0182,(-2.57--7.36)daysforline Z024E0114, (-2.11--5.48)days for line Z010E0020,and (-1.41--8.69)days for line Z024E0094.Therefore, there was no specific best line across the environments forDS.

    The predicted superior negative line(superior line(-))could provide insight for crop improvement along with the optimum homozygous genotypes(QQ,qq)combinations.Total overall genetic effect of the predicted superior line had-7.11 days,which was smaller than the existing best line(Z019E0177).

    Again,the total genetic effect of the negative superior hybrid,that exhausted the optimum combination of homozygous(QQ,qq)and heterozygous (Qq)genotypes had-11.80 days,which was 6.08 days earlier than the existing line Z019E0177,referring that the predicted superior hybrid has greater scope than the predicted superior line for further improvement. We tabulated optimum genotypes corresponding to loci of the predicted lines(Table S4 available at http://www. zjujournals.com/agr/EN/article/showSupportInfo.do?id= 10459)that could be helpful to breeders for further crop improvement.

    2.5 Association mapping with additive model

    Additive model identified 47 highly significant QTSs,among which 31 QTSs were also identified by full model(Fig.1).As like the full model,estimated effects from additive model were small.Estimated total heritability was 31.65%by using additive model approach that was less than half of the total heritability of full model(Table 1),illustrating the problem of missing heritability by using additive model. Therefore,ignoring dominant and epistasis interactions may have large impacts on under-estimating heritability ofcomplextraits.

    3 Discussion

    Role of heterozygous genotypes has been ignored in GWAS under the assumption that most of the genetic variations in animal and plant organisms are results of additive effects of multiple loci. Environmental impacts were also ignored or adjusted by subtracting their effects from phenotypic data. However,ignorance or adjustments of important factors can result in missing information about the genetic architecture of complex traits.Full model approach was designed to estimate or predict the effects of different types of factors(additive, dominance,epistasis,and their environmental interactions)that can provide more information about the underlying mechanisms of complex traits.In this study,maize days to silk was analyzed by using full model approach,which revealed new insight about this complex traits.DS is related with adaption of maize under various environments,a major criterion for selection breeding[1].We observed genetic effects of multiple loci varying under different environments. Estimated heritability of environmental specific effects was 27.31%.For full model analyses,dominance and dominance related epistasis interaction had large effects on DS.An additive model was also analyzed in this study.Association study with additive model approach had smaller heritability than the full model approach.Correlation between predicted genotypic values and phenotypes was very high for full model approach(r≈0.96),suggesting the analysis results can accurately predict the phenotypes.Epistasis effects were unimportant for DS in previous QTL mapping study[5].However,we observed large impact of epistasis effects on DS,contributing to around 49.37%of phenotypic variations(Table 1).This result showed concordance with the results observed inArabidopsis[18]and rice[19].

    By calculating the total genetic effects of lines, we observed that there was no specific line with large genetic effect across environments,rather than found that different lines had large effects under different environments.This result suggests that the maize flowering time is very sensitive to environments,and different environments need different combinations of genotypes for better performance.The predicted genotypes of SL and SH also suggest the same hypotheses that the superior genotypes of loci were different under different environments(Table S4).The predicted SL and SH had larger genetic effects than the best lines,suggesting the scope of further improvement for the maize days to silk with the predicted genotype combinations.

    [1]LI Y X,LI C,BRADBURY P J,et al.Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population.The Plant Journal: For Cell and Molecular Biology,2016,86(5):391-402.

    [2]XU J,LIU Y,LIU J,et al.The genetic architecture of floweringtime and photoperiod sensitivity in maize as revealed by QTL review and Meta analysis.Journal of Integrative Plant Biology, 2012,54(6):358-373.

    [3]GRILLO M A,LI C,HAMMOND M,et al.Genetic architecture of flowering time differentiation between locally adapted populations ofArabidopsis thaliana.The New Phytologist,2013, 197(4):1321-1331.

