熊本海,蔣林樹,楊 亮,王 坤,潘曉花
(1. 中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2. 北京農(nóng)學(xué)院,奶牛營(yíng)養(yǎng)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 102206)
奶牛飼喂自動(dòng)機(jī)電控制系統(tǒng)的設(shè)計(jì)與試驗(yàn)
熊本海1,蔣林樹2,楊 亮1,王 坤1,潘曉花1
(1. 中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2. 北京農(nóng)學(xué)院,奶牛營(yíng)養(yǎng)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 102206)
為開展奶牛精準(zhǔn)飼喂及采食行為學(xué)研究,設(shè)計(jì)了一種集自動(dòng)識(shí)別、飼喂、數(shù)據(jù)自動(dòng)采集、數(shù)據(jù)分析與處理于一體的奶牛飼喂自動(dòng)機(jī)電控制系統(tǒng)。該系統(tǒng)包括機(jī)械裝置、電子識(shí)別系統(tǒng)、料槽稱質(zhì)量系統(tǒng)、中央控制系統(tǒng)、現(xiàn)場(chǎng)數(shù)據(jù)存貯及遠(yuǎn)程數(shù)據(jù)提取與分析系統(tǒng)等幾部分。其中,機(jī)械裝置包括料斗、支撐座、欄桿和阻擋單元等;電子識(shí)別系統(tǒng)包括閱讀天線及料門啟閉的氣動(dòng)裝置;料槽稱質(zhì)量系統(tǒng)除支撐座外,還有嵌入的質(zhì)量傳感器及線路;中央控制系統(tǒng)包括微處理器、看門狗復(fù)位電路、讀卡器電路、稱質(zhì)量數(shù)據(jù)采集電路、數(shù)據(jù)通信電路、數(shù)據(jù)收發(fā)器電路及外圍驅(qū)動(dòng)與穩(wěn)壓電路等?,F(xiàn)場(chǎng)數(shù)據(jù)存貯電路接受來自各個(gè)飼喂系統(tǒng)的中央控制系統(tǒng)發(fā)送的采食行為數(shù)據(jù),其主板結(jié)構(gòu)與中央控制系統(tǒng)基本一致,預(yù)設(shè)可存貯記錄數(shù)為14 000條,且采用堆棧數(shù)據(jù)存貯模式。遠(yuǎn)程PC端數(shù)據(jù)提取與分析系統(tǒng)實(shí)時(shí)管理采食行為數(shù)據(jù),并提供多功能的數(shù)據(jù)挖掘分析。系統(tǒng)測(cè)試結(jié)果表明,對(duì)牛只低頻RFID(134 kHz)電子耳標(biāo)的識(shí)讀率為100%,料及槽的計(jì)量范圍為0.01~200 kg,最低稱量精度10 g, 實(shí)際稱量相對(duì)誤差≤0.15%,同時(shí)滿足奶牛對(duì)最大采食量及精準(zhǔn)飼喂對(duì)計(jì)量的需求。系統(tǒng)的采食行為試驗(yàn)表明,奶牛的日均采食次數(shù)、采食時(shí)間及采食量等采食行為均差異顯著(P<0.05),符合奶牛的采食行為特點(diǎn)。具體地,奶牛日均采食次數(shù)10~13次,日均采食時(shí)間5.38 h,而奶牛個(gè)體實(shí)際采食量與NRC(National Research Council)模型預(yù)測(cè)的采食量有?4.76%~7.83%的偏差,可能是由各種內(nèi)外部因素及NRC模型的普適度造成的,有待進(jìn)一步研究??傊?,該系統(tǒng)能較好地實(shí)現(xiàn)奶牛個(gè)體的精細(xì)化飼喂,為研究奶牛的采食行為特點(diǎn)提供了在線、智能化的自動(dòng)數(shù)據(jù)采集與分析平臺(tái)。
設(shè)計(jì);控制系統(tǒng);自動(dòng)檢測(cè);奶牛;精準(zhǔn)飼喂;采食行為;數(shù)據(jù)分析
熊本海,蔣林樹,楊 亮,王 坤,潘曉花. 奶牛飼喂自動(dòng)機(jī)電控制系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):157-163.doi:10.11975/j.issn.1002-6819.2017.07.020 http://www.tcsae.org
Xiong Benhai, Jiang Linshu, Yang Liang, Wang Kun, Pan Xiaohua. Design and test of electromechanical control system of automatic feeder for dairy cow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 157 -163. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.020 http://www.tcsae.org
