王冬林,馮 浩,3※,李 毅
(1. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100; 2. 西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 712100;3. 中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100)
礫石覆蓋對(duì)土壤水熱過(guò)程及旱作小麥玉米產(chǎn)量的影響
王冬林1,2,馮 浩1,2,3※,李 毅1,2
(1. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100; 2. 西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,楊凌 712100;3. 中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100)
為了揭示礫石覆蓋對(duì)農(nóng)田土壤水熱變化及作物產(chǎn)量形成的影響,2013—2015年采用小區(qū)試驗(yàn)法研究冬小麥-夏玉米輪作條件下土壤水分變化、溫度效應(yīng)以及作物生長(zhǎng)和產(chǎn)量之間的相互作用關(guān)系。田間試驗(yàn)設(shè)置無(wú)覆蓋(CK)、25%礫石覆蓋(GM1)、50%礫石覆蓋(GM2)、75%礫石覆蓋(GM3)和100%礫石覆蓋(GM4)5個(gè)處理。結(jié)果表明:礫石覆蓋度與土壤水分呈顯著正相關(guān),100%礫石覆蓋處理土壤貯水量最高;干旱脅迫條件下礫石覆蓋度越高土壤的保水性越好,降雨條件下礫石覆蓋度越高土壤截留雨水的能力越大。礫石覆蓋具有明顯的增溫效應(yīng),4個(gè)礫石覆蓋處理的土壤平均溫度大于CK處理,GM4處理土壤平均溫度最大;礫石覆蓋處理可以認(rèn)為是一種有效的溫度調(diào)節(jié)方式,具體表現(xiàn)在低溫(?5~0 ℃)條件下GM4處理較CK處理土壤溫度增加5 ℃,高溫(40~45 ℃)條件下GM4處理較CK處理土壤溫度降低3.7℃;在寒冷氣候和水分虧缺的情況下4個(gè)礫石覆蓋處理增溫能力均大于對(duì)照。此外,夏玉米葉面積指數(shù)隨著礫石覆蓋度增加而增大。100%礫石覆蓋處理的2季冬小麥和夏玉米平均產(chǎn)量較對(duì)照處理分別增加了58.55%和22.50%??梢?,礫石覆蓋技術(shù)可以有效保持土壤水分、增加土壤溫度、促進(jìn)作物生長(zhǎng)和提高產(chǎn)量,是干旱半干旱地區(qū)應(yīng)對(duì)水分脅迫和氣候變化、實(shí)現(xiàn)農(nóng)業(yè)增產(chǎn)的有效途徑。
礫石;土壤水分;溫度;產(chǎn)量;響應(yīng)機(jī)制;冬小麥;玉米
王冬林,馮 浩,李 毅. 礫石覆蓋對(duì)土壤水熱過(guò)程及旱作小麥玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):132-139.doi:10.11975/j.issn.1002-6819.2017.07.017 http://www.tcsae.org
Wang Donglin, Feng Hao, Li Yi. Effects of gravel mulch on soil hydro-thermal process and rain-fed wheat-maize yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 132-139. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.017 http://www.tcsae.org
礫石覆蓋技術(shù)是中國(guó)西北干旱半干旱地區(qū)經(jīng)過(guò)長(zhǎng)期生產(chǎn)實(shí)踐形成的一種獨(dú)有的保護(hù)性耕作方法,在改善土壤環(huán)境、增加糧食產(chǎn)量、提高作物品質(zhì)等方面具有顯著作用[1]。Li等[2-4]研究表明,砂石覆蓋在高度侵蝕的黃土高原地區(qū)為植物生長(zhǎng)提供了更好的生長(zhǎng)環(huán)境,且石子粒徑越小對(duì)雨水?dāng)r截效果越好。作物在生長(zhǎng)過(guò)程中,土壤能夠穩(wěn)定而均勻地供給農(nóng)作物生長(zhǎng)所需要的水分,有利于作物品質(zhì)的提高[5-6]。礫石覆蓋不同于秸稈覆蓋及塑料覆膜,其土壤水分和土壤溫度的形成必然區(qū)別于其他覆蓋方式[7-10]。農(nóng)田表面的礫石覆蓋層使得其土壤水分特征及分布規(guī)律不同于沒有覆蓋處理的土壤,Ma等[11]通過(guò)田間試驗(yàn)研究表明,卵石和砂子混合覆蓋厚度越大,越能保持土壤水分,呂忠恕等[12]通過(guò)試驗(yàn)測(cè)得砂田10 cm處土層的土壤含水率比土田高1.28%~2.96%。農(nóng)田地表覆蓋礫石能夠增加土壤溫度[13-15]。Fairbourn[16]研究表明,白天礫石覆蓋土壤的溫度比砂覆蓋及無(wú)覆蓋土壤的高。王金牛等[17]研究不同砂礫組成條件下的土壤蒸發(fā)特征和溫度變化,結(jié)果表明4 cm厚度砂礫層覆蓋條件下晝夜平均增溫幅度 2~30 ℃。礫石覆蓋還具有明顯的生態(tài)防護(hù)效果,許強(qiáng)等[18]以連續(xù)使用17 a年的砂田及撂荒砂田為研究對(duì)象,結(jié)果表明連續(xù)種植可增加砂田土壤含水量,養(yǎng)分含量在連續(xù)種植4~5 a后達(dá)到最高。Gale等[19]指出礫石覆蓋技術(shù)可以為相似作物生長(zhǎng)環(huán)境下的農(nóng)業(yè)措施提供一種思路。
