牛永紅,韓楓濤,張雪峰,陳義勝,王 麗,許 嘉
(1.內(nèi)蒙古科技大學(xué)礦業(yè)研究院,包頭 014010; 2.內(nèi)蒙古科技大學(xué)能源與環(huán)境學(xué)院,包頭 014010;3.白云鄂博礦多金屬資源綜合利用重點(diǎn)實(shí)驗(yàn)室,包頭 014010; 4.內(nèi)蒙古科技大學(xué)分析測(cè)試中心,包頭 014010)
膨潤(rùn)土/褐鐵礦改性白云石催化劑改善松木蒸汽富氫氣化性能
牛永紅1,2,韓楓濤2,張雪峰1,3,陳義勝4,王 麗4,許 嘉4
(1.內(nèi)蒙古科技大學(xué)礦業(yè)研究院,包頭 014010; 2.內(nèi)蒙古科技大學(xué)能源與環(huán)境學(xué)院,包頭 014010;3.白云鄂博礦多金屬資源綜合利用重點(diǎn)實(shí)驗(yàn)室,包頭 014010; 4.內(nèi)蒙古科技大學(xué)分析測(cè)試中心,包頭 014010)
采用蒸汽氣化,以松木燃料棒為試驗(yàn)對(duì)象,分析氣化氣及焦油組分變化,研究改性白云石(膨潤(rùn)土為載體,白云石為活性組分,并負(fù)載少量褐鐵礦)催化性能隨溫度升高的變化規(guī)律。試驗(yàn)表明:750 ℃時(shí),在改性白云石催化條件下,H2的體積分?jǐn)?shù)為45.77%±0.23%,相較無(wú)催化和白云石催化條件下的富氫作用,氣化所需溫度下降100 ℃;富氫程度在較低溫度下明顯,但隨溫度升高而消弱;改性白云石不僅促使烴端鏈上碳碳長(zhǎng)鏈斷鏈,產(chǎn)生氫自由基,進(jìn)而形成H2,同時(shí)促進(jìn)芳香環(huán)開環(huán)反應(yīng),脫羧基及脫羥基反應(yīng),使得裂解后的焦油更易轉(zhuǎn)化為小分子氣體;催化劑中活性中心 Fe3+隨溫度高逐漸減少,使得改性白云石的質(zhì)量增加在 900 ℃降低至最小值,但相比白云石,改性白云石催化劑在氣化前后的色澤和形態(tài)變化較輕,反映其表面積碳及機(jī)械強(qiáng)度得到優(yōu)化。項(xiàng)目研究可為生物質(zhì)蒸汽催化氣化及廉價(jià)高效改性白云石的應(yīng)用提供參考。
催化劑;氣化;生物質(zhì);松木燃料棒;改性白云石;富氫氣化氣;焦油
牛永紅,韓楓濤,張雪峰,陳義勝,王 麗,許 嘉. 膨潤(rùn)土/褐鐵礦改性白云石催化劑改善松木蒸汽富氫氣化性能[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):213-219.doi:10.11975/j.issn.1002-6819.2017.07.028 http://www.tcsae.org
Niu Yonghong, Han Fengtao, Zhang Xuefeng, Chen Yisheng, Wang Li, Xu Jia. Performance improvement of steam gasification of pine for hydrogen-rich gas with dolomite catalyst modified by bentonite/limonite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 213-219. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.028 http://www.tcsae.org
生物質(zhì)水蒸汽氣化能夠顯著提高氣化氣氫氣含量和燃料轉(zhuǎn)化率,并具有工藝簡(jiǎn)單,投資較少及過(guò)程控制便捷等優(yōu)點(diǎn)[1-4]。然而,氣化反應(yīng)生成的焦油難于從氣化氣中分離,這不但限制了氣化氣的實(shí)際應(yīng)用,還增加了該技術(shù)的投資成本,使系統(tǒng)的運(yùn)行負(fù)擔(dān)加重,而它的浪費(fèi)不僅造成了環(huán)境的污染,還嚴(yán)重威脅工作人員的身體健康[5]。
鎳基催化劑催化重整焦油的活性較高,但其價(jià)格昂貴,且容易中毒失活[6]。白云石的催化活性僅次于鎳基催化劑,其活性隨鈣鎂比例的增加而增加,且類質(zhì)同象鐵也促進(jìn)其催化活性,同時(shí)其機(jī)械強(qiáng)度也相應(yīng)增加[7]。研究表明,F(xiàn)e有利于提高催化劑制粒熱傳導(dǎo)性,增加催化劑的比表面積,提高抗燒結(jié)和抗積碳能力,促進(jìn)催化劑微孔結(jié)構(gòu)的加固,尤其有利于增加催化劑攜氧能力,促進(jìn)催化劑的反應(yīng)活性和穩(wěn)定性,并提高其對(duì)長(zhǎng)鏈烯的選擇性[8-11]。載體是催化劑的不可缺少組成部分,但目前報(bào)道中,對(duì)生物質(zhì)氣化技術(shù)所需載體并沒有得到足夠的重視。Occelli 等學(xué)者[12]對(duì)比蒙脫土(膨潤(rùn)土主要成分)與FCC催化劑的催化裂解反應(yīng)活性時(shí)發(fā)現(xiàn),蒙脫土有較好的催化活性,但存在微孔積碳的弊端。Aldersley等[13]在SCR反應(yīng)中證明膨潤(rùn)土具有很好的SO2抗毒性,通過(guò)與活性物質(zhì)結(jié)合達(dá)到相互促進(jìn)的作用。