    [4]JUNG C,MULLER A E.Flowering time control and applications in plant breeding.Trends in Plant Science,2009,14(10):563-573.

    [5]BUCKLER E S,HOLLAND J B,BRADBURY P J,et al.The genetic architecture of maize flowering time.Science,2009,325 (5941):714-718.

    [6]YANG J,ZHU J.Methods for predicting superior genotypes under multiple environments based on QTL effects.Theoretical and Applied Genetics,2005,110(7):1268-1274.

    [7]MONIR M M.Comparing different genetic models and statistical approaches of GWAS for complex traits.Hangzhou:Zhejiang University,2016:44-64.

    [8]LIYUAN Z.Genetic association studies for complex traits of crops and linear-model-based multiple dimensionality reduction method developing.Hangzhou:Zhejiang University,2016:10-23.

    [9]ZHANG F T,ZHU Z H,TONG X R,et al.Mixed linear model approaches of association mapping for complex traits based on omics variants.Scientific Reports,2015,5:10298.

    [10]TIAN F,BRADBURY P J,BROWN P J,et al.Genome-wide association study of leaf architecture in the maize nested association mapping population.Nature Genetics,2011,43(2):159-162.

    [11]ZHU Z,TONG X,ZHU Z,et al.Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes.PloS One,2013,8(4):e61943.

    [12]MONIR M M,ZHU J.Comparing GWAS results of complex traits using full genetic model and additive models for revealing genetic architecture.Scientific Reports,2017,7:38600.

    [13]SEARLE S R,CASELLA G,MCCULLOCH C E.Variance Components.New York,USA:John Wiley&Sons,2009.

    [14]YANG J,ZHU J,WILLIAMS R W.Mapping the genetic architecture of complex traits in experimental populations.Bioinformatics,2007,23(12):1527-1536.

    [15]YANG J,HU C C,HU H,et al.QTLNetwork:Mapping and visualizing genetic architecture of complex traits in experimental populations.Bioinformatics,2008,24(5):721-723.

    [16]QI T,JIANG B,ZHU Z,et al.Mixed linear model approach for mapping quantitative trait loci underlying crop seed traits.Heredity,2014,113(3):224-232.

    [17]KOMEDA Y.Genetic regulation of time to flower inArabidopsis thaliana.Annual Review of Plant Biology,2004,55:521-535.

    [18]EL-LITHY M E,BENTSINK L,HANHART C J,et al.NewArabidopsisrecombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci.Genetics,2006,172(3):1867-1876.

    [19]UWATOKO N,ONISHI A,IKEDA Y,et al.Epistasis among the three major flowering time genes in rice:Coordinate changes of photoperiod sensitivity,basic vegetative growth and optimum photoperiod.Euphytica,2007,163(2):167-175.

    [20]MA K,XIAO J H,LI X H,et al.Sequence and expression analysis of the C3HC4-type RING finger gene family in rice.Gene,2009,444(1/2):33-45.

    [21]CHEN Y H,YANG X Y,HE K,et al.The MYB transcription factor superfamily ofArabidopsis:Expression analysis and phylogenetic comparison with the rice MYB family.Plant Molecular Biology,2006,60(1):107-124.

    關(guān)聯(lián)分析揭示顯性效應(yīng)對(duì)玉米巢式定位群體抽穗期的重要性(英文).

    馬姆·茂尼,朱軍*(浙江大學(xué)生物信息學(xué)研究所,杭州310058)