國(guó)內(nèi)外關(guān)于礫石覆蓋的研究多在室內(nèi)條件下進(jìn)行,礫石覆蓋技術(shù)在大田實(shí)踐上的理論研究尚不完善,沒有在農(nóng)田土壤水分、溫度以及作物產(chǎn)量等研究方面形成系統(tǒng)的成果,有待于進(jìn)一步地深入探究。因此有必要開展礫石覆蓋大田試驗(yàn)研究,并結(jié)合其歷史地位、實(shí)際生產(chǎn)影響對(duì)其重要性做出評(píng)價(jià)[20]。劉曉青等[21-22]的研究結(jié)合了當(dāng)?shù)毓喔攘?xí)慣,側(cè)重對(duì)礫石覆蓋條件下的土壤蒸發(fā)、作物系數(shù)及水分利用效率進(jìn)行研究,認(rèn)為礫石覆蓋能減少蒸發(fā)促進(jìn)入滲,增加土壤剖面5 cm深處土壤溫度,提高作物產(chǎn)量和水分利用效率??紤]到水分是西北干旱半干旱地區(qū)農(nóng)業(yè)發(fā)展的主要限制因素,本文通過(guò)2 a旱作田間試驗(yàn),研究冬小麥-夏玉米輪作條件下,礫石覆蓋對(duì)土壤水分、溫度以及作物生長(zhǎng)和產(chǎn)量的影響,分析土壤水分及溫度的季節(jié)性變化規(guī)律以及土壤剖面水分運(yùn)動(dòng)規(guī)律和逐層溫度變化規(guī)律,探討各處理應(yīng)對(duì)干旱脅迫、雨水脅迫以及應(yīng)對(duì)極端氣候變化的能力,旨在揭示礫石覆蓋保水增溫以及促進(jìn)作物生長(zhǎng)的機(jī)理,為豐富農(nóng)田覆蓋耕作技術(shù)和完善礫石覆蓋理論在農(nóng)業(yè)生產(chǎn)方面的應(yīng)用提供一種研究思路和方法。
1.1 試驗(yàn)地點(diǎn)及試驗(yàn)設(shè)計(jì)
2013年10月-2015年10月在陜西楊凌西北農(nóng)林科技大學(xué)中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院灌溉試驗(yàn)站(108°24′E、34°20′N)進(jìn)行連續(xù)2 a的冬小麥-夏玉米輪作大田試驗(yàn)。試驗(yàn)站海拔521 m,站內(nèi)設(shè)有國(guó)家一般氣象觀測(cè)站。該區(qū)光熱資源充足,年日照時(shí)數(shù) 2 163.8 h,多年平均氣溫12.9 ℃;降水主要集中在 7-10月,多年平均降水量為635.1 mm,年蒸發(fā)量為993.2 mm,屬于半濕潤(rùn)干旱地區(qū)。
試驗(yàn)設(shè)置5個(gè)礫石覆蓋度水平,形成無(wú)覆蓋(CK)、25%覆蓋度(GM1)、50%覆蓋度(GM2)、75%覆蓋度(GM3)和100%覆蓋度(GM4)5個(gè)處理,各重復(fù)3次,共15個(gè)小區(qū)。試驗(yàn)小區(qū)東西走向,長(zhǎng)5 m,寬3 m,面積為15 m2,各小區(qū)隨機(jī)排列分布,周圍布置1 m寬的保護(hù)行。礫石粒徑為2 cm,田間鋪設(shè)方式為按照8 kg/m2的覆蓋水平在植株行間進(jìn)行均勻條狀鋪設(shè),于每季收獲后清理,第 2年重新鋪設(shè)礫石。礫石覆蓋度的定義參考覆膜開孔度[23]的計(jì)算。
式中δ為礫石覆蓋度,即礫石在試驗(yàn)小區(qū)鋪設(shè)的面積AGM占試驗(yàn)小區(qū)總面積APlot的比例,%。
按照試驗(yàn)設(shè)計(jì)要求,除礫石覆蓋度不同外,其他田間管理方式相同。供試土壤為中壤土,1 m土層平均田間持水量為23%~25%,凋萎含水量為8.5%,土壤平均容重為1.44 g/cm3。供試小麥品種為小偃22號(hào),2014年播種時(shí)間為10月19日,2015年播種時(shí)間為10月17日,分別于2014年6月7日和2015年6月5日收獲。冬小麥-夏玉米全生育期雨養(yǎng)不灌水,于播種前將基肥一次翻入土壤,施用量分別為氮肥150 kg/hm2、磷肥100 kg/hm2。鋤草方式為定期人工鋤草,耕作方式為免耕。
1.2 測(cè)定項(xiàng)目及方法
采用管式土壤水分測(cè)定儀TRIME-IPH TDR(德國(guó)IMKO公司,精度±3.0%)分層測(cè)定不同生育期的土壤剖面體積含水率。曲管水銀地溫計(jì)均埋設(shè)在小區(qū)中心位置,分別記錄8:00、10:00、12:00、14:00、16:00、18:00時(shí)5、10、15、20、25 cm土層的土壤溫度數(shù)據(jù),監(jiān)測(cè)頻率為7 d 1次。
每個(gè)生育期內(nèi)監(jiān)測(cè)植株生長(zhǎng)狀況(株高、根長(zhǎng)、葉面積指數(shù))和生物量(干物質(zhì))。株高、根長(zhǎng)用直尺和游標(biāo)卡尺測(cè)量;葉面積指數(shù)(leaf area index)用英國(guó)Delta T儀器公司生產(chǎn)的Sunscan 2000冠層分析儀測(cè)定;根區(qū)干物質(zhì)用水洗和烘干法測(cè)定。成熟后的小麥人工單打單收、脫粒測(cè)產(chǎn),并計(jì)算單位面積產(chǎn)量。
對(duì) 2 a土壤水分試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析(樣本數(shù)為105),結(jié)合Li等[2]和彭紅濤[24]研究結(jié)果,本文選取差異較大的表層1 m土壤貯水量隨時(shí)間的變化來(lái)描述土壤的保水能力,見式(2)。
式中η反映礫石覆蓋層保水能力,其值越大,保水能力越強(qiáng);Δw為2次測(cè)量之間土壤貯水量變化量,mm;w0為土壤初始貯水量,mm;T1為2次測(cè)量間隔的時(shí)間,d;A和B分別為計(jì)算系數(shù)。
礫石覆蓋層截留雨水的過(guò)程比較復(fù)雜,用降雨后表層土壤貯水量隨時(shí)間的減少來(lái)描述土壤的降雨截蓄能力,見式(3)