針對(duì)白云石自身機(jī)械強(qiáng)度低,適應(yīng)性較差,采用膨潤(rùn)土為載體,并負(fù)載一定量褐鐵礦的方法對(duì)白云石改性,通過(guò)生物質(zhì)水蒸汽催化氣化試驗(yàn),改變氣化溫度,分析氣相組分及焦油的傅里葉變換紅外圖譜變化,考察該催化劑富氫作用及其催化性能。
1.1 試驗(yàn)原料
試驗(yàn)采用廢棄回收的松木屑為原料(產(chǎn)自包頭市某木材加工廠),如圖1a所示。松木屑需在氣化試驗(yàn)前采用KL120型顆粒機(jī)造粒成型(圖1b所示,河南鞏義機(jī)械廠制造),該方法有效提高試驗(yàn)材料密度,減少飛灰損失,方便試驗(yàn)過(guò)程中的加料及卸料。挑選直徑約4 mm,長(zhǎng)約20 mm的成型松木燃料棒作為試驗(yàn)對(duì)象,其顆粒密度約1 200 kg/m3,如圖1c所示,其元素分析和工業(yè)分析見表1。
白云石來(lái)自唐縣鑫磊礦物粉體加工廠,試驗(yàn)選取粒徑為(8±2) mm白云石顆粒,在電阻爐內(nèi)以 800 ℃煅燒3 h,并在干燥瓶中密閉冷卻至室溫以待備用,圖2a為煅燒后白云石催化劑實(shí)物,煅燒前的成分分析如表2所示。
圖1 生物質(zhì)氣化原料與裝備Fig.1 Experimental materials and device for biomass gasification
表1 松木燃料棒組分分析Table1 Component analysis of pine fuel rods
改性白云石催化劑采用膨潤(rùn)土為載體,以白云石為主要活性組分,并負(fù)載一定量褐鐵礦,具體制作方法如下:將白云石研磨成粉末(研磨至 120目左右),與鈣基膨潤(rùn)土(河南省鞏義市元亨凈水材料廠生產(chǎn))和褐鐵礦(研磨至120目左右)充分混合,其質(zhì)量配比為3:2:0.3,并在其中加入一定濃度的膠黏劑(硅酸鈉溶液,硅酸鈉為天津市天達(dá)凈化材料精細(xì)化工廠生產(chǎn)),攪拌均勻后擠壓,拉條再造粒。將成型催化劑顆粒在 105 ℃的干燥箱烘干1 h,在電阻爐內(nèi)以800 ℃煅燒3 h,并在干燥瓶中密閉冷卻至室溫,試驗(yàn)選取粒徑為(5±1) mm的催化劑以待備用,圖2b為煅燒后改性白云石催化劑實(shí)物,鈣基膨潤(rùn)土和褐鐵礦成分分析如表2所示。
圖2 煅燒后的催化劑樣品Fig.2 Catalysts calcined samples
表2 催化劑原料組分分析Table2 Component analysis of catalyst materials %
1.2 試驗(yàn)裝置及試驗(yàn)方案
試驗(yàn)系統(tǒng)(如圖3a)包括:高溫水蒸汽發(fā)生裝置(電熱蒸汽發(fā)生器、水蒸汽加熱裝置)、氣化反應(yīng)主體裝置(立式管式電加熱爐)、溫控及電控裝置、氣化氣凈化裝置及其采集裝置。其中,生物質(zhì)氣化反應(yīng)裝置中的加熱管長(zhǎng)約75 mm,內(nèi)徑約22 mm。
圖3 試驗(yàn)系統(tǒng)示意圖Fig.3 Experimental system sketch
試驗(yàn)前先通入氮?dú)馀趴障到y(tǒng)內(nèi)空氣并進(jìn)行氣密性檢查。打開電爐并設(shè)置氣化反應(yīng)溫度(750、800、850、900 和 950 ℃),開啟水泵,保證系統(tǒng)正壓,待溫度達(dá)到設(shè)定值,稱取50 g左右成型松木燃料棒和21 g左右的催化劑加入反應(yīng)器中,試驗(yàn)計(jì)時(shí)開始,產(chǎn)氣穩(wěn)定后收集氣體樣品,反應(yīng)計(jì)時(shí)開始約30 min后停爐并關(guān)閉水泵,收集焦油樣品,待管式爐體溫度冷卻至室溫后卸料,并收集稱量后的反應(yīng)殘留物。
試驗(yàn)過(guò)程中,氮?dú)饬髁考s為500 mL/min,S/B(水蒸汽加入量與生物質(zhì)加入量的比值)約為1[14],多余的氣化氣冷卻凈化后燃燒處理。圖3b為催化劑在反應(yīng)器中的位置,反應(yīng)前需加入一定量催化劑形成催化床。每組工況進(jìn)行多次試驗(yàn),并取 3個(gè)平行樣的平均值作為該工況的測(cè)試結(jié)果。