2015年,中國(guó)奶業(yè)在生乳收購(gòu)價(jià)格持續(xù)低迷的形勢(shì)下,由于散養(yǎng)戶加速退出等自行調(diào)整,奶牛總存欄量減至1 369萬頭,同比下降8.7%。同時(shí),由于散養(yǎng)戶占比下降,進(jìn)一步拉升了中國(guó)成母牛單產(chǎn)水平,即由2005年的3 891 kg/頭提高到2015年的6 000 kg/頭。其中,中國(guó)10大牛奶主產(chǎn)省區(qū)的成母牛平均年單產(chǎn)為6 500 kg/頭,寧夏最高,達(dá)7 100 kg/頭,新疆最低,僅為1 200 kg/頭[1]。盡管單產(chǎn)水平提升了,但是基于奶牛個(gè)體體況的精準(zhǔn)飼喂技術(shù)及管理仍然粗放,飼草品質(zhì)不高,三次擠奶技術(shù)尚未完全普及等,導(dǎo)致成母牛單產(chǎn)水平與美國(guó)、日本及加拿大比較還存在巨大差距,后者依次達(dá)到10 170、9 460 及8 810 kg/頭[2]。
數(shù)字化描述奶牛的采食、飲水、泌乳、奶牛間相互交流等生理及行為,對(duì)于開展奶牛的精細(xì)化飼喂與管理至關(guān)重要。有研究發(fā)現(xiàn),成母牛每天采食 9~14次,大約23 min/次,大約5~5.5 h/d[3]。但隨著飼喂方式的變革,舊的“先粗后精”的飼喂方式已逐漸被全混合日糧(total mixed rations,TMR)所代替。TMR飼喂方式因內(nèi)在養(yǎng)分及物理加工特性方面的改善,并結(jié)合分群飼喂模式的實(shí)施,均在不同程度上促進(jìn)了奶牛單產(chǎn)水平的提高。但采食行為特點(diǎn)是否仍適應(yīng)新的飼喂模式及管理理念,需要開展條件變化后的行為學(xué)觀察研究,才能探究新的采食規(guī)律。隨著以信息采集為切入點(diǎn)的、物聯(lián)網(wǎng)技術(shù)的快速發(fā)展[4],開發(fā)基于信息感知為基礎(chǔ)、具有物聯(lián)網(wǎng)特征的畜禽精細(xì)飼喂設(shè)備已成為可能。例如,基于物聯(lián)網(wǎng)技術(shù)的妊娠母豬電子飼喂站、哺乳母豬自動(dòng)飼喂裝置已有報(bào)道[5-6],但采用的原理是通過下料量的精確控制達(dá)到精準(zhǔn)飼喂,與現(xiàn)代奶牛飼喂采取幾乎自由采食的方式明顯不同。為此,也有研究報(bào)道了奶牛采食量的自動(dòng)記錄裝置[7-8],通過傳感器記錄奶牛顳窩鼓動(dòng)次數(shù)作為吞咽次數(shù),估算奶牛的采食量,但誤差較大,達(dá)5%左右。高振江等[9]研制了自走式奶牛精確飼喂控制系統(tǒng),解決了奶牛個(gè)體的自動(dòng)識(shí)別問題,計(jì)量誤差控制在2%左右。后者計(jì)量誤差得到明顯改進(jìn),但僅僅識(shí)別奶牛個(gè)體和記錄采食量對(duì)深入研究奶牛的采食行為規(guī)律仍遠(yuǎn)遠(yuǎn)不夠。因此,本研究設(shè)計(jì)了一種奶牛個(gè)體自動(dòng)飼喂及行為連續(xù)記錄系統(tǒng),集成了電子標(biāo)識(shí)技術(shù)、質(zhì)量感知技術(shù)、機(jī)電一體自動(dòng)控制技術(shù)、數(shù)據(jù)傳輸及計(jì)算機(jī)軟件技術(shù)等,實(shí)現(xiàn)了對(duì)奶牛個(gè)體采食行為的全面監(jiān)測(cè),為系統(tǒng)研究奶牛個(gè)體的采食行為規(guī)律提供了平臺(tái)。
1.1 自動(dòng)飼喂系統(tǒng)的機(jī)械設(shè)計(jì)
如圖1所示,整個(gè)飼喂控制系統(tǒng)由識(shí)別系統(tǒng)、飼喂控制臺(tái)、稱質(zhì)量系統(tǒng)、飼喂系統(tǒng)(機(jī)械裝置)、采食行為數(shù)據(jù)緩存系統(tǒng)、數(shù)據(jù)貯存管理及分析系統(tǒng) 6個(gè)模塊或系統(tǒng)組成。
圖1 飼喂控制與數(shù)據(jù)采集系統(tǒng)結(jié)構(gòu)框圖Fig.1 Structure block diagram of feeding control and data acquisition system
圖2為奶牛飼喂裝置結(jié)構(gòu)簡(jiǎn)圖,主要由料斗1、支撐座2、欄桿3和阻擋單元4、閱讀天線5及地面6組成。其中,料斗為上部開放的斗狀容器,且在 2個(gè)支撐座上可拆卸,支撐座上帶有稱質(zhì)量傳感器,可用于稱量料斗及其盛放的飼料質(zhì)量;欄桿設(shè)置于料斗的一側(cè),欄桿中部設(shè)置有用于供奶牛頭部通過的取食空間;阻擋單元設(shè)置于料斗和欄桿之間,用于阻擋不符合條件的奶牛進(jìn)食,放入符合條件的奶牛進(jìn)食。
圖2 奶牛飼喂裝置結(jié)構(gòu)簡(jiǎn)圖Fig.2 Sketch map of cows feeding device
支撐座包括底座、稱質(zhì)量模塊和卡位模塊,支撐座上端設(shè)置有稱質(zhì)量模塊,稱質(zhì)量模塊上端設(shè)置有卡位模塊。其中,稱質(zhì)量模塊嵌入的傳感器為美國(guó)ZEMIC公司的L6G質(zhì)量傳感器。最大稱質(zhì)量200 kg,綜合誤差在±0.002 kg以內(nèi) ,可滿足奶牛個(gè)體飼喂對(duì)采食量計(jì)量精度的要求[10]。
欄桿包括主欄桿、副欄桿和上橫桿;主欄桿有2根,相隔在料斗之間,主欄桿下半段豎直,上半段分別向左右兩側(cè)傾斜,在上半段之間形成供奶牛頭部通過的第一空間,在下半段之間形成不足奶牛頭部通過、能夠容納奶牛頸部的第二空間;副欄桿自主欄桿下半段起,相隔主欄桿下半段向左右兩側(cè)等間距設(shè)置。