式中ξ反映礫石覆蓋層截留雨水能力的大小,其值越大,截留雨水能力越大;Pr為最近一次的降雨量,mm;T2為該次測(cè)量距離降雨發(fā)生的時(shí)間,d;a、b、c、d均為計(jì)算系數(shù)。
從土壤溫度對(duì)氣溫的響應(yīng)和土壤溫度對(duì)土壤含水率的響應(yīng) 2個(gè)方面入手,分別用土壤溫度相對(duì)氣溫增加的百分比、土壤溫度相對(duì)氣溫的增加幅度與土壤含水率的比值計(jì)算礫石覆蓋層的增溫能力,見式(4)和式(5)。
式中Er為土壤溫度Ts相對(duì)于氣溫Ta的增溫能力,其值越大,土壤溫度對(duì)氣溫的響應(yīng)越敏感;Eθ為土壤溫度Ts相對(duì)于氣溫Ta和土壤水分的增溫能力,℃/%,其值越大,土壤溫度相對(duì)氣溫的變化對(duì)土壤水分的響應(yīng)越敏感;θ為土壤體積含水率,%。
1.3 資料統(tǒng)計(jì)與分析
利用 Microsoft Excel V2010進(jìn)行數(shù)據(jù)分析,采用SPSS22.0軟件中的 Duncan新復(fù)極差法進(jìn)行顯著性檢驗(yàn)(P<0.01或0.05),Origin9.0軟件繪制圖表。
2.1 不同處理對(duì)土壤水分的影響
2.1.1 土壤水分的變化規(guī)律
2季冬小麥-夏玉米生育期土壤水分具有相似的季節(jié)性變化規(guī)律,出苗至拔節(jié)期的土壤貯水量較低,拔節(jié)至成熟期受降雨增加的影響土壤貯水量顯著增加,以2013-2014年為例,冬小麥-夏玉米生長(zhǎng)季各處理土壤水分變化如圖1所示。各處理1 m土壤貯水量年間差異表現(xiàn)為出峰時(shí)間、出峰次數(shù)以及峰值大小的不同,這與降雨頻次、降雨量大小有關(guān)。圖 1中土壤貯水量變化隨著礫石覆蓋度的增加而增大,4種礫石覆蓋處理?xiàng)l件下1 m土壤貯水量總體高于對(duì)照無(wú)覆蓋處理,當(dāng)?shù)[石覆蓋度為100%時(shí),即GM4處理土壤貯水量平均最高。由表 1可知,各處理間差異大部分時(shí)候達(dá)顯著水平(P<0.05),在不同生育期,GM4處理的土壤貯水量均最高,對(duì)照處理土壤貯水量均最小。
圖1 冬小麥-夏玉米輪作條件下1 m土壤貯水量季節(jié)變化Fig.1 Seasonal variation of soil water storage in 1 m depth in winter wheat and summer maize rotation system
表1 不同礫石覆蓋處理1 m土壤貯水量變化Table1 Soil water storage in 1 m soil profile of different gravel mulch treatments mm
對(duì)礫石覆蓋度和表層土壤貯水量進(jìn)行相關(guān)性分析表明,礫石覆蓋度和第1季冬小麥播后41、67、75、221 d表層土壤貯水量的相關(guān)系數(shù)分別為0.71、0.75、0.78、0.77 (P<0.01)。礫石覆蓋度和第2季冬小麥播后89、221 d表層土壤貯水量的相關(guān)系數(shù)分別為0.57、0.60(P<0.05)。礫石覆蓋度和第1季玉米播后59、70 d表層土壤貯水量的相關(guān)系數(shù)為0.55和0.56(P<0.05)。礫石覆蓋度和第2季玉米播后 80 d表層土壤貯水量的相關(guān)系數(shù)為 0.55 (P<0.05)。結(jié)合物候期記錄數(shù)據(jù),可知礫石覆蓋度與冬小麥越冬期、返青期和拔節(jié)期土壤貯水量呈極顯著性正相關(guān)(P<0.01),礫石覆蓋度與夏玉米拔節(jié)期、灌漿期土壤體積含水率呈顯著正相關(guān)(P<0.05)。
該試驗(yàn) 2季冬小麥和夏玉米全生育期內(nèi)無(wú)灌溉,2013-2014年冬小麥出苗至拔節(jié)期(播后10~150 d)出現(xiàn)連續(xù)70 d(播后40~110 d)幾乎無(wú)降雨(圖1 a),認(rèn)為該生育期階段(播后40~110 d)受到一定程度的水分脅迫,選取期間 4次測(cè)量的平均值研究冬小麥干旱期土壤剖面水分變化;2014-2015年冬小麥拔節(jié)至成熟期(播后150~230 d)雨水充足,選取期間4次測(cè)量的平均值研究冬小麥豐水期土壤剖面水分變化。圖 2為兩季冬小麥0~1 m土壤剖面水分變化。從圖2可以看出,表層土壤含水率低于1 m土層土壤含水率,各處理間差異較顯著(P<0.05),礫石覆蓋度越高土壤含水率越大,GM4處理平均土壤含水率最大。
圖2 冬小麥土壤剖面水分變化Fig.2 Variation of soil moisture along profile for winter wheat
2.1.2 各處理土壤保水能力和截蓄雨水能力
分別對(duì)干旱期和豐水期各處理土壤水分變化規(guī)律進(jìn)行研究。2013-2014年干旱期選取差異較大的表層土壤含水率隨時(shí)間的變化描述土壤的保水能力。根據(jù)式(2)計(jì)算的干旱脅迫條件下各處理土壤保水能力如圖 3a所示,礫石覆蓋度越高,土壤的保水能力越大。由于土壤水分隨時(shí)間不斷減少,各處理保水能力呈下降趨勢(shì),100%礫石覆蓋處理保水能力的減小較其他處理緩慢。
降雨發(fā)生時(shí),有礫石覆蓋層的農(nóng)田雨滴在礫石覆蓋層進(jìn)行二次重分布,無(wú)礫石覆蓋層的農(nóng)田降雨直接落在土壤表面并隨蒸發(fā)和入滲過(guò)程流失[24]。礫石覆蓋層截留雨水的過(guò)程比較復(fù)雜,本文用降雨后表層土壤貯水量隨時(shí)間的減少來(lái)描述土壤的降雨截蓄能力(式(3)),如圖3b所示。降雨后100%礫石覆蓋度截蓄雨水能力大于其他處理,且減小趨勢(shì)平緩。礫石覆蓋度越高,2次測(cè)量之間土壤貯水量增加越多,土壤截蓄雨水的能力越大。
圖3 各處理土壤保水能力和降雨截蓄能力Fig.3 Soil water maintaining capacity and ability of rainfall interception under different treatments