    采用關(guān)聯(lián)定位全模型和多位點(diǎn)加性模型,分析了玉米巢式關(guān)聯(lián)定位群體抽絲期的遺傳效應(yīng)。全模型關(guān)聯(lián)分析揭示,玉米抽絲期受微效多基因的加性、顯性、上位性及其環(huán)境互作控制,其中顯性效應(yīng)最為重要。在估算的總遺傳率(79.86%)中,與顯性效應(yīng)相關(guān)的遺傳率高達(dá)50.52%,其次是環(huán)境互作效應(yīng)的遺傳率(27.31%)。檢測(cè)到的極顯著(-log10PEW>5)數(shù)量性狀單核苷酸多態(tài)性位點(diǎn)數(shù)為全模型50個(gè)、加性模型47個(gè)(遺傳率=31.65%)。基于關(guān)聯(lián)分析玉米抽絲期的結(jié)果,預(yù)測(cè)了最優(yōu)自交系和最優(yōu)雜交組合的基因型組配方式及相應(yīng)的遺傳效應(yīng)值,可用于指導(dǎo)玉米群體優(yōu)異位點(diǎn)的精準(zhǔn)分子選擇。

    全基因組關(guān)聯(lián)分析;玉米;抽絲期;顯性效應(yīng)

    Q 348

    A

    10.3785/j.issn.1008-9209.2017.02.236

    浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2017,43(2):146-152

    Foundation item:Supported by the National Natural Science Foundation of China(No.31371250).

    *Corresponding author:ZHU Jun(http://orcid.org/0000-0002-8509-8304),E-mail:jzhu@zju.edu.cn