1.3 試驗(yàn)產(chǎn)物樣品測(cè)試
氣化氣樣品組分通過(guò)美國(guó)安捷倫公司生產(chǎn)的氣相色譜儀(Agilent 7890B型)進(jìn)行圖譜分析。以氬氣作載氣,利用氫火焰離子化檢測(cè)器(FID)分析C2H6、C2H4、C2H2、C3H8、C3H6等有機(jī)氣體,利用熱導(dǎo)檢測(cè)器(TCD)分析H2、CO、CO2等無(wú)機(jī)氣體和CH4。
試驗(yàn)收集的焦油由德國(guó)Bruker生產(chǎn)的TENSOR II型傅里葉變換紅外光譜儀進(jìn)行分析,其分辨率為0.5 cm-1。由于生物質(zhì)水蒸汽氣化焦油富含水分,成分復(fù)雜,且在靜置后分 3層:分別為不溶于水且比水密度大的焦油,溶于水的焦油和不溶于水且比水密度小的焦油(不溶于水且比水密度大的焦油含量極少)。由于焦油成分復(fù)雜,試驗(yàn)測(cè)試選取最上層不溶于水且比水密度小的焦油做為研究對(duì)象,與蒸餾(組分有損失)和萃?。ㄝ腿└蓴_,且不能完全萃?。┍龋摲椒ú捎脷饣a(chǎn)出焦油原樣,通過(guò)考察特征官能團(tuán)分析組分變化,能夠反映焦油催化裂解特性,具有代表性,不受萃取劑的影響,減少水分參混,避免焦油組分親水基團(tuán)與水分子氫鍵鏈接締合,方便焦油樣品的提取及試驗(yàn)數(shù)據(jù)可靠的分析。
2.1 催化劑添加對(duì)氣相產(chǎn)物的影響
高溫使得生物質(zhì)氣化更加充分,使水蒸汽氣化重整反應(yīng)加劇,進(jìn)而促進(jìn)氣化氣組分中H2體積分?jǐn)?shù)在整體上呈上升趨勢(shì),碳?xì)錃怏w體積分?jǐn)?shù)下降。
圖4反映改性白云石催化作用下氣化氣組分隨溫度升高的變化規(guī)律。由于催化劑中鐵氧化物催化裂解焦油,使得碳氧化物體積分?jǐn)?shù)迅速增加,并在催化過(guò)程中消耗H2,導(dǎo)致H2體積分?jǐn)?shù)從750 ℃時(shí)的45.77%±0.23%降低到800 ℃的42.67%±0.25%,后由于催化氣化反應(yīng)隨溫度升高而加強(qiáng),使得該值又升高到 950 ℃時(shí)的57.19%±0.17%。隨溫度升高,CO2體積分?jǐn)?shù)由25.99%±0.09%降至900 ℃的16.02%±0.13%,隨后表現(xiàn)平穩(wěn);CO體積分?jǐn)?shù)先從 750 ℃時(shí) 14.03%±0.11%升高到850 ℃時(shí)的19.16%±0.15%,后表現(xiàn)出下降的趨勢(shì);CH4體積分?jǐn)?shù)與CnHm(n≥2)的體積分?jǐn)?shù)的降低趨勢(shì)較為微弱。
圖4 改性白云石催化的氣化氣組分隨溫度變化的關(guān)系Fig.4 Gas volume fractions with temperature changing under condition of modified dolomite catalyst
雖然在850 ℃之前,CO與水蒸汽的反應(yīng)相較其他氣化反應(yīng)更占優(yōu)勢(shì)[15-17],且Fe3+氧化CO2的反應(yīng)消耗CO生成 CO2的程度隨溫度升高而加強(qiáng),但煅燒后的白云石富含MgO和CaO,易與CO2結(jié)合生成MgCO3和CaCO3,且隨溫度升高而減弱,而催化劑中鐵氧化物催化裂解焦油生成小分子氣體(CO2、H2、CO、H2O和CnHm等)的反應(yīng)及自身氧化性隨溫度升高而加劇,這造成 CO2體積分?jǐn)?shù)在最開始表現(xiàn)為平緩后呈下降趨勢(shì),而CO體積分?jǐn)?shù)在850℃之前呈上升趨勢(shì)。但Fe2+與H2O的氧化還原反應(yīng)隨溫度的升高而消弱,使得催化劑中活性中心 Fe3+減少,造成Fe3+氧化CO和H2的反應(yīng)消弱,使CO和CO2體積分?jǐn)?shù)表現(xiàn)出下降的趨勢(shì)。
圖5 氫氣體積分?jǐn)?shù)隨溫度變化的關(guān)系Fig.5 Volume fraction of H2with temperature changing
如圖5所示,750 ℃時(shí),改性白云石催化劑使氣化氣中富氫程度明顯,但隨著溫度的增加,富氫程度逐漸消弱,主要是由于催化劑的加入使得焦油催化裂解,且隨溫度升高而加劇,使得氣化氣中碳氧化物氣體的體積分?jǐn)?shù)增加,如圖6所示。研究表明[18-19],MgO/CaO引起脂肪烴和環(huán)烷烴端鏈上 π電子體系重新排布,引起碳長(zhǎng)鏈逐步斷鏈,進(jìn)而產(chǎn)生氫自由基,并形成H2,造成氣化氣中H2體積分?jǐn)?shù)增加。助劑Fe經(jīng)H2O活化為Fe3+,促進(jìn)焦油裂解并轉(zhuǎn)化為Fe2+,裂解后的焦油更易經(jīng)水蒸汽的重整反應(yīng)轉(zhuǎn)化為小分子裂解氣。