2.2 不同處理對(duì)土壤溫度的影響
2.2.1 土壤溫度變化規(guī)律
2季冬小麥—夏玉米土壤溫度變化均表現(xiàn)為夏季高冬季低,年際差異不大,以2014—2015年冬小麥—夏玉米輪作條件下土壤日平均溫度的季節(jié)變化為例(圖4),從圖中可以看出,礫石覆蓋度越高土壤日平均溫度越高,4種礫石覆蓋處理?xiàng)l件下的土壤日平均溫度均高于對(duì)照,100%礫石覆蓋,即GM4處理的土壤日平均溫度最高。由表 2可知,各處理間差異大部分時(shí)候達(dá)顯著水平(P<0.05),在冬小麥和夏玉米的拔節(jié)期、灌漿期增溫效果顯著,成熟期則差異不明顯。
圖4 冬小麥-夏玉米輪作條件下土壤日平均溫度變化Fig.4 Variation of daily average of soil temperature in winter wheat and summer maize rotation system
表2 不同礫石覆蓋處理土壤日平均溫度變化Table2 Change of daily average soil temperature under different gravel mulch treatments ℃
為了研究礫石覆蓋應(yīng)對(duì)氣候變化的作用,用1 a中測(cè)得的土壤最低溫度(12月3日8:00)代表寒冷期溫度,最高溫度(8月2日14:00)代表高溫期溫度,分析各處理土壤逐層溫度變化動(dòng)態(tài),如圖 5所示。研究表明,低溫條件下(土壤溫度?5~0 ℃)GM4處理較CK處理土壤溫度增加 5 ℃,其他處理均高于對(duì)照處理;高溫條件下(土壤溫度40~45 ℃)GM4處理較CK處理土壤溫度降低3.7 ℃,其他處理均低于對(duì)照處理。從圖中還可以看出4個(gè)礫石覆蓋處理土壤逐層溫度變化差值基本小于CK處理,GM4處理溫度變化最小,說(shuō)明礫石覆蓋處理具有保溫能力,可以較好地應(yīng)對(duì)氣候變化。
圖5 極端氣候條件下土壤逐層溫度變化Fig.5 Variation of soil temperature at different soil depths in extreme weather conditions
2.2.2 土壤溫度對(duì)氣溫和水分的敏感性分析
圖6對(duì)比了不同礫石覆蓋度條件下土壤增溫能力對(duì)氣溫和水分的響應(yīng)(式(4)和式(5))。由圖6a看出,當(dāng)氣溫低于20 ℃時(shí),礫石覆蓋各處理增溫能力均大于CK處理,GM4處理的增溫能力最大;當(dāng)氣溫高于20 ℃時(shí),所有處理土壤溫度隨著氣溫的升高而增加,CK處理的土壤溫度對(duì)氣溫升高響應(yīng)迅速,各處理間增溫能力差異不大,且礫石覆蓋處理的增溫能力有降低趨勢(shì)。由圖6b看出,當(dāng)體積含水率低于 22%時(shí),礫石覆蓋各處理增溫能力均大于CK處理,GM4處理的增溫能力最大;當(dāng)體積含水率高于22%時(shí),各處理間增溫能力差異不大。在寒冷氣候和水分虧缺的情況下各處理增溫能力差異較大,4個(gè)礫石覆蓋處理的增溫能力均大于對(duì)照,GM4處理的增溫能力更大。
圖6 各處理土壤增溫能力敏感性分析Fig.6 Sensibility analysis on soil warming ability of different treatments
2.3 不同處理對(duì)作物生長(zhǎng)及產(chǎn)量的影響
2.3.1 作物生長(zhǎng)指標(biāo)的變化
2013-2014年冬小麥-夏玉米生長(zhǎng)季各試驗(yàn)處理?xiàng)l件下的株高和葉面積指數(shù)的變化如圖7。
圖7 冬小麥-夏玉米輪作條件下株高和葉面積指數(shù)隨播后天數(shù)的變化Fig.7 Variations of plant height and leaf area index with days after sowing in winter wheat and summer maize rotation system
圖7表明,各處理冬小麥株高差異不明顯,葉面積指數(shù)隨著礫石覆蓋度增加而顯著增加;夏玉米表現(xiàn)為礫石覆蓋度越高,株高和葉面積指數(shù)越大。各處理葉面積指數(shù)在冬小麥-夏玉米整個(gè)生育期的變化整體呈現(xiàn)先升高后降低的趨勢(shì),這是由于作物進(jìn)入灌漿期之前葉片不斷生長(zhǎng),葉面積指數(shù)升高,直至灌漿期達(dá)到最大值;灌漿期之后葉片開始衰老,葉面積指數(shù)隨之降低。
2013-2015年冬小麥-夏玉米不同生育期地上部分干物質(zhì)質(zhì)量匯總見表3。由表3可知,CK處理各生育期地上部分干物質(zhì)質(zhì)量均最低,GM4處理最高,這可能與礫石覆蓋處理的干旱期保水、寒冷期增溫效應(yīng)有關(guān),影響了干物質(zhì)質(zhì)量的積累。由表 3還可以看出,冬小麥拔節(jié)期到灌漿期地上部分干物質(zhì)質(zhì)量不斷增加,直至灌漿期達(dá)到最高,成熟期較灌漿期略有降低,這一結(jié)果與冬小麥葉面積指數(shù)變化規(guī)律一致。
表3 冬小麥-夏玉米輪作條件下地上部分干物質(zhì)量Table3 Above-ground biomass of winter wheat and summer maize kg·hm-2
2.3.2 產(chǎn)量的變化
