鄧 力,黃德龍,彭 靜,汪 孝,崔 俊,曾雪峰,何臘平
(貴州大學釀酒與食品工程學院,貴陽 550025)
中式烹飪用時間溫度積分器的構(gòu)建與驗證
鄧 力,黃德龍,彭 靜,汪 孝,崔 俊,曾雪峰,何臘平
(貴州大學釀酒與食品工程學院,貴陽 550025)
蛋白質(zhì)變性能夠較廣泛地表征烹飪加熱品質(zhì)變化,因而尋找到一種z值為7.36 ℃的耐高溫α-淀粉酶,與蛋白質(zhì)熱變性z值 5~10 ℃相近。以該酶溶液為指示劑,在玻璃毛細管中封裝后置入烹飪耐受性高的、特定形狀的魔芋凝膠(g-KGM)載體,從而構(gòu)建了烹飪研究用時間溫度積分器(time temperature integrators,TTIs)裝置。隨后,在模擬烹飪過程而設定的對流傳熱條件下,通過傳熱學試驗結(jié)合非穩(wěn)態(tài)傳熱以及酶失活動力學數(shù)學模型計算得到剩余酶活,與 TTIs裝置指示劑酶活實測值比較,兩者誤差小于2.24%。進一步,應用該TTIs裝置測定了實際烹飪爆炒過程的表面換熱系數(shù)。所構(gòu)建的TTIs裝置,結(jié)合數(shù)值模擬,可以分析測量常規(guī)試驗傳熱學方法無法應用的激烈烹飪中流體-顆粒的傳熱過程,也可應用于其他領(lǐng)域的移動顆粒傳熱學研究。
傳熱學;溫度;酶;中式烹飪;時間溫度積分器;溫度-時間關(guān)系;表面換熱系數(shù)
鄧 力,黃德龍,彭 靜,汪 孝,崔 俊,曾雪峰,何臘平. 中式烹飪用時間溫度積分器的構(gòu)建與驗證[J]. 農(nóng)業(yè)工程學報,2017,33(7):281-288.doi:10.11975/j.issn.1002-6819.2017.07.037 http://www.tcsae.org
Deng Li, Huang Delong, Peng Jing, Wang Xiao, Cui Jun, Zeng Xuefeng, He Laping. Establishment and verification of time-temperature integrators for Chinese cuisine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 281-288. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.037 http://www.tcsae.org
時間溫度積分器(time temperature integrators,TTIs)定義為用于模擬熱處理過程中的目標質(zhì)量參數(shù)溫度時間總體變化效果的小型裝置,由指示劑和載體食品模擬物組成,其中指示劑應與食品受熱關(guān)鍵品質(zhì)因子具有相近的動力學參數(shù),食品模擬物與食品具有相近且穩(wěn)定的熱物理性質(zhì)和形狀[1]。因而TTIs能夠表征加熱對食品品質(zhì)的影響,TTIs結(jié)合數(shù)學模型可以對流體-食品顆粒傳熱開展傳熱學和品質(zhì)動力學分析[2-3]。國外關(guān)于TTIs在食品熱處理中的應用較為廣泛,用于研究罐頭殺菌、液體顆粒超高溫殺菌等工藝中溫度-時間關(guān)系的變化[4-8]。
中式烹飪的發(fā)展趨勢是實現(xiàn)烹飪的標準化、自動化,必須把握烹飪傳熱-品質(zhì)變化的內(nèi)在原理。文獻[9-10]提出了烹飪品質(zhì)形成的傳熱學和動力學數(shù)學模型,證明溫度對烹飪品質(zhì)具有決定作用,而加熱品質(zhì)變化動力學是聯(lián)系溫度和品質(zhì)的紐帶。烹飪過程中食品顆粒處于非穩(wěn)態(tài)傳熱狀態(tài)[9],溫度隨空間位置和時間變化,測量難度很大。目前獲取液體-顆粒傳熱中顆粒內(nèi)部溫度-時間關(guān)系的方法有近10種[11],而應用較多的是熱電偶法[12]、數(shù)值模擬法[13]和TTIs法[14]。熱電偶法只能對靜態(tài)顆粒的溫度進行測量。數(shù)值模擬法通過求解非穩(wěn)態(tài)傳熱方程獲取溫度-時間關(guān)系,具有省時、受試驗條件限制較小等優(yōu)點,但該方法的關(guān)鍵參數(shù),如流體-顆粒表面換熱系數(shù)hfp,必須由試驗測定[15-16]。爆炒是中式烹飪的典型工藝[17],過程短促劇烈,有些僅持續(xù)10 s,由于強烈攪拌導致顆粒快速移動,因此熱電偶法不適用于爆炒烹飪研究,數(shù)值模擬方法也受限于無法試驗測定hfp。而TTIs裝置可以將食品模擬物載體做成與烹飪顆粒原料類似的形狀,置于烹飪原料中共同加熱,最終通過檢測指示劑的不可逆變化,結(jié)合動力學和傳熱學數(shù)學模型,推算得到食品顆粒的溫度-時間關(guān)系和品質(zhì)變化[15]。在爆炒等食品顆粒為運動狀態(tài)的熱處理工藝中,TTIs法可能是唯一可行的烹飪傳熱學-動力學分析研究手段[18]。因此有必要構(gòu)建中式烹飪研究用的TTIs裝置。