阻擋單元包括立柱、上下紅外發(fā)射與接收模塊、連接體和擋板;立柱有2根,對(duì)稱設(shè)置于主欄桿左右兩側(cè),任一立柱內(nèi)設(shè)置有升降裝置,通過連接體連接至正對(duì)主欄桿設(shè)置的擋板,用于帶動(dòng)擋板上下移動(dòng);上、下紅外發(fā)射模塊相對(duì)位于 2根立柱上側(cè),下、下紅外接收模塊相對(duì)位于 2根立柱下側(cè);擋板初始位置處于上、下紅外發(fā)射模塊之間;當(dāng)上紅外接收模塊檢測(cè)不到紅外光線時(shí),升降裝置帶動(dòng)擋板下移,直至擋板低于下紅外發(fā)射模塊和下紅外接收模塊;當(dāng)上紅外接收模塊能夠接收到光線,且下紅外接收模塊由不能接收到光線的狀態(tài)變化為能夠接收到光線的狀態(tài)時(shí),升降裝置帶動(dòng)擋板上移,直至擋板回到初始位置。
1.2 自動(dòng)飼喂系統(tǒng)的機(jī)電控制系統(tǒng)設(shè)計(jì)
如圖 1所示中央控制系統(tǒng)是以微處理器芯片電路為核心布局的。芯片采用 NXP32位微控制器(LPC1766FBD100)[11],其 CPU 采用功耗最低的Cortex-M3芯片,工作溫度?40~105 ℃,工作電壓2.0~3.6 V,閃存256 K,最高主頻能達(dá)到100 M。主要包括的控制電路如下:
1)牛只個(gè)體讀卡器結(jié)構(gòu)電路(圖 3),采用多通道R232接口模式,芯片為MAX232E。圖3中的上下鏈接電路是電平轉(zhuǎn)化電路,接口的信號(hào)電平值較高,易損壞接口電路的芯片,通過所示電路將接口的電平轉(zhuǎn)化成TTL電平[12]。
圖3 奶牛電子耳標(biāo)識(shí)別電路Fig.3 Electronic ear tag identification circuit of dairy cattle
2)飼料稱質(zhì)量數(shù)據(jù)采集電路(圖 4)。采用了 RC低通濾波器和 24位 AD轉(zhuǎn)換芯片,后者為德州ADS1232[13],片內(nèi)含有可編程的差分放大器,采集速率有10和80次/s 2種選擇,計(jì)量靜態(tài)精度10 g,稱量范圍0.01~200 kg,具有精度高、范圍大的特點(diǎn)。
圖4 飼料稱質(zhì)量數(shù)據(jù)采集電路Fig.4 Feed weighing data acquisition circuit
3)收發(fā)器電路(圖5),采用帶隔離的通用CAN收發(fā)器芯片,型號(hào)為CTM8251A且符合ISO 11898標(biāo)準(zhǔn),最大可允許連接110個(gè)節(jié)點(diǎn),速率可達(dá)1 MB/s。本電路及其輔助器件承擔(dān)數(shù)據(jù)的交互,即將采集的牛只識(shí)別數(shù)據(jù)、采食時(shí)間點(diǎn)數(shù)據(jù)及采食稱質(zhì)量數(shù)據(jù)等及時(shí)傳送到圖1所示的采食行為數(shù)據(jù)緩沖系統(tǒng)中。
圖5 收發(fā)器電路Fig.5 Transceiver circuit
4)采食行為數(shù)據(jù)緩存系統(tǒng)電路(圖 6),該存貯電路接受來自不同奶牛個(gè)體飼喂系統(tǒng)采集的數(shù)據(jù),實(shí)現(xiàn)數(shù)據(jù)的集中緩存貯,無需與之連接的PC機(jī)或服務(wù)器開機(jī)工作。設(shè)計(jì)存儲(chǔ)最小容量256 KB(可擴(kuò)展),采用鐵電存儲(chǔ)器和串行外設(shè) SPI接口,數(shù)據(jù)有線傳輸速率可達(dá) 15 MB/S預(yù)設(shè)可存儲(chǔ)14 000條數(shù)據(jù)記錄,且采用先進(jìn)先出的堆棧方式存貯數(shù)據(jù)。
1.3 自動(dòng)機(jī)電控制系統(tǒng)的上位機(jī)設(shè)計(jì)
本系統(tǒng)上位機(jī)系統(tǒng)開發(fā)包括2個(gè)部分,即圖1所示“飼喂控制系統(tǒng)”的嵌入式系統(tǒng)開發(fā)及“數(shù)據(jù)管理與分析系統(tǒng)”的軟件設(shè)計(jì)。系統(tǒng)開發(fā)框圖及功能設(shè)計(jì)如圖7所示。
如圖 7所示,飼喂控制嵌入式系統(tǒng)即下位機(jī)系統(tǒng)是控制精準(zhǔn)飼喂的,采用C語(yǔ)言開發(fā),實(shí)現(xiàn)的控制模塊嵌入到控制主板的內(nèi)存中,與其關(guān)聯(lián)的是上位機(jī)系統(tǒng)即數(shù)據(jù)管理及分析系統(tǒng)。后者采用C#語(yǔ)言開發(fā)[14],并以Access為數(shù)據(jù)庫(kù)系統(tǒng)。上位機(jī)及下位機(jī)系統(tǒng)可獨(dú)立運(yùn)行,從與之鏈接的現(xiàn)場(chǎng)采食數(shù)據(jù)存貯系統(tǒng)中導(dǎo)入或提取數(shù)據(jù),可開展如圖 7所示的各種分析處理與可視化顯示,甚至可將采食行為數(shù)據(jù)導(dǎo)出或升遷到遠(yuǎn)程的“奶牛場(chǎng)綜合信息管理平臺(tái)”中。