冬小麥-夏玉米連續(xù)2個(gè)生長(zhǎng)季經(jīng)濟(jì)產(chǎn)量的變化如圖8所示,連續(xù)2 a礫石覆蓋田間管理措施條件下,第2季冬小麥和夏玉米的產(chǎn)量較第 1季都有所增加。礫石覆蓋GM2、GM3、GM4處理 2季冬小麥平均產(chǎn)量較對(duì)照處理分別增加了23.02%、41.51%和58.55%(P<0.05)。礫石覆蓋GM3、GM4 處理2季夏玉米平均產(chǎn)量較對(duì)照處理分別增加了18.20%和22.50%(P<0.05)。分析礫石覆蓋度和冬小麥-夏玉米產(chǎn)量之間的關(guān)系,發(fā)現(xiàn)二者具有極顯著的相關(guān)性(P<0.01),礫石覆蓋度與第1、2季冬小麥產(chǎn)量、第1、2季夏玉米產(chǎn)量的相關(guān)系數(shù)分別為0.73、0.80、0.68、0.75(P<0.01)。
圖8 不同處理對(duì)2013-2015冬小麥和夏玉米產(chǎn)量的影響Fig.8 Effects of different treatments on yield of winter wheat and summer maize in 2013-2015
3.1 礫石覆蓋對(duì)土壤水熱過(guò)程的影響
礫石覆蓋不同于其他農(nóng)業(yè)覆蓋技術(shù),其土壤水熱特征及分布規(guī)律也有所不同[25-26]。農(nóng)田表面的礫石覆蓋層,可以抑蒸保墑,改善土壤水分狀況,有效促進(jìn)水分入滲,同時(shí)礫石覆蓋層使得土壤接收太陽(yáng)輻射的能力增強(qiáng),使得表層土壤溫度更易提高,有利于熱量的傳遞。本研究對(duì)2 a輪作條件下各處理土壤水分和溫度變化進(jìn)行連續(xù)監(jiān)測(cè),2季冬小麥和夏玉米土壤貯水量變化均表現(xiàn)為出苗期至拔節(jié)期較低,拔節(jié)至成熟期受降雨增加的影響土壤貯水量顯著增加。各處理間貯水量的差異表現(xiàn)為,礫石覆蓋度越高,土壤貯水量越大,其中GM4處理?xiàng)l件下的土壤貯水量最大,CK處理最小。各處理表層土壤含水率變化差異顯著,分析表明礫石覆蓋度與作物生長(zhǎng)關(guān)鍵生育期的土壤含水率顯著正相關(guān),且干旱脅迫條件下GM4處理土壤保水性最好,降雨條件下GM4處理土壤截留雨水的能力更大,說(shuō)明100%覆蓋度的礫石覆蓋處理有利于土壤保水蓄水。礫石覆蓋相當(dāng)于土壤的保溫層,各處理間土壤溫度差異顯著,礫石覆蓋處理高于對(duì)照,且GM4處理土壤平均溫度最高。分析土壤逐層溫度變化,礫石覆蓋處理的保溫作用使得土壤表層和深層的土壤溫度變化差值小于對(duì)照處理,礫石覆蓋的增溫能力可以更好地應(yīng)對(duì)水分脅迫和氣候變化。與以往研究的不同表現(xiàn)在,礫石覆蓋可以認(rèn)為是一種有效的溫度調(diào)節(jié)方式,對(duì)冬小麥越冬期-拔節(jié)期的土壤具有增溫作用,對(duì)夏玉米各生育期可有效抑制土壤溫度升溫過(guò)快,這一提法與Lamb等[27-28]研究結(jié)果一致。礫石覆蓋具有使冬小麥耐寒和夏玉米抑高溫傷害的作用,這一研究結(jié)果對(duì)作物的生長(zhǎng)是有利的。以上分析還表明,礫石覆蓋有一個(gè)有效作用期,在作物關(guān)鍵缺水期可抑制水分減少速率,高溫天氣可抑制高溫,在有豐富降雨和適宜溫度時(shí)期礫石覆蓋的作用不明顯,這一思路與嚴(yán)昌榮等[29]提出作物覆膜安全期的概念有相似之處,還需進(jìn)一步研究。
3.2 礫石覆蓋對(duì)作物生長(zhǎng)及產(chǎn)量的影響
研究礫石覆蓋對(duì)作物生長(zhǎng)及產(chǎn)量的影響,應(yīng)從葉片生長(zhǎng)速度(葉面積指數(shù))、植株生長(zhǎng)情況(株高、生物量增長(zhǎng)率)以及對(duì)產(chǎn)量的影響 3個(gè)方面入手[30]。已有研究表明,礫石覆蓋的農(nóng)作物都比較高大、強(qiáng)健,具有較大的根系與葉面積指數(shù),本研究中各處理不同生育期株高和葉面積指數(shù)大小表現(xiàn)為隨著礫石覆蓋度增加而增加。不同處理冬小麥株高差異不明顯,夏玉米株高間差異較大;葉面積指數(shù)在冬小麥-夏玉米整個(gè)生育期的變化整體呈現(xiàn)先升高后降低的趨勢(shì);冬小麥拔節(jié)期-灌漿期地上部分干物質(zhì)質(zhì)量不斷增加,直至灌漿期達(dá)到最高,成熟期較灌漿期略有降低,這與余坤等[31-32]研究結(jié)果一致。對(duì)冬小麥-夏玉米不同生育階段株高、葉面積指數(shù)和地上部分生物量與產(chǎn)量之間的關(guān)系進(jìn)行顯著性分析,株高與產(chǎn)量無(wú)顯著相關(guān)(P>0.05),冬小麥分蘗期和灌漿期葉面積指數(shù)與產(chǎn)量的相關(guān)系數(shù)分別為0.70(P<0.01)和0.62 (P<0.05),夏玉米拔節(jié)期和成熟期葉面積指數(shù)與產(chǎn)量相關(guān)系數(shù)分別為0.77(P<0.01)和0.57(P<0.05);冬小麥各生育期生物量與產(chǎn)量極顯著相關(guān)(P<0.01),夏玉米拔節(jié)期和灌漿期生物量與產(chǎn)量顯著相關(guān)(P<0.05)。綜上,礫石覆蓋度越高,作物生長(zhǎng)各項(xiàng)指標(biāo)(株高、葉面積指數(shù)、生物量)越大,100%礫石覆蓋處理產(chǎn)量連續(xù)2 a最高,且第2季冬小麥和夏玉米產(chǎn)量均高于第1季產(chǎn)量,礫石覆蓋處理有利于作物生長(zhǎng)及產(chǎn)量形成,100%礫石覆蓋處理效果最好,這與馮浩等[33-34]研究結(jié)果一致。
1)礫石覆蓋具有保水蓄水的能力。礫石覆蓋度與土壤水分呈顯著正相關(guān),礫石覆蓋處理的土壤貯水量顯著高于對(duì)照處理。礫石覆蓋度越高,干旱脅迫條件下土壤保水性越好,降雨條件下土壤截留雨水的能力越大,100%礫石覆蓋處理較其他處理更有利于作物應(yīng)對(duì)干旱脅迫,改善土壤水分條件。
2)各處理間土壤溫度差異顯著,100%礫石覆蓋處理土壤平均溫度最高。礫石覆蓋度越高,土壤剖面逐層溫度變化差異越小,土壤的保溫效果越好。在寒冷氣候和水分虧缺的情況下各處理增溫能力差異較大,100%礫石覆蓋處理的增溫能力最明顯。礫石覆蓋的溫度調(diào)節(jié)作用還具有使冬小麥耐寒和降低夏玉米高溫傷害的作用。