TTIs裝置必須配合數(shù)學模型,因此數(shù)值模擬是TTIs應用的必要手段。文獻[19]建立并驗證了TTI指示劑耐高溫α-淀粉酶熱失活動力學模型,但未結(jié)合傳熱學分析魔芋葡聚糖凝膠載體內(nèi)部溫度與酶活力變化的關(guān)系。文獻[9-10]分別構(gòu)建了熱質(zhì)傳遞數(shù)學模型和烹飪動力學模型,文獻[17]通過對炒的數(shù)值模擬,初步了解了烹飪優(yōu)化的基本規(guī)律,但所選數(shù)學模型中的關(guān)鍵參數(shù)hfp為推斷設定,并未得到試驗驗證。
本文選用耐高溫α-淀粉酶(博立生物)作為指示劑,測定其動力學參數(shù)D值、z值;以魔芋凝膠(g-KGM)作為食品模擬物,共同構(gòu)建了 TTIs。在設定的理想條件下,對構(gòu)建的TTIs的酶失活動力學模型和傳熱數(shù)學模型進行了驗證,證明了其可靠性。同時,應用構(gòu)建的 TTIs和數(shù)值模擬,測定了實際烹飪爆炒過程的表面換熱系數(shù)[17],證明了其實用價值。
1.1 材 料
魔芋純化粉(武漢強森公司);耐高溫α-淀粉酶液(原酶液)(江蘇博立生物制品有限公司);玻璃毛細管(上海欣鵬玻璃儀器有限公司),內(nèi)外徑分別為0.8、1.0 mm。
1.2 試 劑
可溶性淀粉,稀碘液,pH值為6的磷酸緩沖液,0.1 mol/L鹽酸溶液等。
1.3 儀器、設備及軟件
烹飪傳熱學及動力學數(shù)據(jù)采集分析系統(tǒng)[20](自研),溫度測定準確度為±0.05 ℃;熱電偶(奧崎自動化儀表設備有限公司);紫外分光光度計(上海欣茂儀器有限公司);pHS-3C精密-pH計(上海雷茲儀器廠);超級恒溫油浴鍋(上海博迅實業(yè)有限公司),通過油浴鍋的油循環(huán)運動形成油對靜止的TTIs裝置的相對運動,模擬烹飪液體-顆粒加熱,裝置參見圖1。
圖1 設定條件下時間溫度積分器(TTIs)動力學及傳熱學模型驗證裝置Fig.1 Time temperature mtegrators (TTIs) kinetics and validation apparatus of heat transfer model under set conditions
1.4 理論、方法及條件
1.4.1 TTIs裝置相關(guān)原理方法
1)酶的熱失活動力學原理根據(jù)動力學原理,酶加熱失活D值與酶濃度之間的關(guān)系為
式中D值為在一定溫度下酶活力減少90%所需的時間,min;t為加熱時間,min;N0為原酶活,U;N為加熱時間為t時的剩余酶活,U。
而z值與D值的關(guān)系為
式中z值為D值減少90%所需要的溫度,℃,表征酶失活的溫度敏感性;T為顆粒中心溫度,℃;Tref為參考溫度,取100 ℃;Dref為Tref下對應的D值,min。
參考溫度下等效加熱時間,即在變溫加熱條件下酶活變化等效于參考溫度下的恒溫加熱時間,可定量表征加熱強度,計算公式為
式中S為參考溫度下的等效加熱時間,min。
2)指示劑酶失活動力學模型構(gòu)建
由溫度-時間關(guān)系根據(jù)式(3)得到參考溫度Tref下等效加熱時間S,測得Tref處理不同時間后酶活殘存率對數(shù)lg(N/N0)與時間(t)的回歸方程,將式公式(3)帶入得到對應的酶活。積分計算利用Matlab軟件完成。
3)原酶活力測定
按文獻[19]中耐高溫α-淀粉酶酶活測定和計算方法,將原酶液稀釋不同倍數(shù),測定稀釋液與淀粉液反應不同時間對應的吸光度值(A),并對其對數(shù)化(lgA),得到與時間的關(guān)系曲線和回歸方程;然后測定酶解反應終點時的A值,帶入回歸方程計算不同稀釋倍數(shù)的酶反應到達終點所需的時間,由反應終點時間計算出酶活力,求平均值得到平均酶活,即為原酶活力。
4)指示劑毛細管膠囊制備
使用微量注射器將14μL原酶液注入一端封閉的玻璃毛細管(外徑1.0 mm,內(nèi)徑0.8 mm),用冰凍處理后的夾具夾住注入原酶液的一端,用酒精噴燈燒結(jié)另一端進行密封,制成長度3.10~3.50 cm的毛細管膠囊。
5)原酶液D值、z值的測定計算
將毛細管膠囊經(jīng)過一定溫度-時間處理后,迅速放入冰水混合物中冷卻 1 min,用微量注射器將酶液取出至10 mL的容量瓶中,然后用蒸餾水反復沖洗毛細管3次并定容,將酶液稀釋714.29倍,按3)中方法測量剩余酶活,按式(1)計算得到D值,按式(2)計算得到z值。
6)魔芋凝膠g-KGM載體的制備
按文獻[21]中的方法制備 g-KGM,利用打孔器將凝膠制作成圓柱形。該載體在高溫爆炒等條件下不破斷、不蒸發(fā),具有很強的烹飪耐受性,適合烹飪研究[21-22]。
7)TTIs裝置的構(gòu)建
按 6)中方法將魔芋凝膠制作成尺寸為Φ0.79 cm× 4.75 cm的圓柱體TTIs載體;將4)中方法制得的毛細管膠囊置入魔芋凝膠載體的幾何中心位置,構(gòu)建成TTIs裝置,見圖2。
圖2 TTIs裝置示意圖Fig.2 Schematic diagram of TTIs device
1.4.2 液體-顆粒非穩(wěn)態(tài)傳熱數(shù)學模型及數(shù)值計算
顆粒為圓柱形TTIs載體或豬里脊肉絲,液體為烹飪用油,假設烹飪開始時顆粒初始溫度均勻,油及顆粒熱物性穩(wěn)定,顆粒幾何尺寸恒定,忽略毛細管對傳熱的影響。