氣化氣攜帶氣化焦油進(jìn)入催化層,催化裂解焦油,影響水蒸汽氣化重整反應(yīng)(CnHm與H2O的反應(yīng)和CO與H2O的反應(yīng)),進(jìn)而改變氣化氣組分變化。圖6為氣化氣組分中碳氧化物氣體體積分?jǐn)?shù)隨溫度的變化。當(dāng)氣化溫度大于850 ℃時(shí),如圖6a所示,由于Fe3+氧化作用,CO的體積分?jǐn)?shù)低于不加催化劑和白云石催化劑條件下的CO的體積分?jǐn)?shù),但由于溫度升高,F(xiàn)e3+催化裂解焦油加劇,造成改性白云石催化劑條件下CO的體積分?jǐn)?shù)逐漸大于白云石催化條件下CO的體積分?jǐn)?shù)。圖6b反映CO2體積分?jǐn)?shù)隨溫度變化的關(guān)系,該組分變化的原因總結(jié)為兩點(diǎn):煅燒后的白云石堿金屬氧化物易與 CO2結(jié)合生成 MgCO3和CaCO3,且隨溫度升高而減弱,并在850 ℃后變現(xiàn)為分解大于結(jié)合;氣化溫度上升,使Fe2+與H2O的反應(yīng)進(jìn)行程度消弱,造成催化劑中活性中心Fe3+減少,造成Fe3+與CO反應(yīng)的消弱,產(chǎn)生CO2體積分?jǐn)?shù)表現(xiàn)出下降的趨勢(shì)。
圖6 碳氧化物氣體體積分?jǐn)?shù)隨溫度變化的關(guān)系Fig.6 Volume fraction of CO2and CO with temperature changing
圖7為氣化氣組分中CnHm體積分?jǐn)?shù)隨溫度的變化。白云石催化劑有效的減少了氣化氣中CnHm含量,但改性白云石催化劑中的Fe使得CnHm含量相對(duì)白云石催化條件下CnHm含量高,這是由于活化的Fe3+加速焦油催化裂解成小分子氣體,該速率大于CnHm自身催化氧化分解的速率。Fe2+與 H2O的反應(yīng)隨氣化溫度升高而消弱,使得催化劑中活性中心 Fe3+減少,造成焦油催化裂解效率較低,使得CH4的體積分?jǐn)?shù)在900℃時(shí)降低(如圖7a),CnHm的體積分?jǐn)?shù)在850 ℃時(shí)降低(如圖7b)。
2.2 催化劑添加對(duì)液相產(chǎn)物的影響
圖8以試驗(yàn)反應(yīng)溫度為750℃條件下產(chǎn)出焦油的紅外圖譜為例(其他溫度下圖譜的峰值與此出現(xiàn)位置相近)。參考煤化工領(lǐng)域中傅里葉變換紅外技術(shù)的應(yīng)用,采用標(biāo)準(zhǔn)圖譜與之對(duì)照,根據(jù)特定基團(tuán)出現(xiàn)特征峰位置,判斷焦油組分(如表 2所示),并在該處附近進(jìn)行積分,分析氣化焦油各組分含量變化規(guī)律。
在3 430 cm-1左右出現(xiàn)的特征峰為O-H的對(duì)稱伸縮振動(dòng),此寬緩峰的出現(xiàn)與焦油中所含苯酚有關(guān),該峰受多聚物分子間及分子內(nèi)間氫鍵連接程度影響[20-21];在3 007 cm-1左右出現(xiàn)的特征峰為芳香烴的C-H伸縮振動(dòng),由于其取代基為脂肪鏈,其峰值較小,并在較低波數(shù)位置出現(xiàn),且與脂肪烴 C-H伸縮振動(dòng)引起的峰值產(chǎn)生締合;在2 333~2 360 cm-1出現(xiàn)的特征峰為C≡N或C≡C的伸縮振動(dòng);在3 000~3 100 cm-1的峰值為C-H伸縮振動(dòng),對(duì)應(yīng)的化合物為芳香烴;在2 800~3 000 cm-1的峰值為C-H伸縮振動(dòng),對(duì)應(yīng)的化合物為脂肪烴;在1 707 cm-1的峰值為C=O伸縮振動(dòng),對(duì)應(yīng)的化合物為羧酸和酮類;在1 513 cm-1的峰值為芳香骨架振動(dòng),對(duì)應(yīng)的化合物為芳香烴;在1 100~1 300 cm-1的峰值為C-O伸縮振動(dòng)和O-H伸縮振動(dòng),對(duì)應(yīng)的化合物為酚類和醇類;在 1 267和1 034 cm-1的峰值分別為C-O-C對(duì)稱伸縮振動(dòng)和C-O-C非對(duì)稱伸縮振動(dòng),對(duì)應(yīng)的化合物為芳香醚。由于生物質(zhì)氣化反應(yīng)涉及氣液固三相反應(yīng),過(guò)程復(fù)雜[22-23]。試驗(yàn)前期針對(duì)無(wú)催化劑條件[24]及白云石催化條件[25]的試驗(yàn)研究,發(fā)現(xiàn)氣化性能在800~850 ℃時(shí)出現(xiàn)拐點(diǎn),為方便分析并對(duì)后續(xù)研究奠定基礎(chǔ),本試驗(yàn)分別選取750、800、850和900 ℃條件下傅里葉紅外變換光譜進(jìn)行對(duì)比。