圖6 采食行為數(shù)據(jù)緩存系統(tǒng)電路Fig.6 Feeding behavior data caching system circuit
圖7 飼喂與數(shù)據(jù)采集處理上位機(jī)軟件開發(fā)功能設(shè)計(jì)Fig.7 PC software function design of feeding and data acquisition and processing
系統(tǒng)是以奶牛個(gè)體電子標(biāo)識(shí)編碼為基礎(chǔ),而編碼大致分為2種情形:第1種是按國(guó)家農(nóng)業(yè)部2007年頒布的67號(hào)令[15]執(zhí)行,即15位數(shù)字編碼,第1位代表畜種,牛為“2”,第2至第7位共6位為養(yǎng)殖場(chǎng)所屬縣市行政區(qū)劃代碼,最后8位為順序號(hào);第2種方案采用國(guó)際動(dòng)物編碼協(xié)會(huì)(international committee for animal recording,ICAR)認(rèn)證機(jī)構(gòu)生產(chǎn)的電子標(biāo)簽[15],通常為無線射頻識(shí)別(RFID)標(biāo)簽,編碼也為15位,不同的是前6位為ICAR賦予生產(chǎn)標(biāo)簽企業(yè)的編碼,后 9位為企業(yè)自定義的順序號(hào),由此構(gòu)成的15位是唯一投放市場(chǎng)的。通常將編碼事先寫入芯片,而標(biāo)簽的外殼上也會(huì)印上醒目的編碼,同時(shí)滿足自動(dòng)識(shí)別與肉眼識(shí)別。在本系統(tǒng)中,采用農(nóng)業(yè)部67號(hào)令的編碼規(guī)則進(jìn)行奶牛個(gè)體編碼的設(shè)計(jì)。
其次,主要數(shù)據(jù)項(xiàng)目包括每次采食起始時(shí)間及離開時(shí)間、起始料槽質(zhì)量(含飼料)及離開時(shí)料槽質(zhì)量(含飼料)等?;谏鲜?5項(xiàng)指標(biāo),可直接派生的數(shù)據(jù)包括奶牛每天的采食次數(shù)、采食量、單次采食時(shí)長(zhǎng)及總采食時(shí)長(zhǎng)等,可實(shí)現(xiàn)對(duì)采食行為的定量分析,并發(fā)現(xiàn)不同胎次、不同泌乳潛力的奶牛采食規(guī)律特性。
1.4 奶牛精準(zhǔn)飼喂的干物質(zhì)采食量預(yù)測(cè)模型
本飼喂裝置主要用于飼喂 TMR日糧。因此在制作TMR及預(yù)投TMR時(shí),需要預(yù)測(cè)奶牛個(gè)體的干物質(zhì)采食量(dry matter intake, DMI)。本研究擬采用NRC(2001)[16]推薦的奶牛DMI預(yù)測(cè)模型:
式中4%FCM為4%乳脂率矯正奶量,kg/d;4%FC M=(0.4×日產(chǎn)奶量)+(15×乳脂率),kg;BW為體質(zhì)量,kg;WOL為泌乳周數(shù)。
此外,泌乳奶牛飼喂所用TMR最佳干物質(zhì)質(zhì)量分?jǐn)?shù)為50%~75%[17],偏濕或偏干的日糧均會(huì)影響采食量。
因此,在初步估測(cè)或在線感知奶牛個(gè)體體質(zhì)量、預(yù)期產(chǎn)奶量及泌乳周數(shù)后,可按公式(1)估算出DMI,然后依據(jù)測(cè)定的或估測(cè)TMR的水分含量,粗略得到理論上應(yīng)飼喂的TMR的原樣量,作為個(gè)體奶牛每天制作及投喂TMR的參考量。
2.1 稱質(zhì)量性能測(cè)定與數(shù)據(jù)分析
按圖2及圖6的機(jī)電設(shè)計(jì)的外形及原理在河南南商農(nóng)牧科技有限公司的智能設(shè)備研制車間研制第 1批設(shè)備6套,并安裝在北京昌平誠(chéng)遠(yuǎn)盛隆奶牛養(yǎng)殖場(chǎng)的試驗(yàn)牛圈,進(jìn)行了靜態(tài)的稱質(zhì)量試驗(yàn)。在對(duì)每個(gè)飼喂設(shè)備進(jìn)行校正及回零處理即消去系統(tǒng)誤差后,考慮泌乳牛最可能的采食量范圍在10~70 kg之間,采用4個(gè)標(biāo)準(zhǔn)稱質(zhì)量水平,即15、30、45、60 kg,6個(gè)重復(fù)即同一質(zhì)量的TMR飼料分別在6臺(tái)設(shè)備上計(jì)量1次。
表1數(shù)據(jù)統(tǒng)計(jì)表明,各質(zhì)量組實(shí)際稱量質(zhì)量與標(biāo)準(zhǔn)質(zhì)量均無顯著差異(P>0.05),而稱質(zhì)量的相對(duì)誤差在0.15%內(nèi),完全滿足奶牛飼喂計(jì)量精度要求。研究證明,該自動(dòng)飼喂系統(tǒng)能準(zhǔn)確稱量10~70 kg的質(zhì)量,且稱質(zhì)量精度符合奶牛精準(zhǔn)飼喂要求(一般認(rèn)為不超過1%即可)。
表1 奶牛飼喂自動(dòng)機(jī)電控制系統(tǒng)的稱質(zhì)量性能試驗(yàn)Table1 Weighing performance test of automatic mechanical and electrical control system for dairy cows
2.2 奶牛個(gè)體采食試驗(yàn)
2.2.1 飼喂試驗(yàn)設(shè)計(jì)