1)控制方程
顆粒內(nèi)部非穩(wěn)態(tài)導熱微分方程為
符號意義及單位見表1。
表1 數(shù)值計算參數(shù)Table1 Mathematical calculation parameters
2)初始條件和邊界條件
初始條件:初始溫度T1=T0,T0為室溫。
邊界條件:流體-顆粒對流加熱過程中,其邊界控制方程為
符號意義及單位見表1。
3)網(wǎng)格劃分
選取圓柱形載體的1/4建立物理模型,并由ANSYS中的Meshing進行網(wǎng)格劃分,網(wǎng)格單元數(shù)為317 293,如圖3。
圖3 網(wǎng)格劃分Fig.3 Grid division
4)數(shù)值計算方法
利用ANSYS Mechanical對式(4)、(5)進行數(shù)值求解。在PREP處理器中定義單元類型、輸入熱物性參數(shù);在SOLUTION中施加載荷,按表1輸入除求解溫度T以外的所有參量。若Tf為定值,則直接輸入;若Tf變化,則根據(jù)實測值利用 Functions Edit線性確定溫度-時間變化,通過調(diào)用載入器讀取。選用JCG自動迭代求解器獲得有限元解,并在后處理器中導出中心溫度-時間關(guān)系。
1.4.3 以最小溫度目標總體差平方和法(LSTD)計算hfp
LSTD可反映數(shù)值模擬求得溫度與實測時間溫度的全程差異[23-24],其計算公式為
式中LSTD為溫度差平方和;Tsn、Tcn分別為在共為m個的第n個時間點分別由數(shù)值模擬和采集獲得的溫度-時間關(guān)系。
假設一個hfp,由1.4.2方法得到中心溫度-時間關(guān)系Tsn-t,針對實測溫度-時間關(guān)系Tcn計算得到LSTD值。以10 W/(m2·K)為hfp計算步長,分別計算LSTD,得到LSTD最小的hfp。以最小的hfp為計算基準,縮小計算步長到0.1 W/(m2·K),繼續(xù)計算LSTD值,得到LSTD最小時相應的hfp即為目標hfp。
1.4.4 設定條件下的TTIs裝置準確性驗證
1)TTIs載體中心溫度-時間關(guān)系的實際測量方法
將熱電偶插入TTIs載體幾何中心位置,利用烹飪傳熱學及動力學數(shù)據(jù)采集分析系統(tǒng)采集得到TTIs載體的中心溫度-時間關(guān)系,設定采集步長為0.1 s,采集時間及溫度范圍根據(jù)試驗條件設定。同時測定油溫。
2)TTIs裝置實際剩余酶活的測定
將TTIs裝置在超級恒溫油浴鍋中加熱處理后,迅速取出毛細管膠囊放入冰水混合物中冷卻,測定其實際剩余酶活。
3)指示劑酶失活動力學模型驗證
在設定條件下,測定 TTIs載體的中心溫度-時間關(guān)系,按1.4.1方法計算酶活,與TTIs裝置實測酶活比較,以證明構(gòu)建的酶失活動力學模型可靠。
4)與TTIs裝置配合的數(shù)學模型驗證
在設定條件下,由 1.4.2數(shù)學模型計算獲得的溫度-時間關(guān)系,按1.4.1方法計算酶活,與TTIs裝置實測酶活比較,以證明構(gòu)建的TTIs裝置傳熱學數(shù)學模型可靠。
1.4.5 基于TTIs裝置測定爆炒過程hfp
1)爆炒條件
由貴陽新東方烹飪學院一級廚師雷遠在該校中餐教學平臺上以大火加熱操作快速顛鍋爆炒。菜籽油與 TTIs裝置、豬里脊肉、胡蘿卜混合物的質(zhì)量比約為1:5,TTIs裝置和豬里脊肉形狀尺寸相同(Φ0.79 cm×4.75 cm)。
2)爆炒過程hfp測定
將TTIs裝置和豬里脊肉一起爆炒后,取出TTIs裝置中的毛細管膠囊迅速冷卻,測定實際剩余酶活。由于爆炒過程存在強烈攪拌,無法實時記錄鍋內(nèi)油溫變化,參照1.4.4方法每隔10 s采集鍋內(nèi)油溫。以0.1 W/(m2·K)為步長,假設一系列hfp,當計算酶活與TTIs實測酶活誤差最小時,則認為設定hfp為烹飪中油-豬里脊肉的hfp實際值。
2.1 TTIs裝置構(gòu)建及相關(guān)原理方法
2.1.1 原酶活力測定
吸光度值的對數(shù)lgA與時間t的關(guān)系曲線見圖4,其對應的回歸方程見表2。
圖4 吸光度值的對數(shù)與時間關(guān)系曲線Fig.4 Relational graph of logarithm of absorbance with time
表2 原酶液反應進程回歸方程Table2 Regression equation of reaction process of original enzyme solution
按文獻[19]方法測得酶解體系反應終點時的吸光度值為0.3,代入表2方程中,分別得到反應終點時間,由反應終點時間計算出酶活力,見表3。對不同倍數(shù)稀釋液得到的酶活力求平均值,得到平均酶活為55 491.47 U/g,以此作為原酶活力。
表3 不同稀釋倍數(shù)下求得的原酶活性Table3 Activity of original enzyme obtained by different concentrations
2.1.2 TTIs指示劑動力學參數(shù)D值、z值
酶活殘存率與時間關(guān)系曲線,結(jié)果如圖5所示。