圖7 碳?xì)錃怏w體積分?jǐn)?shù)隨溫度變化的關(guān)系Fig.7 Volume fraction of CnHmwith temperature changing
圖8 氣化焦油傅里葉紅外譜圖(750 ℃)Fig.8 FT-IR spectrum of biomass tar(750 ℃)
圖9分別反映了焦油中脂肪烴、芳香烴和含氧基團(tuán)隨溫度升高的變化規(guī)律。Rahman等[26-27]指出,在水蒸汽氣氛下,有機(jī)大分子更易發(fā)生開環(huán)反應(yīng)及斷鏈反應(yīng)。而開環(huán)或斷鏈的結(jié)構(gòu)更易轉(zhuǎn)化為小分子氣體[28-30]。所以,在未添加催化劑條件下,芳香烴隨溫度升高含量迅速下降,由于芳香烴開環(huán)反應(yīng)生成脂肪烴的速率大于脂肪烴斷鏈裂解的速率,脂肪烴含量微弱增加。
添加改性白云石催化劑后,脂肪烴、芳香烴及含氧基團(tuán)含量小于添加白云石催化劑催化裂解時(shí)的含量,這由此說(shuō)明改性白云石催化劑能夠促進(jìn)焦油中長(zhǎng)鏈有機(jī)分子斷鏈,芳香烴開環(huán)裂解,脫羧基及脫羥基作用,使焦油更易向小分子有機(jī)氣體轉(zhuǎn)化,所以該催化劑比白云石催化劑更具催化活性。
圖9 特征峰面積隨溫度變化Fig.9 Characteristic peaks area with temperature changing
2.3 催化劑的性能評(píng)價(jià)
對(duì)比圖2與圖10,反應(yīng)后白云石催化劑表面積碳嚴(yán)重,且在反應(yīng)過(guò)程中破碎成更小的顆粒,不易確定其在催化反應(yīng)后質(zhì)量增加。但改性白云石催化劑表面積碳較輕,形態(tài)基本無(wú)變化,說(shuō)明改性后的白云石催化活性較高,機(jī)械強(qiáng)度相較白云石催化劑有了明顯改善。
定義Δ為催化劑前后質(zhì)量增加百分比(如式(1)所示),圖11反映,改性白云石催化劑催化速率先升高,當(dāng)溫度達(dá)到900 ℃后,改性白云石催化劑催化速率降低,原因是由于氣化溫度上升,使Fe2+與H2O的反應(yīng)進(jìn)行程度消弱,造成催化劑中活性中心Fe3+減少,催化劑空隙積碳量增加,使得改性白云石催化劑催化活性降低。
式中Δ為催化劑前后質(zhì)量增加量,%;m0為催化劑反應(yīng)前總質(zhì)量,g;m為催化劑反應(yīng)前總質(zhì)量,g。
圖10 反應(yīng)后催化劑形態(tài)(750 ℃)Fig.10 Catalyst characteristics after reaction (750 ℃)
引起催化劑質(zhì)量增加的主要原因是催化劑空隙積碳。催化劑空隙積碳能夠?qū)е麓呋瘎┗钚越档停呋瘎┵|(zhì)量增加越多,其活性越低,催化速率約低于積碳速率,所以催化劑質(zhì)量增加大小與催化劑催化速率及活性呈負(fù)相關(guān)。
圖11 催化劑質(zhì)量增加量隨溫度變化的關(guān)系Fig.11 Increased percent of catalyst weight with temperature changing
1)在改性白云石催化條件下,氣化溫度為 750℃時(shí)H2的體積分?jǐn)?shù)為45.77%±0.23%,相較無(wú)催化和白云石催化條件下的富氫作用,氣化溫度下降 100 ℃;隨著溫度升高,改性白云石促使碳氧化物和碳?xì)浠矬w積分?jǐn)?shù)增加,使得富氫程度消弱。
2)改性白云石不僅促使烴端鏈上碳長(zhǎng)鏈斷裂,進(jìn)而形成H2,同時(shí)促進(jìn)芳香環(huán)開環(huán)反應(yīng),脫羧基及脫羥基反應(yīng),使得裂解后的焦油更易轉(zhuǎn)化為小分子含碳?xì)怏w,這有利于減少氣化焦油的產(chǎn)生,提高氣化效率。
3)催化劑中活性中心Fe3+隨溫度升高逐漸減少,使得改性催化劑質(zhì)量增加,在 900 ℃降低至最小值,但相比白云石,改性白云石催化前后的色澤和形態(tài)變化較輕,反映其表面積碳及機(jī)械強(qiáng)度得到優(yōu)化。
白云石的催化活性僅次于鎳基催化劑,但價(jià)格低廉,具有潛在的經(jīng)濟(jì)價(jià)值。本研究對(duì)比白云石催化生物質(zhì)蒸汽氣化,采用膨潤(rùn)土為載體,并負(fù)載少量褐鐵礦對(duì)白云石改性,探索其催化性能,為白云石改性及生物質(zhì)蒸汽氣化研究提供思路。