從北京昌平誠(chéng)遠(yuǎn)盛隆奶牛養(yǎng)殖場(chǎng)81頭泌乳奶牛中,隨機(jī)挑選 6頭體質(zhì)量、胎次及泌乳日齡相近的健康荷斯坦奶牛。飼養(yǎng)在同一個(gè)試驗(yàn)圈欄內(nèi),共配備按2.1所述的飼喂系統(tǒng)6套,試驗(yàn)期為100 d,且每天保證飼喂料斗內(nèi)盛有的TMR飼料量為公式(1)估算的110%,通過開發(fā)的數(shù)據(jù)存貯系統(tǒng)記錄 6頭奶牛的采食次數(shù)、采食量及采食時(shí)間。
2.2.2 采食試驗(yàn)結(jié)果與討論
觀察不同頭牛的日平均采食次數(shù)、均次采食量及采食時(shí)間,并對(duì)上述3項(xiàng)指標(biāo)均進(jìn)行統(tǒng)計(jì)處理(表2)。其中,每日的DMI是基于原樣水分為57.6%折算的。此外,由于在每臺(tái)飼喂器的頂端采用了功率為12 W的閱讀器,耳標(biāo)感應(yīng)半徑為15 cm,經(jīng)反復(fù)測(cè)試,識(shí)讀率為100%。
表2 個(gè)體飼喂裝置飼喂性能數(shù)據(jù)Table2 Performance data of individual feeding device
表2統(tǒng)計(jì)分析表明,不同個(gè)體奶牛采用自動(dòng)飼喂表現(xiàn)的采食特性如下:日均采食次數(shù)為 10~13;個(gè)體奶牛DMI為18~20.5 kg;奶牛個(gè)體的日均采食時(shí)間為5.1~5.7 h。盡管所選奶牛的胎次、體質(zhì)量及泌乳日齡相近,可能與泌乳潛力及體況有關(guān),需要結(jié)合產(chǎn)奶量及品質(zhì)數(shù)據(jù)綜合分析。
以上數(shù)據(jù)分析表明,奶牛個(gè)體之間的采食特性參數(shù)均在一定的閾值范圍內(nèi)變化,但個(gè)體之間存在差異性。就采食次數(shù)而言,本性能試驗(yàn)得到的次數(shù)為10~13次,與 Bach等[18]報(bào)道的 9~14次基本吻合,且均為在飼喂TMR條件下觀察的數(shù)據(jù),說明了該設(shè)備基本不影響奶牛的自由采食行為。而趙宗勝等[19]的研究報(bào)道發(fā)現(xiàn),奶牛日自由采食粗飼料的次數(shù)為 4.0±2.0,差異的原因主要是傳統(tǒng)的“先粗后精”與現(xiàn)代的TMR飼喂模式不同造成的。王建平等[20]、Trevor等[21]提出“少吃多餐”可以促進(jìn)采食量,更利于瘤胃的均勻發(fā)酵。
在采食量上,個(gè)體奶牛每日總實(shí)際采食量(表 2中的均次采食量乘以采食次數(shù))與理論采食量(由式(1)估算的)的實(shí)際誤差在?4.76%~7.83%之間(因理論數(shù)據(jù)也是參考值,表 2中未列出),即低于或高于模型預(yù)測(cè)的采食量。差異的存在可能與牛只實(shí)際體質(zhì)量、飼料粒度、預(yù)測(cè)的產(chǎn)奶量的準(zhǔn)確性有關(guān)[22-29],也與 NRC(2001)的采食量模型與中國(guó)荷斯坦奶牛的適應(yīng)性有關(guān)。楊琴等[30-31]通過采食量的實(shí)際數(shù)據(jù)驗(yàn)證,NRC模型預(yù)測(cè)中國(guó)荷斯坦奶牛采食量存在局限性。
采食行為的重要指標(biāo)是采食的時(shí)間長(zhǎng)度。一般認(rèn)為,奶牛的采食時(shí)間受控制于各種內(nèi)外部因素,包括泌乳潛力、生理階段、日糧的養(yǎng)分及物理特性(纖維的長(zhǎng)短及適口性)等,也與日糧的飼喂模式有關(guān)。有研究報(bào)道,采食時(shí)長(zhǎng)為3~6 h[32],高產(chǎn)成母牛為3~5 h[33]。本試驗(yàn)得到的平均日采食時(shí)間為 5.38 h,略高于先前的報(bào)道結(jié)果,可能與本試驗(yàn)?zāi)膛ふ夜潭ú墒车娘曃寡b置有關(guān),也受控于飼料的長(zhǎng)度及適口性,需要進(jìn)一步增加奶牛頭數(shù)和觀察時(shí)間以獲得更一般性的結(jié)論。
1)設(shè)計(jì)了一種奶牛飼喂自動(dòng)機(jī)電控制系統(tǒng),對(duì)奶牛個(gè)體的識(shí)別率為100%,采用質(zhì)量傳感器靜態(tài)計(jì)量,系統(tǒng)的計(jì)量相對(duì)誤差在0.15%以內(nèi),符合精準(zhǔn)飼喂及采食行為學(xué)研究對(duì)設(shè)備的要求。
2)個(gè)體飼喂試驗(yàn)表明,奶牛的采食次數(shù)、采食量及采食節(jié)律等采食行為均符合奶牛的行為特點(diǎn),設(shè)備較好地滿足了奶牛個(gè)體的精細(xì)飼喂需求,為研究奶牛的采食行為規(guī)律提供了在線的自動(dòng)數(shù)據(jù)采集系統(tǒng)。
增加設(shè)備數(shù)量、試驗(yàn)?zāi)膛n^數(shù)及試驗(yàn)天數(shù),在獲得大量采食行為數(shù)據(jù)的基礎(chǔ)上開展大樣本量的大數(shù)據(jù)分析,將可獲得奶牛采食行為更一般性的規(guī)律,甚至可以精細(xì)到不同泌乳階段的采食行為特點(diǎn)。