3)礫石覆蓋通過(guò)調(diào)節(jié)關(guān)鍵生育期水分和溫度,進(jìn)而影響作物生長(zhǎng)的各項(xiàng)指標(biāo),最終影響產(chǎn)量形成。礫石覆蓋度越高,作物各項(xiàng)生長(zhǎng)指標(biāo)越大,產(chǎn)量越高,100%礫石覆蓋處理兩季冬小麥和夏玉米平均產(chǎn)量較對(duì)照處理分別增加了58.55%和22.50%。
[1] 吳宏亮. 寧夏中部干旱區(qū)砂石覆蓋對(duì)土壤水熱特性及西瓜生長(zhǎng)發(fā)育的影響[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2013. Wu Hongliang. Characteristics of Soil Hydro-thermal Property and Effect on Watermelon Growth on Gravel-sand Mulching in the Arid Zone of Central Ningxia, China[D]. Beijing: China Agricultural University, 2013. (in Chinese withEnglish abstract)
[2] Li Xiaoyan. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China[J]. Catena, 2003, 52(2): 105-127.
[3] Li XiaoYan, Gong Jiadong. Effects of different ridge furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches[J]. Agricultural Water Management, 2002, 54(3): 243-254.
[4] Li Xiaoyan, Shi Peijun, Liu Lianyou, et al. Influence of pebble size and cover on rainfall interception by gravel mulch[J]. Journal of Hydrology, 2005, 312(1): 70-78.
[5] Wang Yajun, Xie Zhongkui, Sukhdev S Malhi, et al. Effects of gravel–sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of northwestern China[J]. Agricultural Water Management, 2011, 101(1): 88-92.
[6] Wang Zhaohui, Li Shengxiu, Cecil L Vera, et al. Effects of water deficit and supplemental irrigation on winter wheat growth, grain yield and quality, nutrient uptake, and residual mineral nitrogen in soil[J]. Communications in Soil Science and Plant Analysis, 2005, 36(11/12): 1405-1419.
[7] Gouranga Kar, Ashwani Kumar. Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India[J]. Agricultural Water Management, 2007, 94(1): 109-116.
[8] Zhang Shulan, Lars L?vdahl, Harald Grip, et al. Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China[J]. Soil and Tillage Research, 2009, 102(1): 78-86.
[9] 李毅,邵明安,王文焰,等. 玉米田地溫的時(shí)空變化特征及其預(yù)報(bào)[J]. 水利學(xué)報(bào),2003,1(1):103-108. Li Yi, Shao Ming an, Wang Wenyan, et al. Temporal and spatial variation and forecast of soil temperature in maize fields[J]. Journal of Hydraulic Engineering, 2003, 1(1): 103 -108. (in Chinese with English abstract)
[10] 時(shí)連輝,韓國(guó)華,張志國(guó),等. 秸稈腐解物覆蓋對(duì)園林土壤理化性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(1):113-117. Shi Lianhui, Han Guohua, Zhang Zhiguo, et al. Effect of mulching with straw composts on soil properties of landscape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 113-117. (in Chinese with English abstract)
[11] Ma Yujun, Li Xiaoyan. Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers [J]. Journal of Arid Environments, 2011, 75(5): 432-437.