[1] Skoulou V, Swiderski A, Yang W, et al. Process characteristics and products of olive kernel high temperature steam gasification (HTSG)[J]. Bioresour Technology, 2009, 100(8): 2444-2451.
[2] 邊軼,劉石彩,簡(jiǎn)相坤. 生物質(zhì)熱解焦油的性質(zhì)與化學(xué)利用研究現(xiàn)狀[J]. 生物質(zhì)化學(xué)工程,2011,45(2):51-55. Bian Yi, Liu Shicai, Jian Xiangkun. The state art of view of research progress on characteristics and chemical utilization of tar from biomass pyrolysis[J]. Biomass Chemical Engineering, 2011, 45(2): 51-55. (in Chinese with English abstract)
[3] Nimit Nipattummakula, Islam I Ahmeda, Ashwani K Gupta. Hydrogen and syngas yield from residual branches of oilpalm tree using steam gasification[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3835-3843.
[4] Aitziber Erkiaga, Gartzen Lopez, Maider Amutio, et al. Syngas from steam gasification of polyethlene in a conical spouted bed reactor[J]. Fuel, 2013, 109(7): 461-469.
[5] 典平鴿,張樂觀,江程程. 裂解溫度對(duì)生物質(zhì)熱解焦油成分的影響[J]. 可再生能源,2012,30(5):54-58. Dian Pingge, Zhang Leguan, Jiang Chengcheng. The influence of pyrolysis temperature on the component of biomass pyrolytic tar[J]. Renewable Energy Resources, 2012, 30(5): 54-58. (in Chinese with English abstract)
[6] 欒艷春. 鐵基催化劑對(duì)生物質(zhì)高溫蒸汽氣化影響的實(shí)驗(yàn)研究[D]. 包頭:內(nèi)蒙古科技大學(xué),2015. Luan Yanchun. Experimental Study on the Influence of Iron-based Catalyst for High Temperature Steam Gasification of Biomass[D]. Baotou: Inner Mongolia University of Science and Technology, 2015. (in Chinese with English abstract)
[7] Marco Baratieri, Elisa Pieratti, Thomas Nordgren, et al. Biomass gasification with dolomite as catalyst in a small fluidized bed experimental and modelling analysis[J]. Waste and Biomass Valorization, 2010, 1(3): 283-291.
[8] Borah B J, Borah S J, Saikia K, et al. Efficient Suzuki-Miyaura coupling reaction in water: Stabilized Pd-montmorillonite clay composites catalyzed reaction[J]. Applied Catalysis A: General, 2014, 469: 350-356.
[9] Yu Q Z, Brage C, Nordgreen T, et al. Effects of Chinese dolomites on tar cracking in gasification of birch[J]. Fuel, 2009, 88(10): 1922-1926.