[1] 艾格農(nóng)業(yè). 2015中國(guó)奶業(yè),血雨腥風(fēng)的“春秋”時(shí)代[EB/OL]. (2016-03-17)[2017-04-05] http://blog.sina.com.cn/s/blog_ 6743e2e10102wewz.html.
[2] Feed Marketing & Distribution[J]. Feedstuffs, 2015:9.
[3] 陸東林,馬連山.奶牛行為學(xué)及其在生產(chǎn)中的應(yīng)用[J].中國(guó)乳業(yè),2009(7):52-56. Lu Donglin, Ma Lianshan. Dairy cow behavior and its application in production[J]. China Dairy Industry, 2009(7): 52-56. (in Chinese with English abstract)
[4] 熊本海,楊振剛,楊亮,等. 中國(guó)畜牧業(yè)物聯(lián)網(wǎng)技術(shù)應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):237-246. Xiong Benhai, Yang Zhengang, Yang Liang, et al. Review on application of Internet of Things technology in animal husbandry in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(Supp.1): 237-246. (in Chinese with English abstract)
[5] 楊亮,熊本海,曹沛,等. 妊娠母豬自動(dòng)飼喂機(jī)電控制系統(tǒng)的優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(21):66-71. Yang Liang, Xiong Benhai, Cao Pei, et a1. Design and experiment of electromechanical control system of automatic feeder for gestation sow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 66-71. (in Chinese with English abstract)
[6] 熊本海,楊亮,曹沛,等. 哺乳母豬自動(dòng)飼喂機(jī)電控制系統(tǒng)的優(yōu)化設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):28-33. Xiong Benhai, Yang Liang, Cao Pei, et al. Optimal design and test of electromechanical control system of automatic feeder for nursing sow [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 28-33. (in Chinese with English abstract)
[7] 田富洋. 奶牛采食量自動(dòng)檢測(cè)儀的研制[D]. 泰安:山東農(nóng)業(yè)大學(xué),2006. Tian Fuyang. Design and Research of Testing Instrument for Cow’s Feed Intake[D]. Taian: Shandong Agricultural University, 2006. (in Chinese with English abstract)
[8] 劉文博,王濤,劉勇. 基于ZigBee的奶牛采食量自動(dòng)記錄儀[J]. 自動(dòng)化與儀器儀表,2014(10):72-74. Liu Wenbo, Wang Tao, Liu Yong. An automatic recorder for dairy cattle feed intake based on ZigBee[J]. Automation & Instrumentation, 2014(10): 72-74. (in Chinese with English abstract)
[9] 高振江,郭躍虎,蒙賀偉,等. 自走式奶牛精確飼喂機(jī)控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,40(11):226-230. Gao Zhenjiang, Guo Yuehu, Meng Hewei, et al. Design of self-propelled precise feeding machine control system for single dairy cow[J]. Transactions of The Chinese Society of Agricultural Machinery, 2012, 40(11): 226-230. (in Chinese with English abstract)
[10] 蔡工. ZEMIC稱重傳感器[EB/OL]. (2015-01-30)[2017-03-30] http://wenku.baidu.com/view/62c0336ea45177232f60a2f7.ht ml?from=search.