圖5 不同溫度下酶活殘存率的對數(shù)與時間關(guān)系Fig.5 Plot of heating time vs. logarithm of residual activity ratio ofα-amylase at different heating temperatures
根據(jù)式(1),由圖5中的回歸方程得到對應D值。結(jié)果見表4。
表4 不同溫度下原酶液的D值Table4 D values of original enzyme solution at different temperatures
根據(jù)式(2),為計算z值,繪制不同溫度下原酶液的D值對數(shù)曲線,如圖6所示。其回歸方程為
lgD=?0.135 8T+15.706 (R2=0.993) (7)
將式(7)帶入式(2),計算得到原酶液的z值為7.36 ℃。
圖6 不同溫度下原酶液動力學參數(shù)D值曲線Fig.6 Dvalue curve of original enzyme solution at different temperatures
2.2 指示劑酶失活動力學模型構(gòu)建
由1.4.1方法,得到100 ℃分別處理3、11、19、27 min后的剩余酶活,其酶活殘存率與等效加熱時間S的回歸方程為
根據(jù)式(3)和式(8)由溫度-時間關(guān)系推算出酶活。
2.3 TTIs裝置準確性驗證
2.3.1 指示劑酶失活動力學模型的可靠性驗證
TTIs實測剩余酶活與酶失活動力學模型推算剩余酶活結(jié)果見表5。由表5可知,兩者酶活最大誤差為2.22%。
表5 TTIs實測酶活與動力學模型推算酶活Table5 Measured enzyme activity by TTIs and computational enzyme activity by kinetics
2.3.2 設定試驗條件下hfp的測算
測定得到hfp見表6。兩者溫度-時間關(guān)系如圖7,其相關(guān)系數(shù)R2分別為0.999 6、0.999 6、0.999 8,平均相對誤差δ分別為2.06%、1.48%、0.85%。
圖7 不同加熱條件下TTIs載體實測溫度與數(shù)值模擬溫度Fig.7 Actual measured temperature and numerical simulated temperature of TTIs carrier under different heating conditions
2.3.3 TTIs裝置傳熱學數(shù)學模型的可靠性驗證
按方法1.4.2求解TTIs裝置的傳熱學數(shù)學模型,得到中心溫度-時間關(guān)系,由式(3)、式(8)得到計算酶活,與TTIs裝置實測酶活比較見表6。由表6可知,兩者酶活最大誤差為2.24%。
表6 數(shù)值計算酶活與TTIs實測酶活Table 6 Enzyme activity by numerical calculation and TTIs
2.4 基于TTIs裝置測定爆炒過程hfp
將TTIs裝置與豬里脊肉一起爆炒,整個爆炒過程持續(xù)50 s,測得油溫及TTIs載體的初始溫度分別為170、22.5 ℃。爆炒中鍋內(nèi)油溫變化結(jié)果,見圖8。
圖8 爆炒中鍋內(nèi)油溫變化Fig.8 Oil temperature variation in pot during cooking
根據(jù)1.4.2中Tf變化條件下的數(shù)值計算方法,以圖8中的溫度數(shù)據(jù)進行加載,計算得到中心溫度-時間關(guān)系,結(jié)合式(3)、式(8)計算得到剩余酶活-時間關(guān)系,見圖9。爆炒終點時,由數(shù)值計算求得酶活為55 302.95 U/g,與 TTIs裝置測得酶活 55 334.85 U/g相比,誤差小于0.1%,按1.4.5方法求得hfp為1301.5 W/(m2·K),誤差為0.77%。
圖9 實際爆炒過程TTIs裝置中心溫度及酶活變化Fig.9 Center temperature variation of TTIs in process of stir frying
3.1 TTIs指示劑的尋找
TTIs指示劑的選用應與熱處理的關(guān)鍵品質(zhì)因子具有相近的動力學參數(shù)。爆炒作為中式烹飪的代表性工藝,主要針對肉類、內(nèi)臟等蛋白質(zhì)原料,而蛋白質(zhì)變性的z值為 5~10 ℃[25]。為了尋求到合適的指示劑,本文作者進行了長期努力,先后以辣根過氧化酶、耐高溫 α-淀粉酶(杰能科、諾維信)作為指示劑,測得z值分別為55.40[26]、35.34[19]、21.14 ℃[25],均不能滿足爆炒工藝的研究需要。本試驗尋找到z值為7.36 ℃的酶源,是烹飪研究的理想指示劑。
3.2 動力學傳熱學相互印證的理論依據(jù)
根據(jù)數(shù)學物理方程解的唯一性定理[27],當非穩(wěn)態(tài)傳熱的邊界條件和初始條件一定時,相同熱物性物體的溫度變化相同。而TTIs指示劑的加熱酶活變化僅受溫度影響,因此,可用TTIs指示劑的酶活變化動力學結(jié)合傳熱學數(shù)學模型推算溫度變化,或結(jié)合測定的溫度變化驗證酶活變化動力學模型。當然也可通過數(shù)學模型推算 TTIs指示劑的酶活變化。