[10] 鄧雙輝. 銅渣催化氣化生物質(zhì)的動(dòng)力學(xué)研究[D]. 昆明:昆明理工大學(xué),2013. Deng Shuanghui. An Experimental Study of Steam Gasification of Biomass with Copper Slag Catalysts[D]. Kunming: Kunming University of Science and Technology, 2013. (in Chinese with English abstract)
[11] 陳定千,沈來(lái)宏,肖軍,等. 水泥改性鐵礦石載氧體的煤化學(xué)鏈燃燒實(shí)驗(yàn)研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2013,33(20):40-45. Chen Dingqian, Shen Laihong, Xiao Jun, et al. Experiments on chemical-looping combustion of coal with cement-decorated iron ore as oxygen carrier[J]. Proceedings of the CSEE, 2013, 33(20): 40-45. (in Chinese with English abstract)
[12] Occelli M L, Tindwa R M. Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars[J]. Clays and Clay Minerals, 1983, 31(1): 22-28.
[13] Aldersley M F, Joshi P C. RNA dimer synthesis using montmorillonite as a catalyst: The role of surface layer charge[J]. Applied Clay Science, 2013, 83/84: 77-82.
[14] 牛永紅,韓楓濤,陳勝義. 高溫蒸汽松木顆粒富氫氣化試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):247-252. Niu Yonghong, Han Fengtao, Chen Yisheng. Experimental study of High-temperature steam gasification of pine particles for hydrogen-rich gas[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(3): 247-252. (in Chinese with English abstract)
[15] Soncini R M, Means N C, Weiland N T. Co-pyrolysis of low rank coals and biomass: Product distributions[J]. Fuel, 2013, 112(3): 74-82.
[16] 李琳娜. 生物質(zhì)高溫水蒸氣氣化制備富氫燃?xì)獾难芯縖D].北京:中國(guó)林業(yè)科學(xué)研究院,2011. Li Linna. Preparation of Hydrogen Rich Gas High Temperature Steam Gasification Biomass Research[D]. Beijing: China Academy of Forestry Science, 2011. (in Chinese with English abstract)
[17] 涂軍令. 木屑/木屑炭高溫水蒸氣氣化制備合成氣研究[D].北京:中國(guó)林業(yè)科學(xué)研究院,2012. Tu Junling. Sawdust/Sawdust Charcoal High Temperature Steam Gasification and the Preparation of Syngas[D]. Beijing: Chinese Academy of Forestry, 2012. (in Chinese with English abstract)
[18] 孫云娟. 生物質(zhì)催化氣化及焦油的裂解研究[D]. 北京:中國(guó)林業(yè)科學(xué)研究院,2006. Sun Yunjuan. Study on Biomass Catalytic Gasification and Tar Cracking[D]. Beijing: Chinese Academy of Forestry, 2006. (in Chinese with English abstract)
[19] 賈立. 生物質(zhì)熱解氣白云石催化重整的實(shí)驗(yàn)研究[D]. 武漢:華中科技大學(xué),2007. Jia Li. An Experimental Research on Reforming Pyrolyzation Gas with Dolomite[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese with English abstract)
[20] 張寰. 秸稈類生物質(zhì)教育熱解動(dòng)力學(xué)及碳纖維制備實(shí)驗(yàn)研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2014. Zhang Huan. Study of Thermal Properties of Biomass Tar Using Straw and Manufacture Technology of Carbon Fiber[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese with English abstract)
[21] 秦嶺. 生物質(zhì)熱解動(dòng)力學(xué)及反應(yīng)機(jī)理的研究[D]. 北京:清華大學(xué),2012. Qin Ling. Study on Biomass Pyrolysis Kinetics and Mechanisms[D]. Beijing: Tsinghua University, 2012. (in Chinese with English abstract)
[22] Ahmed I, Jangsawang W, Gupta A K. Energy recovery from pyrolysis and gasification of mangrove[J]. Applied Energy, 2012, 91(1): 173-179.
[23] 賴艷華,馬春元,施明恒. 生物質(zhì)燃料層熱解過(guò)程的傳熱傳質(zhì)模型研究[J]. 熱科學(xué)與技術(shù),2005,4(3):219-223. Lai Yanhua, Ma Chunyuan, Shi Mingheng. Heat and mass transfer in pyrolysis processof biomass fuel bed[J]. Journal of Thermal Science and Technology, 2005, 4(3): 219-223. (in Chinese with English abstract)
[24] 牛永紅,韓楓濤,李義科,等. 松木成型燃料水蒸氣氣化反應(yīng)特性[J]. 化工學(xué)報(bào),2017,68(3):1191-1198. Niu Yonghong, Han Fengtao, Li Yike, et al. Steam gasification characteristic of pine briquette fuel[J]. CIESC Journal, 2017, 68(3): 1191-1198. (in Chinese with English abstract)
[25] 牛永紅,韓楓濤,張雪峰,等. 白云石催化松木燃料棒水蒸氣氣化試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):246-252. Niu Yonghong, Han Fengtao, Zhang Xuefeng, et al. Experiment on steam gasification of pine fuel rods withdoldmite catalyst[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 246-252. (in Chinese with English abstract)
[26] Rahman M S, State diagram of foods: Its potential use in food processing and product stability[J]. Trends in Food Science and Technology, 2006, 17(3): 129-141.