[11] 蔣煒,馬維華. LPC1766與SI4432的無線數(shù)據(jù)傳輸系統(tǒng)設(shè)計(jì)[J]. 單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2013(1):31-33. Jiang Wei, Ma Weihua. Wireless data transmission system based on LPC1766 and Si4432[J]. Microcontrollers & Embedded Systems, 2013(1): 31-33. (in Chinese with English abstract)
[12] Sipex. True +3.0V to +5.5V RS-232 Transceivers[M]. Sipex Corporation, 2005: 1-20.
[13] 姜伶斌,劉思頌,黨正強(qiáng). 基于ADS1232的高精度測(cè)試技術(shù)[J]. 中國(guó)測(cè)試技術(shù),2008,34(3):138-140. Jiang Lingbin, Liu Sisong, Dang Zhengqiang. High-precision testing technology based on ADS1232[J]. China Measurement & Testing Technology, 2008, 34(3): 138-140. (in Chinese with English abstract)
[14] 北京阿博泰克北大青鳥信息技術(shù)有限公司編著. NET平臺(tái)和C#編程[M]. 北京:科學(xué)技術(shù)文獻(xiàn)出版社,2006.
[15] 中國(guó)農(nóng)業(yè)部. 中華人民共和國(guó)農(nóng)業(yè)部第 67號(hào)令[EB/OL]. (2006-06-29)[2014-10-22]. http://www.gov.cn/flfg/2006-06/29/ content_322763.htm.
[16] National Research Council (NRC). Nutrient Requirements of Dairy Cows[M].7th ed. Washington, DC: National Academic Science, 2001.
[17] 陳前嶺,陳連民,張軍,等. 全混合日糧(TMR)飼喂技術(shù)在奶牛養(yǎng)殖生產(chǎn)中應(yīng)用的研究進(jìn)展[J]. 飼料工業(yè),2014,35(24):54-57. Chen Qianling, Chen Lianmin, Zhang Jun, et al. Progression on the application of TMR technique in the practice of dairy production[J]. Feed Industry, 2014, 35(24): 54-57. (in Chinese with English abstract)
[18] Bach A, Valls N, Solans A, et al. Associations between nondietary factors and dairy herd performance[J]. Journal of Dairy Science, 2008, 91: 3259-3267.
[19] 趙宗勝,賀慶國(guó),曹志輝,等. 荷斯坦泌乳牛的行為觀察[J].中國(guó)奶牛,2001(2):36-39. Zhao Zongsheng, He Qingguo, Cao Zhihui, et al. Observation on behavior of holstein[J]. Chinese Dairy Cattle, 2001(2): 36-39. (in Chinese with English abstract)
[20] 王建平,張嘉保,王清義,等. 奶牛的隨意采食與調(diào)控研究現(xiàn)狀[C]//全國(guó)養(yǎng)??茖W(xué)研討會(huì)文集,2005:190-196. Wang Jianping, Zhang Jiabao, Wang Qingyi, et al. Current situation of cow’s random feeding and regulation[C]// National Cattle Science Symposium, 2005: 190-196. (in Chinese with English abstract)
[21] Trevor D,曹志軍,黃鴻威,等. 如何實(shí)現(xiàn)飼料采食量最大化[J]. 中國(guó)奶牛,2015(15):51-53. Trevor D, Cao Zhijun, Huang Hongwei, et al. How to maximize feed intake[J]. Chinese Dairy Cattle, 2015(15): 51-53. (in Chinese with English abstract)
[22] Yansari A T, Valizadeh R, Naserian A, et al. Effects of Alfalfa particle size and specific gravity on chewing activity, digestibility and performance of Holstein dairy cows[J]. Journal of Dairy Science,2004, 87(11): 3912-3924.
[23] Einarson M S, Plaizier J C, WittenbergRG KM. Effects of barley silage chop length on productivity and rumen conditions of lactating dairy cows fed a total mixed ration [J]. Journal of Dairy Science, 2004, 87(9): 2987-2996.
[24] Kononoff P J, Heinrichs A J. The effect of corn silage particle size and cottonseed hulls on cows in early lactation[J]. Journal of Dairy Science, 2003, 86(7): 2438-3451.
[25] Alamouti A A, Alikhani A M, Ghorbani G R, et al. Effects of inclusion of neutral detergent soluble fibre sources in diets varying in forage particle size on feed intake, digestive processes, and performance of mid-lactation Holstein cows[J]. Animal Feed Science and Technology, 2009, 154(1/2): 9-23.
[26] Beauchemin K A, Yang W Z, Rode L M. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production[J]. Journal of Dairy Science, 2003, 86(2): 630-643.
[27] Yang W Z, Beauchemin K A. Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage[J]. Journal of Dairy Science, 2006, 89(1): 217-228.
[28] Yang W Z, Beauchemin K A. Effects of physically effective fiber on digestion and milk production by dairy cows fed diets based on corn silage[J]. Journal of Dairy Science, 2005, 88(3): 1090-1098.