由 2.3.1可見,由指示劑酶熱失活動力學推算的酶活與實測值誤差分別為2.22%、0.37%、0.86%,均小于本領(lǐng)域認可的誤差5%[19],證明構(gòu)建的TTIs指示劑的酶失活動力學模型可靠。由傳熱學數(shù)學模型得到的溫度-時間關(guān)系計算得到的酶活與實測值誤差分別為2.24%、0.20%、0.86%,均小于5%,證明構(gòu)建的TTIs裝置的傳熱學數(shù)學模型可靠。
3.3 魔芋凝膠和豬里脊肉的熱物性及形狀對結(jié)果的影響
魔芋凝膠與真實肉的熱物理參數(shù)見表1,按1.4.5中烹飪條件處理后,分別得到TTIs裝置和里脊肉的中心溫度-時間關(guān)系,見圖10,其相關(guān)系數(shù)為0.999 7,并分別求得剩余酶活為55 336.02、55 421.01 U/g,與TTIs實際測得酶活55 305.35 U/g的誤差分別為0.05%、0.21%,均小于5%。因此,豬里脊肉的熱物性對結(jié)果的影響誤差在允許范圍內(nèi),魔芋凝膠適合用作豬里脊肉的模擬物。
由2.1.3可知,毛細管膠囊具有一定尺寸,如果載體尺寸很小,影響其試驗精度,故本試驗所制作的豬里脊肉形狀尺寸與TTIs裝置相同,為Φ0.79 cm×4.75 cm的圓柱體,與實際爆炒中食品尺寸有一定差別,因此該 TTIs裝置的應用具有一定局限性。
圖10 豬里脊肉和魔芋凝膠溫度-時間關(guān)系Fig.10 Relationship between temperature and time of pork loin and g-KGM
3.4 TTIs在烹飪研究中的應用
對于爆炒等出現(xiàn)劇烈流體-顆粒運動的烹飪過程,要得到其中固體顆粒的溫度分布變化及關(guān)鍵參數(shù)hfp,是非常困難的。而應用TTIs裝置并結(jié)合數(shù)值模擬技術(shù)可以解決這一問題,方法見本文2.4。同時,爆炒是最復雜的烹飪操作,因而該裝置經(jīng)適當改裝可以應用于其他烹飪操作的研究。
在文獻[28]中,提出了基于 TTIs將手工烹飪轉(zhuǎn)變?yōu)樽詣优腼兂绦虻姆椒?,中式烹飪研究用TTIs的研制,為該方法提供了技術(shù)支撐。
作者在文獻[10]中提出了成熟值的概念和公式定義,并實測了一些食品的成熟值[29-30],但測定成熟值時,需要在食品中插入熱電偶,在激烈烹飪中難以實現(xiàn),而通過TTIs技術(shù),可以方便地測定和推算某一烹飪過程的成熟值,為烹飪研究提供了便利,這方面的研究及應用將隨后開展。
尋找到一種動力學參數(shù)z值為7.36 ℃的耐高溫α-淀粉酶,以其作為指示劑并以魔芋凝膠作為食品模擬物載體,構(gòu)建了一種適合中式烹飪研究的時間溫度積分器(time temperature integrators,TTIs)裝置,并對構(gòu)建的TTIs通過試驗進行了酶的熱失活動力學與傳熱學數(shù)學模型的相互印證,由指示劑酶熱失活動力學推算的酶活與實測值最大誤差為2.22%,由傳熱學數(shù)學模型得到的溫度-時間關(guān)系計算得到的酶活與實測值最大誤差為 2.24%。該TTIs可以用于烹飪過程,尤其是激烈烹飪過程的試驗傳熱學研究,并測定表面換熱系數(shù)為1 301.5 W/(m2·K),還可以用于將手工烹飪轉(zhuǎn)變?yōu)樽詣优腼兂绦颍约坝糜谂腼兂墒熘档臏y定。對其他領(lǐng)域的移動顆粒試驗傳熱學研究具有一定的參考價值。下一步,將研究把指示劑均勻分布于載體中的方法,進而克服毛細管傳熱形成的誤差,提高TTIs的精確度。
[1] Tsironi T, Stamatiou A, Giannoglou, M, et al. Predictive modelling and selection of time temperature integrators for monitoring the shelf life of modified atmosphere packed gilthead seabream fillets[J]. LWT-Food Science and Technology, 2011, 44(4): 1156-1163.
[2] Claeys W L, Van Loey A M, Hendrickx M E. Intrinsic time temperature integrators for heat treatment of milk[J]. Trends in Food Science & Technology, 2002, 13(9): 293-311.
[3] Arias-Mendez A, Vilas C, Alonso A A, et al. Timetemperature integrators as predictive temperature sensors[J]. Food Control, 2014, 44: 258-266.