[12] 呂忠恕,陳邦瑜. 甘肅砂田的研究[J]. 農(nóng)業(yè)學(xué)報(bào),1955,6(3):299-312.
[13] 毛云玲,鄧佳,陸斌,等. 不同覆蓋方式對(duì)云南干熱河谷油欖園土壤溫度、水分和容重的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2010,19(1):150-154. Mao Yunling, Deng Jia, Lu Bin, et al. Effects of different mulching on soil temperature, moisture and unit weight of olea europaeal garden in dry and hot valley of Yunnan[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(1): 150-154. (in Chinese with English abstract)
[14] 吳姝,張樹源,沈允鋼. 晝夜溫差對(duì)小麥生長(zhǎng)特性的影響[J].作物學(xué)報(bào),1998,24(3):333-337. Wu Shu, Zhang Shuyuan, Shen Yungang. Influence of temperature difference between day and night on the growth characteristics in wheat[J]. Acta Agronomica Sinaca, 1998, 24(3): 333-337. (in Chinese with English abstract)
[15] 賀歡,田長(zhǎng)彥,王林霞. 不同覆蓋方式對(duì)新疆棉田土壤溫度和水分的影響[J]. 干旱區(qū)研究,2009,26(6):826-831. He Huan, Tian Changyan, Wang Linxia. Effect of different coverings on soil temperature and soil Moisture content in cotton field in Xinjiang[J]. Arid Zone Research, 2009, 26(6): 826-831. (in Chinese with English abstract)
[16] Fairbourn M L. Effect of gravel mulch on crop yields[J]. Agronomy Journal, 1973, 65(6): 925-928.
[17] 王金牛,謝忠奎,郭志鴻,等. 砂田退化對(duì)土壤溫度和蒸發(fā)影響的模擬研究[J]. 中國(guó)沙漠,2010,30(2):388-393. Wang Jinniu, Xie Zhongkui, Guo Zhihong, et al. Simulating the effect of gravel-sand mulched field degradation on soil temperature and evaporation[J]. Journal of Desert Research, 2010, 30(2): 388-399. (in Chinese with English abstract)
[18] 許強(qiáng),吳宏亮,康建宏,等. 旱區(qū)砂田肥力演變特征研究[J].干旱地區(qū)農(nóng)業(yè)研究,2009,27(1):37-41. Xu Qiang, Wu Hongliang, Kang Jianhong, et al. Study on evolution characteristics of sandy-field in arid region[J]. Agricultural Research in the Arid Areas, 2009, 27(1): 37-41. (in Chinese with English abstract)
[19] Gale W J, McColl R W, Xie Fang. Sandy field traditional farming for water conservation in China[J]. Soil Water Conservation, 1993, 48(6): 474-477.
[20] Yang Qidong, Zuo Hongchao, Xiao Xia, et al. Modeling the effects of plastic mulch on water, heat and CO2fluxes over cropland in an arid region[J]. Journal of Hydrology, 2012, 452: 102-118.
[21] 劉曉青. 輪作條件下礫石覆蓋量對(duì)農(nóng)田水分及作物生長(zhǎng)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Liu Xiaoqing. Effects of Gravel Mulching Degree on Farmland Moisture and Growth of Crop Roation System[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[22] 左億球. 礫石覆蓋對(duì)農(nóng)田土壤水熱及作物生長(zhǎng)發(fā)育的影響[D].楊凌:西北農(nóng)林科技大學(xué),2016. Zuo Yiqiu. Effects of Sand-gravel Mulching on Soil Water and Growth and Development of Field Crop[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[23] 李毅,邵明安. 新疆農(nóng)田作物覆膜地溫極值的時(shí)空變化[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(11):2039-2044. Li Yi, Shao Mingan. Spatial and temporal variation of soil temperature extremum under plastic mulch in Xinjiang[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2039-2044. (in Chinese with English abstract)
[24] 彭紅濤. 砂礫覆蓋層截留降雨的機(jī)理研究[D]. 北京:中國(guó)科學(xué)研究院,2016. Peng Hongtao. Study on the Mechanism of Rain water Interception by the Pebble and Sand Mulches[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese with English abstract)
[25] Li Xiaoyan, Gong Jiadong, Gao Qianzhao, et al. Rainfall interception loss by pebble mulch in the semiarid region of China[J]. Journal of Hydrology, 2000, 228: 165-173.
[26] Wang Yajun, Xie Z K, Li Fengmin, et al. The effect of supplemental irrigation on watermelon production in gravel and sand mulched fields in the Loess Plateau of northwest China[J].Agricultural Water Management, 2004, 69(1): 29-41.
[27] Lamb J, Chapman J E. Effect of surface stones on erosion, evaporation, soil temperature, and soil moisture[J]. Agronomy Journal, 1943, 35(7): 567-578.
[28] Jury W A, Bellantuoni B. Heat and water movement under surface rocks in a field soil: I. Thermal effects[J]. Soil Science Society of America Journal, 1976, 40(4): 505-513.
[29] 嚴(yán)昌榮,何文清,劉恩科,等. 作物地膜覆蓋安全期概念和估算方法探討[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):1-4. Yan Changrong, He Wenqing, Liu Enke, et al. Concept andestimation of crop safety period of plastic film mulching[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 1-4. (in Chinese with English abstract)
[30] 馬樹慶,王 琪,陳鳳濤,等. 春旱背景下春玉米苗情對(duì)產(chǎn)量的影響及減產(chǎn)評(píng)估模式[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):171-179. Ma Shuqing, Wang Qi, Chen Fengtao, et al. Impact of spring maize seeding growth on yield and assessment models of production cut under background of spring drought[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 171-179. (in Chinese with English abstract)
[31] 余坤,馮浩,趙英,等. 氨化秸稈還田加快秸稈分解提高冬小麥產(chǎn)量和水分利用效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):103-111. Yu Kun, Feng Hao, Zhao Ying, et al. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 103-111.