    Received:2017-02-23;Accepted:2017-03-13

    猜你喜歡
    巢式加性顯性
    ?2?4[u]-加性循環(huán)碼
    小鼠諾如病毒巢式PCR 檢測(cè)方法的建立及應(yīng)用
    企業(yè)家多重政治聯(lián)系與企業(yè)績(jī)效關(guān)系:超可加性、次可加性或不可加性
    企業(yè)家多重政治聯(lián)系與企業(yè)績(jī)效關(guān)系:超可加性、次可加性或不可加性
    顯性激勵(lì)與隱性激勵(lì)對(duì)管理績(jī)效的影響
    社會(huì)權(quán)顯性入憲之思考
    基于加性指標(biāo)的網(wǎng)絡(luò)斷層掃描的研究
    顯性的寫作,隱性的積累——淺談學(xué)生寫作動(dòng)力的激發(fā)和培養(yǎng)
    意識(shí)形態(tài)教育中的顯性灌輸與隱性滲透
    基于牙釉質(zhì)基因巢式PCR性別鑒定超微量DNA檢測(cè)方法的建立
    蜜桃久久精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 亚洲中文日韩欧美视频| 久久久久久久久中文| 亚洲第一区二区三区不卡| 婷婷色综合大香蕉| 俄罗斯特黄特色一大片| 午夜爱爱视频在线播放| av黄色大香蕉| 欧美高清成人免费视频www| 免费在线观看影片大全网站| 高清日韩中文字幕在线| 色精品久久人妻99蜜桃| 99热这里只有精品一区| 国产午夜精品论理片| 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 丰满的人妻完整版| 免费av毛片视频| 成人特级av手机在线观看| 嫩草影院入口| 欧美在线一区亚洲| 99riav亚洲国产免费| 国产麻豆成人av免费视频| 国产久久久一区二区三区| 波多野结衣巨乳人妻| 欧美三级亚洲精品| 亚洲自拍偷在线| 精品久久国产蜜桃| 免费看美女性在线毛片视频| 精品无人区乱码1区二区| 最近最新免费中文字幕在线| 一进一出抽搐动态| 直男gayav资源| 免费一级毛片在线播放高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 12—13女人毛片做爰片一| 国产午夜精品久久久久久一区二区三区 | 久久久久久久午夜电影| 亚洲精华国产精华精| 亚洲国产色片| 久久久久久久久久久丰满 | 久久精品人妻少妇| www.色视频.com| 国产伦人伦偷精品视频| bbb黄色大片| 99热这里只有是精品在线观看| 夜夜夜夜夜久久久久| 日本三级黄在线观看| 成人亚洲精品av一区二区| 成人欧美大片| av福利片在线观看| av中文乱码字幕在线| 一级a爱片免费观看的视频| 深夜精品福利| 综合色av麻豆| 99久久无色码亚洲精品果冻| 国产成人aa在线观看| 久久久久性生活片| 欧美国产日韩亚洲一区| 啦啦啦韩国在线观看视频| 国产精品不卡视频一区二区| 亚洲成av人片在线播放无| 久久久久久久久中文| 日韩大尺度精品在线看网址| 免费人成在线观看视频色| 国产色婷婷99| 成人一区二区视频在线观看| 中文字幕久久专区| 99久久精品一区二区三区| 波多野结衣巨乳人妻| 国产伦精品一区二区三区四那| 色综合婷婷激情| 国产欧美日韩精品一区二区| 99久久精品一区二区三区| 亚洲精华国产精华液的使用体验 | 欧美xxxx性猛交bbbb| 国产精品一区二区免费欧美| 欧美三级亚洲精品| 亚洲熟妇中文字幕五十中出| 久99久视频精品免费| 日日夜夜操网爽| 亚洲一区二区三区色噜噜| 日本精品一区二区三区蜜桃| 久9热在线精品视频| av专区在线播放| 中文字幕av成人在线电影| 淫秽高清视频在线观看| 女人被狂操c到高潮| 欧美绝顶高潮抽搐喷水| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 极品教师在线视频| 搞女人的毛片| 亚洲成人中文字幕在线播放| 99久久无色码亚洲精品果冻| 久久国产精品人妻蜜桃| 两个人的视频大全免费| 久久精品综合一区二区三区| 午夜激情欧美在线| 在线播放无遮挡| 人人妻,人人澡人人爽秒播| 免费看美女性在线毛片视频| 中文字幕免费在线视频6| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月| 欧美xxxx黑人xx丫x性爽| 久久久久久久亚洲中文字幕| 身体一侧抽搐| 久久久久久国产a免费观看| 99热6这里只有精品| 搞女人的毛片| 黄色女人牲交| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 欧美又色又爽又黄视频| av视频在线观看入口| 亚洲人成网站在线播| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 久久午夜亚洲精品久久| 欧美潮喷喷水| 人人妻人人澡欧美一区二区| 亚洲欧美日韩卡通动漫| 久久国产精品人妻蜜桃| 嫩草影视91久久| 亚洲性夜色夜夜综合| 久久草成人影院| 成年版毛片免费区| 搡老岳熟女国产| 色哟哟·www| 在线看三级毛片| 日日摸夜夜添夜夜添av毛片 | 国产久久久一区二区三区| 亚洲国产精品合色在线| 老熟妇乱子伦视频在线观看| 久久久久国内视频| 18禁裸乳无遮挡免费网站照片| 亚洲成人久久爱视频| 国产精品伦人一区二区| 久久人妻av系列| 国产精品不卡视频一区二区| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久 | 美女xxoo啪啪120秒动态图| 51国产日韩欧美| 91狼人影院| 精品久久久久久久久亚洲 | 亚洲精品亚洲一区二区| 一区二区三区四区激情视频 | 亚洲久久久久久中文字幕| 一区二区三区激情视频| 综合色av麻豆| 亚洲精品乱码久久久v下载方式| 一区二区三区激情视频| 黄色视频,在线免费观看| 国产精品久久电影中文字幕| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 欧美精品国产亚洲| 亚洲一区高清亚洲精品| 亚洲最大成人中文| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 亚洲va日本ⅴa欧美va伊人久久| 99久久精品热视频| 精品人妻熟女av久视频| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 一区二区三区四区激情视频 | 亚洲精品456在线播放app | 可以在线观看的亚洲视频| 国产色婷婷99| 97碰自拍视频| 啪啪无遮挡十八禁网站| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 欧美黑人巨大hd| 淫妇啪啪啪对白视频| 国产高清视频在线播放一区| 天美传媒精品一区二区| 精品一区二区三区av网在线观看| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 国产伦一二天堂av在线观看| 99热只有精品国产| 亚洲成人久久爱视频| 黄色一级大片看看| 国产一区二区激情短视频| 亚洲一区高清亚洲精品| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 精品日产1卡2卡| 身体一侧抽搐| 久久6这里有精品| 99热这里只有是精品50| 亚洲美女黄片视频| 久久国内精品自在自线图片| 欧美绝顶高潮抽搐喷水| 亚洲熟妇中文字幕五十中出| 91麻豆av在线| 午夜福利高清视频| 免费人成视频x8x8入口观看| 国产激情偷乱视频一区二区| 婷婷六月久久综合丁香| 精品无人区乱码1区二区| 欧美最新免费一区二区三区| 色综合站精品国产| 级片在线观看| 中文字幕av成人在线电影| 欧美黑人巨大hd| 赤兔流量卡办理| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| 真实男女啪啪啪动态图| 日本免费一区二区三区高清不卡| 色播亚洲综合网| 窝窝影院91人妻| 婷婷色综合大香蕉| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 国产成人福利小说| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| videossex国产| 成人精品一区二区免费| 婷婷六月久久综合丁香| 97超级碰碰碰精品色视频在线观看| .国产精品久久| 久久久久久大精品| 直男gayav资源| av在线观看视频网站免费| 亚洲欧美清纯卡通| 欧美人与善性xxx| 久久精品影院6| 蜜桃久久精品国产亚洲av| 嫩草影视91久久| 亚洲aⅴ乱码一区二区在线播放| 天堂影院成人在线观看| 亚洲成人中文字幕在线播放| 可以在线观看的亚洲视频| av天堂中文字幕网| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 国产av在哪里看| 国产91精品成人一区二区三区| 久久久久久久久久久丰满 | 欧美国产日韩亚洲一区| 国产成人影院久久av| 午夜福利在线观看吧| 国产亚洲av嫩草精品影院| 美女高潮的动态| 联通29元200g的流量卡| 日韩,欧美,国产一区二区三区 | 免费无遮挡裸体视频| 日本与韩国留学比较| 久久99热这里只有精品18| 久久亚洲真实| 麻豆国产av国片精品| 人妻丰满熟妇av一区二区三区| 在线观看免费视频日本深夜| 草草在线视频免费看| 午夜亚洲福利在线播放| 久99久视频精品免费| 国产精品久久电影中文字幕| 国产精品98久久久久久宅男小说| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 丰满的人妻完整版| 亚洲精品456在线播放app | 人妻久久中文字幕网| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频| 天天一区二区日本电影三级| 久久久久久久午夜电影| 嫩草影院精品99| 老女人水多毛片| 3wmmmm亚洲av在线观看| 一级黄片播放器| 亚洲国产高清在线一区二区三| av视频在线观看入口| 91在线观看av| 亚洲熟妇熟女久久| 99久久成人亚洲精品观看| 婷婷精品国产亚洲av在线| 日本欧美国产在线视频| 欧美日韩综合久久久久久 | 国产精品人妻久久久久久| 波多野结衣高清作品| 亚洲av电影不卡..