[4] Guiavarc’h Y P, Dintwa E, Van Loey A M, et al. Validation and use of an enzymic time-temperature integrator to monitor thermal impacts inside a solid/liquid model food[J]. Biotechnology Progress, 2002, 18(5): 1087-1094.
[5] Guiavarc’h Y, Zuber F, Van Loey A, et al. Combined use of two single-component enzymatic time-temperature integrators: Application to industrial continuous rotary processing of canned ravioli[J]. Journal of Food Protection, 2005, 68(2): 375-383.
[6] Tucker G S, Lambourne T, Adams J B, et al. Application of a biochemical time–temperature integrator to estimate pasteurisation values in continuous food processes[J]. Innovative Food Science & Emerging Technologies, 2002, 3(2): 165-174.
[7] Van Loey A, Arthawan A, Hendrickx M, et al. The development and use of an α-amylase based time-temperature integrator to evaluate in-pack pasteurization processes[J]. LWT-Food Science and Technology, 1997, 30(1): 94-100.
[8] de Fazio Aguiar H, Yamashita A S, Gut J A W. Development of enzymic time-temperature integrators with rapid detection for evaluation of continuous HTST pasteurization processes[J]. LWT-Food Science and Technology, 2012, 47(1): 110-116.
[9] 鄧力. 中式烹飪熱/質(zhì)傳遞過程數(shù)學模型的構(gòu)建[J]. 農(nóng)業(yè)工程學報,2013,29(3):285-292. Deng Li. Construction of mathematical model for heat and mass transfer process of Chinese cooking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 285-292. (in Chinese with English abstract)
[10] 鄧力. 烹飪過程動力學函數(shù)、優(yōu)化模型及火候定義[J]. 農(nóng)業(yè)工程學報,2013,29(4):278-284. Deng Li. Kinetic functions, optimizing model and definition of “Huohou” for Chinese cooking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions ofthe CSAE), 2013, 29(4): 278-284. (in Chinese with English abstract)
[11] 鄧力,金征宇. 液體-顆粒食品無菌工藝的研究進展[J]. 農(nóng)業(yè)工程學報,2004,20(5):12-21. Deng Li, Jin Zhengyu. Research advances in aseptic processing of liquid/particle foods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 12-21. (in Chinese with English abstract)
[12] Cari?o-Sarabia A, Vélez-Ruiz J F. Evaluation of convective heat transfer coefficient between fluids and particles in suspension as food model systems for natural convection using two methodologies[J]. Journal of Food Engineering, 2013, 115: 173-181.