[27] Ahmed I, Gupta A. Sugarcane bagasse gasication: Global reaction mechanism of syngas evolution[J]. Applied Energy, 2012, 91(1): 75-81.
[28] Baldwin R M, Magrini-Bair K A, Nimlos M R, et al. Current research on thermochemical conversion of biomass at the National Renewable Energy Laboratory[J]. Applied Catalysis B: Environmental, 2012(115/116): 320-329.
[29] Irfan M F, Usman M R, Kusakabe K. Coal gasificationin CO2atmosphere and its kinetics since 1948: A brief review[J]. Energy, 2011, 36(1): 12-40.
[30] Guizani N, Al-Saidi G S, Rahman M S, et al. State diagram of dates: Galass transition, freezing curve and maximal freeze concentration condition[J]. Journal of Food Engineering, 2010, 99(1): 92-97.
Performance improvement of steam gasification of pine for hydrogen-rich gas with dolomite catalyst modified by bentonite/limonite
Niu Yonghong1,2, Han Fengtao2, Zhang Xuefeng1,3, Chen Yisheng4, Wang Li4, Xu Jia4
(1. Mining Research Institute, Inner Mongolia University of Science and Technology, Baotou 014010, China; 2. School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China; 3. Key Laboratory of Integrated Exploitation of Bayan Obo Multi-metal Resources, Baotou 014010, China; 4. Analytical Center, Inner Mongolia University of Science and Technology, Baotou 014010, China)
In this study, we adopted steam gasification of biomass, and pine fuel rods as the experimental objects. We used gas chromatography and Fourier transform infrared spectrometer to analyze components of gas and tar change during the process of gasification. We also determined catalytic performance of modified dolomite (bentonite as the carrier, dolomite as the active component and a small amount of load limonite) as temperature rose. Our experiment results showed that, high-temperature made steam gasification of biomass intensified so that steam reforming reaction intensified and thus contributing to H2gas volume fraction in the overall upward trend in the gasification components, but hydrocarbon gas volume fraction in downward trend. Gasification gas carries gasification tar into the catalyst layer, which makes tar catalytic cracked, promotes steam reforming reaction intensified and thereby changes the composition of gasification gas. Under the condition of steam gasification with modified dolomite catalyst at 750 ℃, H2volume fraction was 45.77%±0.23%. Compared to hydrogen-rich action of catalytic and non-catalytic conditions dolomite, gasification temperature dropped to 100 ℃. With the rise of temperature, modified dolomite promoted the increase of carbon oxides and hydrocarbons volume fraction, but hydrogen-rich degree weaken. The calcined dolomite contained MgO/CaO as active ingredients can cause the long carbon chain cracked in aliphatic hydrocarbons, conducive to the production of radical hydrogen ion, and be helpful to generate hydrogen. When Fe as a promoter was used, it was activated to Fe3+by high temperature steam, and converted to Fe2+after promoting tar cracking. Modified dolomite not only promoted the scission of carbon chain length on the hydrocarbon side chain and the formation of H2, but also promoted opening reactions of aromatic ring, decarboxylation and dehydroxylation reactions, thereby making tar after pyrolysis easily to be converted into small molecule gas carbon containing, which helped to reduce the production of tars gasified and improved the gasification efficiency. The catalyst active center Fe3+decreased at higher temperature, which made the gaining weight of homemade catalyst after catalysis reduced to a minimum of 900 ℃, but compared to dolomite, the change of color and shape of modified dolomite between front and rear catalytic was small, which reflected the mechanical strength and surface area carbon optimized. The catalytic activity of dolomite was secondly to nickel-based catalyst, but it had potential economic value with cheaper price. In this study, we compared to steam gasification of biomass with dolomite catalyst, explored the catalytic properties of modified dolomite, which would provide useful information of dolomite modification method and studies of steam gasification of biomass. The purpose of this research was to promote the use of dolomite catalysts, and our results showed that they can be used for the treatment of tailings and to deepen the study of biomass steam gasification.
catalysts; gasification; biomass; pine fuel rods; modified dolomite; rich-hydrogen gas; tar
10.11975/j.issn.1002-6819.2017.07.028
TK6
A
1002-6819(2017)-07-0213-07
2016-07-07
2017-04-05
內(nèi)蒙古科技創(chuàng)新引導(dǎo)獎(jiǎng)勵(lì)資金項(xiàng)目(01850401);內(nèi)蒙古自然基金項(xiàng)目(2015MS0106);內(nèi)蒙古科技大學(xué)大學(xué)生科技創(chuàng)新項(xiàng)目(2015138;2016065)
牛永紅,男(漢族),內(nèi)蒙古涼城人,博士生,副教授,主要從事生可再生高效清潔利用研究。包頭 內(nèi)蒙古科技大學(xué)礦業(yè)研究院,014010。
Email:yonghong_niu@126.com