在线观看| 自拍偷自拍亚洲精品老妇| 乱系列少妇在线播放| 亚洲第一区二区三区不卡| 一个人观看的视频www高清免费观看| 欧美日韩国产亚洲二区| 国产精品三级大全| 精品一区二区三区av网在线观看| 91麻豆精品激情在线观看国产| 亚洲精品456在线播放app | 国产精品永久免费网站| 国产午夜精品久久久久久一区二区三区 | 日本免费a在线| 免费在线观看日本一区| 五月玫瑰六月丁香| 九色国产91popny在线| 少妇丰满av| 久久久国产成人精品二区| 日本免费一区二区三区高清不卡| 久9热在线精品视频| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| 亚洲最大成人中文| 日韩欧美免费精品| 91在线观看av| 亚洲av日韩精品久久久久久密| 啦啦啦观看免费观看视频高清| 高清日韩中文字幕在线| 国产久久久一区二区三区| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类 | 一级黄片播放器| 亚洲中文字幕一区二区三区有码在线看| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影| 亚洲av熟女| 欧美日韩国产亚洲二区| av在线天堂中文字幕| 午夜免费男女啪啪视频观看 | 成人性生交大片免费视频hd| 悠悠久久av| 久久九九热精品免费| 中文亚洲av片在线观看爽| 欧美xxxx黑人xx丫x性爽| 亚洲av五月六月丁香网| av视频在线观看入口| 一个人看视频在线观看www免费| 俄罗斯特黄特色一大片| 亚洲无线观看免费| 中文字幕熟女人妻在线| 久久国产精品人妻蜜桃| 深夜a级毛片| 在线a可以看的网站| 婷婷六月久久综合丁香| 在线免费十八禁| 亚洲性久久影院| 一进一出好大好爽视频| 三级毛片av免费| 国产精品不卡视频一区二区| 国产蜜桃级精品一区二区三区| 精品久久久久久久末码| 尤物成人国产欧美一区二区三区| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 成人二区视频| 在线a可以看的网站| 亚洲国产欧美人成| 国产亚洲欧美98| 特级一级黄色大片| 免费av毛片视频| 简卡轻食公司| 久久久久国产精品人妻aⅴ院| 十八禁网站免费在线| 美女 人体艺术 gogo| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 18+在线观看网站| 91久久精品国产一区二区三区| 看黄色毛片网站| 亚洲国产欧美人成| 91在线观看av| 国产黄色小视频在线观看| 不卡视频在线观看欧美| а√天堂www在线а√下载| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 日韩精品中文字幕看吧| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| 久久久久国内视频| 色哟哟哟哟哟哟| 国产淫片久久久久久久久| 两个人的视频大全免费| 在线免费观看不下载黄p国产 | 日韩 亚洲 欧美在线| 97碰自拍视频| 久久久国产成人精品二区| 美女免费视频网站| 日本三级黄在线观看| 日日撸夜夜添| 欧美一级a爱片免费观看看| 少妇的逼好多水| 中文字幕高清在线视频| 露出奶头的视频| 国国产精品蜜臀av免费| 性色avwww在线观看| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 亚洲成人久久性| 51国产日韩欧美| 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 色在线成人网| 亚洲美女搞黄在线观看 | 最后的刺客免费高清国语| 在线a可以看的网站| 国产精华一区二区三区| 亚洲成人久久性| 少妇人妻精品综合一区二区 | 久久香蕉精品热| 男人的好看免费观看在线视频| 在线天堂最新版资源| 国产亚洲av嫩草精品影院| 12—13女人毛片做爰片一| 少妇人妻精品综合一区二区 | 亚洲国产日韩欧美精品在线观看| 精品乱码久久久久久99久播| 成人性生交大片免费视频hd| 亚洲欧美日韩高清专用| 亚洲av中文字字幕乱码综合| 一进一出好大好爽视频| 啦啦啦啦在线视频资源| 国产一区二区三区视频了| 国产精品国产三级国产av玫瑰| 久久精品国产99精品国产亚洲性色| 欧美最新免费一区二区三区| 九九热线精品视视频播放| 日韩欧美国产在线观看| 亚洲专区国产一区二区| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 99在线人妻在线中文字幕| 国产 一区 欧美 日韩| 午夜福利欧美成人| 成年免费大片在线观看| 91久久精品电影网| 在线观看av片永久免费下载| 一进一出抽搐动态| 久久人人精品亚洲av| 欧美成人免费av一区二区三区| 精品一区二区免费观看| 日日夜夜操网爽| 欧美性感艳星| 亚洲专区国产一区二区| 一区二区三区免费毛片| 少妇高潮的动态图| 丰满乱子伦码专区| 久久久久精品国产欧美久久久| 中文字幕av成人在线电影| 欧美成人a在线观看| 国产探花极品一区二区| 