[13] Anubhav Pratap Singh, Anika Singh & Hosahalli S. Ramaswamy. Heat transfer phenomena during thermal processing of liquid particulate mixtures: A Review[J]. Food Science and Nutrition, 2015, 57(7): 1350-1364.
[14] Mehauden K, Bakalis S, Cox P W, et al. Use of Time Temperature Integrators for determining process uniformity in agitated vessels[J]. Innovative Food Science and Emerging Technologies, 2008, 9(3): 385-395.
[15] Loey A, Guiavarc'h Y, Claeys W, et al. The Use of Time-temperature Integrators (TTIs) to Validate Thermal Processes[M]. Improving the Thermal Processing of Foods, 2004: 365-384.
[16] Ferruh Erdog?du. A review on simultaneous determination of thermal diffusivity and heat transfer coefficient[J]. Journal of Food Engineering, 2008, 86(3): 453-459.
[17] 鄧力. 炒的烹飪過程數(shù)值模擬與優(yōu)化及其技術(shù)特征和參數(shù)的分析[J]. 農(nóng)業(yè)工程學報,2013,29(5):282-292. Deng Li. Numerical simulation, optimization, study of technical features and operational parameters for Chinese cuisine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 282-292. (in Chinese with English abstract)
[18] Tucker G S, Brown H M, Fryer P J, et al. A sterilization Time-Temperature Integrator based on amylase from the hyperthermophilic organism Pyrococcus furiosus[J]. Innovative Food Science and Emerging Technologies, 2007, 8: 63-72.
[19] 王金鵬,徐林,鄧力,等. 用耐高溫α-淀粉酶構(gòu)建時間-溫度積分器[J]. 食品與生物技術(shù)學報,2010,29(5):641-647. Wang Jinpeng, Xu Lin, Deng Li, et al. Time-temperature indicator based on thermostable alpha-amylase[J]. Journal of Food Science and Biotechnology, 2010, 29(5): 641-647. (in Chinese with English abstract)
[20] 周杰,鄧力,閆勇,等. 烹飪傳熱學及動力學數(shù)據(jù)采集分析系統(tǒng)的研制[J]. 農(nóng)業(yè)工程學報,2013,29(23):241-246. Zhou Jie, Deng Li, Yan Yong, et al. Development of system on data acquisition and analysis of heat transfer and kinetics for Chinese cuisine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 241-246. (in Chinese with English abstract)
[21] 高毅,鄧力,金征宇. 對魔芋葡甘聚糖凝膠:一種新型食品模擬物的研究[J]. 食品工業(yè)科技,2007,28(5):107-109. Gao Yi, Deng Li, Jin Zhengyu. Konjac glucomannan one kind of new food simulation study[J]. Science and Technology of Food Industry, 2007, 28(5): 107-109. (in Chinese with English abstract)
[22] Wang Jinpeng, Deng Li, Li Yin, et al. Konjac glucomannan as a carrier material for time-temperature integrator[J]. Food Science and Technology International, 2010, 16(2): 127-134.
[23] 李玉振等譯. 食品科學手冊[M]. 北京:輕工業(yè)出版社,1989:282.
[24] Weng Zhijun, Hendrickx M, Maesmsans G. The use of time-temperature-integrator in conjunction with mathematical modelling for determining liquid/particle heat transfer coefficients[J]. Journal of Food Engineering, 1992, 16: 197-214.
[25] 周杰. 中式烹飪 TTIs系統(tǒng)的構(gòu)建[D]. 貴陽:貴州大學,2013. Zhou Jie. Construction of TTIs System in Chinese Cooking[D]. Guiyang: Guizhou University, 2013. (in Chinese with English abstract)
[26] 高毅. 新型食品模擬系統(tǒng)在流態(tài)化固體食品超高溫殺菌研究上的應用[D]. 無錫:江南大學,2007. Gao Yi. Application of the New Food Model System in study of Fluidization Solid Foods Ultrahigh Temperature Sterilization Technology[D]. Wuxi: Jiangnan University, 2007. (in Chinese with English abstract)
[27] 梁昆淼. 數(shù)學物理方法[M]. 北京:高等教育出版社,2010:122-127.