[29] Beauchemin K A, Yang W Z. Effects of physically effective fiber on intake,chewing activity,and ruminal acidosis for dairy cows fed diets based on corn silage[J]. Journal of Dairy Science, 2005, 88(6): 2117-2129.
[30] 楊琴,熊本海,韓英東,等. 奶牛采食調(diào)控理論與干物質(zhì)采食量模型研究現(xiàn)狀和分析[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(1):34-42. Yang Qin, Xiong Benhai, Han Yingdong, et al. Research situation and analysis on feed intake theory and dry matter intake models for dairy cows[J]. Chinese Journal of Animal Nutrition, 2014, 26(1): 34-42. (in Chinese with English abstract)
[31] 楊琴. 北京奶牛常用飼料養(yǎng)分分析及干物質(zhì)采食量模型驗(yàn)證[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014. Yang Qin. Analysis of Nutrient Composition of Dairy Common Feedstuff in Beijing and Verification of Dry Matter Intake Model[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)
[32] 張華琦,楊正德. 不同泌乳時(shí)期荷斯坦奶牛的行為觀察[J].中國(guó)奶牛,2008(3):19-21. Zhang Huaqi, Yang Zhengde. Observation on behavior of Holstein dairy cows during different lactation period[J]. Chinese Dairy Cattle, 2008(3): 19-21. (in Chinese with English abstract)
[33] Lene M,黃鴻威,宋揚(yáng),等. 奶牛的行為與時(shí)間分配[J].中國(guó)奶牛,2015(8):61-63. Lene M, Huang Hongwei, Song Yang, et al. Behavior and time allocation of dairy cattle[J]. Chinese Dairy Cattle, 2015(8): 61-63. (in Chinese with English abstract)
Design and test of electromechanical control system of automatic feeder for dairy cow
Xiong Benhai1, Jiang Linshu2, Yang Liang1, Wang Kun1, Pan Xiaohua1
(1.State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing100193, China; 2. Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing102206,China)
In order to perform the studies on the precision feeding and behavioral monitoring of dairy cows, an automatic feeder of dairy cows was designed, which accomplished the functions of cows automatic identification, automatic feeding data (feed intake time and amount) acquisition and data analysis simultaneously. The automatic feeder was composed of mechanical device system, electric identification system, weighing system, central control system, live data collection and storage system, and remote feeding data extraction and analysis system. The mechanical device system was constituted of feeding bin, brackets, railing and blocking apron. The electric identification system included reading antenna and pneumatic switch for discharging. The weighting system was made up of brackets and embedded weight sensor (L6G, technical parameters: Weighing range ≤ 200 kg, error less than 0.002 kg). Central control system was composed of microprocessor (LPC1766, technical parameters: Operating temperature of from -40 to 105 ; ℃operating voltage of 2.0-3.6 V; flash memory of 256 K, low power consumption), watchdog reset circuit, card reader circuit, weighing data collection circuit, data communication circuit, data transceiver circuit, and external regulator circuit. The reader circuit adopted multi-channel R232 interface and chips (Model: MAX232E), and low-pass filter and 24 bit conversion chip (Model: ADS1232, Dezhou) were used in the weighing data collection circuit. For transceiver circuit, according to the standard ISO 11898, the universal CAN (controller area network) transceiver chip (Model: CTM8251A) with isolation function was adopted, which had 110 nodes at the most and the transmission rate increased to 1 M/s. The ferroelectric memory and serial peripheral interface were adopted in the circuit of data caching system, and the cable data transmission rate could reach 15 MB/s. The live data collection and storage system
signals from the central control system in each feeder, the preset record number in storage system could reach 14 000, and the form of stack data was applied in system. The feeding data could be managed and analyzed in real time by data process system in PC (personal computer) terminal. The feeding experiment showed that the cognition rate for low frequency RFID (radio frequency identification) (134 kHz) ear tag by the automatic feeder reached 100%, the range of weighing was 0.01-200 kg, the precise was 10 g, and the weighting error was below 0.15%, which could meet the requirement of cows’ precise feeding intake record. The performance test of control system showed that individual cow’s feeding behaviors, including feeding frequency, intake time, and feed intake, were different significantly (P<0.05). The average feeding frequency was 10-13 times per day, and the average intake time was 5.38 h per day, which were consistent with cow feeding characteristics. However, the deviation between average daily feed intake and predicted intake value by NRC (National Research Council) model was –4.76%-7.83%, which may be caused by the low applicability of NRC model. In conclusion, the automatic feeder developed in our study can meet the requirement of precise feeding in cows’ production, and supply an online and intelligent data automatic record and analysis platform for cow feeding behavior research.
design; control systems; automatic testing; dairy cow; precise feeding; feeding behavior; data analysis
10.11975/j.issn.1002-6819.2017.07.020
S83, S24
A
1002-6819(2017)-07-0157-07
2016-07-18
2017-03-22
國(guó)家“十三五”重點(diǎn)研發(fā)課題(2016YFD0700205, 2016YFD0700201)
熊本海,男,湖北紅安人,研究員,博士生導(dǎo)師,研究方向?yàn)閯?dòng)物營(yíng)養(yǎng)與信息技術(shù)。北京 中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,100193。
Email:Xiongbenhai@caas.cn