色综合站精品国产| 99热精品在线国产| 国产一区二区在线观看日韩| 狂野欧美白嫩少妇大欣赏| 成人av一区二区三区在线看| 嫁个100分男人电影在线观看| 国产免费男女视频| 免费高清视频大片| 最近最新中文字幕大全电影3| 精品一区二区免费观看| 91久久精品电影网| 丝袜美腿在线中文| 一级黄色大片毛片| 午夜爱爱视频在线播放| 美女大奶头视频| 99久久成人亚洲精品观看| 国产欧美日韩精品亚洲av| 在线播放无遮挡| 丝袜美腿在线中文| av在线蜜桃| 桃色一区二区三区在线观看| 精品国产三级普通话版| 免费观看精品视频网站| 国产精品女同一区二区软件 | 欧美一区二区亚洲| 亚洲色图av天堂| 真人一进一出gif抽搐免费| 欧美一区二区精品小视频在线| 精品无人区乱码1区二区| 天美传媒精品一区二区| 亚洲第一区二区三区不卡| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 久久久精品大字幕| or卡值多少钱| 亚洲av五月六月丁香网| 欧美在线一区亚洲| 国产黄片美女视频| 国产男人的电影天堂91| 日韩欧美免费精品| 大又大粗又爽又黄少妇毛片口| www日本黄色视频网| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 亚洲一区高清亚洲精品| 精品人妻视频免费看| 在线免费观看不下载黄p国产 | 中文字幕熟女人妻在线| 亚洲精华国产精华液的使用体验 | 日韩,欧美,国产一区二区三区 | 有码 亚洲区| 99热精品在线国产| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 国产高清视频在线观看网站| 精品久久久噜噜| 美女黄网站色视频| 成人美女网站在线观看视频| 亚洲av成人av| 国产av麻豆久久久久久久| 亚洲内射少妇av| 成人精品一区二区免费| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| or卡值多少钱| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 我的老师免费观看完整版| 女人被狂操c到高潮| 美女黄网站色视频| 欧美一级a爱片免费观看看| 长腿黑丝高跟| 国产亚洲av嫩草精品影院| 老女人水多毛片| 88av欧美| 中文字幕人妻熟人妻熟丝袜美| 美女黄网站色视频| 亚洲欧美日韩高清在线视频| 99精品在免费线老司机午夜| 国产一区二区在线观看日韩| 亚洲avbb在线观看| 美女免费视频网站| 精品无人区乱码1区二区| 午夜福利在线在线| 欧美中文日本在线观看视频| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 亚洲精品色激情综合| 国产色婷婷99| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 波野结衣二区三区在线| 最近最新免费中文字幕在线| 日本成人三级电影网站| 国产精品嫩草影院av在线观看 | 国产av在哪里看| 91精品国产九色| 少妇被粗大猛烈的视频| 级片在线观看| 国产一区二区三区av在线 | 色av中文字幕| 亚洲精品在线观看二区| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 搡老岳熟女国产| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看 | 十八禁网站免费在线| 在线国产一区二区在线| 一个人免费在线观看电影| 成人国产综合亚洲| 午夜老司机福利剧场| 999久久久精品免费观看国产| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 99热这里只有是精品在线观看| 一a级毛片在线观看| 真实男女啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区| 日韩在线高清观看一区二区三区 | 又爽又黄a免费视频| 哪里可以看免费的av片| 韩国av一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 国产午夜福利久久久久久| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 网址你懂的国产日韩在线| 色精品久久人妻99蜜桃| 亚洲第一区二区三区不卡| 能在线免费观看的黄片| 免费看a级黄色片| 亚洲男人的天堂狠狠| 久久精品国产清高在天天线| 99热精品在线国产| 免费看美女性在线毛片视频| 精品福利观看| 最近在线观看免费完整版| 婷婷精品国产亚洲av在线| 老司机福利观看| 亚洲一级一片aⅴ在线观看| 国产精品电影一区二区三区| 欧美一区二区亚洲| 一个人看的www免费观看视频| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 97超级碰碰碰精品色视频在线观看| avwww免费| 日韩大尺度精品在线看网址| 18禁在线播放成人免费| 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院|