[28] 鄧力. 基于時間溫度積分器將手工烹飪轉(zhuǎn)變?yōu)樽詣优腼兊姆椒╗J]. 農(nóng)業(yè)工程學報,2013,29(6):287-292. Deng Li. Method to convert manual cuisine into automatic operations based on time-temperature integrators[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 287-292. (in Chinese with English abstract)
[29] 閆勇,鄧力,何臘平,等. 豬里脊肉烹飪終點成熟值的測定[J]. 農(nóng)業(yè)工程學報,2014,30(12):284-292. Yan Yong, Deng Li, He Laping, et al. Determination of termination maturity value of the pork loin in cuisine based on the theory of maturity value[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 284-292. (in Chinese with English abstract)
[30] 李文馨. 基于成熟值理論的肉類蔬菜烹飪的動力學研究[D].貴陽:貴州大學,2015. Li Wenxin. Study on the Kinetics of Meat and Vegetables in Cuisine based on the Theory of Maturity Value[D]. Guiyang: Guizhou University, 2015. (in Chinese with English abstract)
Establishment and verification of time-temperature integrators for Chinese cuisine
Deng Li, Huang Delong, Peng Jing, Wang Xiao, Cui Jun, Zeng Xuefeng, He Laping
(School of Liquor and Food Engineering,Guizhou University,Guiyang550025,China)
Chinese cuisine is regarded as a kind of traditional artistry that has multiple genres, various cooking methods and complicated cooking skills. Stir-frying, a typical operation in Chinese cuisine, normally has the characteristics of short time and drastic stirring. Due to the drastic stirring, food particles rapidly move, so common research methods cannot be used to investigate the internal temperature-time relationship of particles in liquid-particle heat transfer process by this operation, such as the thermocouple method and the numerical simulation method, both of which are limited to determine heat transfer coefficient. In order to realize the standardization and automation of Chinese cuisine, it is necessary to master the changing rules of heat transfer and quality during cooking process, and therefore, time-temperature integrators (TTIs) and the corresponding heat transfer - kinetics mathematical model are crucial or even indispensable methods for the researches on quality changes of cooking. The time-temperature integrator, a small equipment composed of an indicator and a carrier, was used to simulate the changes of target quality parameters, time and temperature history as well as food analogues. Therefore, the indicator must have key quality factors that are similar to kinetic parameters in real food materials, and the shape of food analogues must have similar thermal physical properties to real food system. Protein denaturation is widely used to represent quality changes in cooking process. Surprisingly, a kind of thermostableαamylase with the similarzvalue (7.36 ℃) to protein denaturation (5-10 ℃ ) was discovered and successfully applied as an indicator in our experiment. Specifically, the indicator was encapsulated in a capillary tube and then embedded in a carrier with particular shape for establishing TTIs. The carrier was made of konjac glucomannan gel (g-KGM) which has superior heat resisting property. Subsequently, to simulate cooking process of liquid-particle food under the specific heat transfer condition, the changes of enzyme activity were determined by TTIs, and the theoretical temperature-time relationship was calculated with the unsteady heat transfer mathematical model and then compared with practical experimental results. The temperature curve with the minimal gap of theoretical and actual value was obtained on the basis of the least summation of the squared temperature difference for overall target (LSTD). Finally, the residual activity ofαamylase was obtained based on kinetics methods. And the difference with the measured enzyme activity was not more than 2.24%, indicating the TTIs mathematical model was accurate and reliable. Furthermore, the TTIs mathematical model was used to determine the heat transfer coefficient during stir-frying process of Chinese cuisine. The results showed that the TTIs combined with numerical simulation was appropriate for analyzing and measuring heat transfer process, even for the situations conventional heat transfer experiment method was powerless or some other stormy cooking process with liquid-particle. In addition, armed with quality change kinetics, the heat transfer could be analyzed especially for heated treatment of liquid-particle. That is to say, this method may provide key technology for procedure analysis and process optimization of Chinese cuisine. Moreover, it can also be applied to those studies on actual heat transfer process of moving particles in other field.
heat transfer; temperature; enzymes; Chinese cuisine; time-temperature integrators (TTIs); temperature-time relationship; surface heat transfer coefficient
10.11975/j.issn.1002-6819.2017.07.037
TS201.1
A
1002-6819(2017)-07-0281-08
2016-08-22
2017-04-11
國家自然科學基金項目(31660449);貴州省科技計劃項目(黔科合農(nóng)G字[2013]4016號);貴州省重大科技專項計劃項目(黔科合重大專項字[2015]6004);貴陽市科學計劃項目(生物重大專項[2010]筑農(nóng)合同字第8-1號)
鄧 力,男,江蘇南京人,教授,博士,主要研究方向為自動烹飪、復雜食品加工過程的數(shù)值分析、現(xiàn)代殺菌技術(shù)及擠壓技術(shù)。貴陽 貴州大學釀酒與食品工程學院,550025。
Email:denglifood@sohu.com