[32] 何立謙,張維宏,杜雄,等. 土下覆膜與適宜灌水提高冬小麥水分利用率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊1):94-104. He Liqian, Zhang Weihong, Du Xiong, et al. Soil-coated ultrathin plastic-filmmulching and suitable irrigation improve water use efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.1): 94-104. (in Chinese with English abstract)
[33] 馮浩,劉曉青,左億球,等. 礫石覆蓋量對(duì)農(nóng)田水分與作物耗水特征的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):155-163. Feng Hao, Liu Xiaoqing, Zuo Yiqiu, et al. Effect of gravel mulching degree on farmland moisture and water consumption features of crops[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 155-163. (in Chinese with English abstract)
[34] 趙丹,李毅,馮浩.砂石條形覆蓋下土壤水分蒸發(fā)動(dòng)態(tài)研究[J].土壤學(xué)報(bào),2015,52(5):1058-1068. Zhao Dan, Li Yi, Feng Hao. Dynamics of soil water evaporation from soil mulch with sand-gravels in stripe[J]. Acta Pedologiga Sinica, 2015, 52(5): 1058-1068. (in Chinese with English abstract)
Effects of gravel mulch on soil hydro-thermal process and rain-fed wheat-maize yields
Wang Donglin1,2, Feng Hao1,2,3※, Li Yi1,2
(1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China; 2. Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China; 3. Institute of Water and Soil Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)
Rain-fed farming in semi-arid areas of the Loess Plateau in China is constrained by low temperatures and water limitations at the early crop growth stage, and the gravel mulch technology as an effective strategy has been used for centuries to conserve soil water and increase soil temperature. To reveal the effects of gravel mulch on soil moisture, soil temperature, rain-fed crop growth as well as yield, a field study of consecutive wheat-maize rotation was conducted in Shannxi Province in the year of 2013-2015. The field experiment was arranged under natural rain-fed conditions with 5 gravel mulching levels, including control with no mulch (CK), surface gravel mulch of 25% (GM1), surface gravel mulch of 50% (GM2), surface gravel mulch of 75% (GM3) and surface gravel mulch of 100% (GM4). The results showed that soil moisture was significantly and positively correlated with gravel mulch degree (GMD), and soil moisture increased with the increase of GMD; compared with the other 4 gravel mulch treatments, GM4 treatment obtained the maximum soil water storage. Gravel mulch acted as a layer with water holding capacity, which not only reduced water loss in the drought period, but also intercepted rainfall in the wet period. Along with the increase of GMD, the water maintaining capacity in the dry period and the ability of rainfall interception in the rainy period were both enhanced. Gravel mulch had an effective effect on soil temperature conservation; the daily average soil temperatures in the different depths of the 4 gravel mulch treatments were all higher than the control, and 100% gravel mulch was the maximum. In order to investigate how gravel mulch affected soil temperature in the hot and cold period, we tested the soil temperature in the extreme coldest (from -5 to 0 ℃) and hottest (40-45 ℃) weather conditions during the winter wheat and summer maize growing season. Gravel mulch acted as a regulator of soil temperature, and thus soil temperature could actively respond to extremely cold or hot weather. In the extremely cold period, air temperature was around from -5 to 0 ℃, soil temperature of GM4 was 5 ℃ higher than CK, and soil temperatures of the other 3 gravel mulch treatments were all higher than CK; in the extremely hot period, air temperature was around 40-45 ℃, soil temperature of GM4 was 3.7 ℃ less than CK, and soil temperature of the other 3 gravel mulch treatments was all less than CK. Soil warming ability responding to air temperature and soil moisture was greatly different; the 4 gravel mulch treatments were all higher than the control treatment, and 100% gravel mulch was the maximum. So gravel mulch could effectively stabilize soil temperature. As for the effects of gravel mulch on crop growth and yield, plant height and leaf area index were not significantly different in the winter wheat growing season, while in summer maize growing season, plant height and leaf area index of the 4 gravel mulch treatments were all significantly higher than the control, and the 100% gravel mulch was the maximum. Study also showed that wheat and maize yields increased with the increase of GMD, and the average yield of 2 growing seasons for winter wheat and summer maize under 100% gravel mulch treatment was 58.55% and 22.50% higher than the control, respectively. These results demonstrated that the gravel mulch technology could effectively increase soil moisture and maintain soil temperature and was beneficial to promote crop growth and ultimately affect the crop production. Overall, we conclude that gravel mulch technology provides a new idea to positively cope with water limitation and climate change and promote agricultural production in arid and semi-arid area of Northwest China.
gravels; soil moisture; temperature; yield; response mechanism; winter wheat; maize
10.11975/j.issn.1002-6819.2017.07.017
S152.7+5
A
1002-6819(2017)-07-0132-08
2016-08-26
2017-03-10
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863 計(jì)劃)(2013AA102904);高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(111 計(jì)劃)資助項(xiàng)目(B12007)
王冬林,女,河南焦作人,博士生,主要從事農(nóng)業(yè)水土資源高效利用研究。楊凌 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。
Email:wangdonglin@nwsuaf.edu.cn
※通信作者:馮 浩,男,陜西延安人,研究員,博士生導(dǎo)師,主要從事水土資源高效利用以及節(jié)水灌溉新技術(shù)、新方法和新材料研究。楊凌 中國(guó)科學(xué)院水利部水土保持研究所,712100。
Email:nercwsi@vip.sina.com