王建楠,謝煥雄,胡志超,胡良龍,彭寶良,劉敏基
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
甩盤滾筒式花生種子機(jī)械化包衣工藝參數(shù)優(yōu)化
王建楠,謝煥雄※,胡志超,胡良龍,彭寶良,劉敏基
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
針對(duì)花生種子機(jī)械化包衣工藝參數(shù)研究嚴(yán)重缺失,包衣合格率差、破損率高的問(wèn)題,該文利用甩盤滾筒式包衣試驗(yàn)臺(tái),運(yùn)用單因素和中心組合試驗(yàn)設(shè)計(jì)理論開(kāi)展種藥比、種衣劑稀釋比(稀釋用水與藥質(zhì)量之比)、包衣滾筒轉(zhuǎn)速對(duì)包衣合格率及破損率的影響規(guī)律研究及工藝參數(shù)優(yōu)化。首先開(kāi)展單因素試驗(yàn)確定各影響因素對(duì)包衣合格率及破損率的影響規(guī)律及各因素二次回歸試驗(yàn)編碼0水平值,隨后采用二次正交旋轉(zhuǎn)組合試驗(yàn)方法設(shè)計(jì)試驗(yàn)并用Design-Expert進(jìn)行數(shù)據(jù)處理,建立包衣合格率、破損率回歸數(shù)學(xué)模型并進(jìn)行方差分析。分析得出對(duì)影響包衣合格率的主次因素依次為:種藥比>包衣滾筒轉(zhuǎn)速>種衣劑稀釋比;影響破損率的主次因素依次為:包衣滾筒轉(zhuǎn)速>種衣劑稀釋比>種藥比。通過(guò)響應(yīng)曲面方法分析各因素交互作用對(duì)包衣合格率、破損率的影響,并對(duì)回歸模型進(jìn)行多目標(biāo)優(yōu)化,得出甩盤滾筒式包衣試驗(yàn)臺(tái)最佳工藝參數(shù)組合為:種藥比31.73 g/mL,種衣劑稀釋比4.76,包衣滾筒轉(zhuǎn)速18.32 r/min。此時(shí),包衣合格率最高、破損率最低,其值分別為97.35%、0.37%。將優(yōu)化參數(shù)在5BY-500-J型包衣設(shè)備上開(kāi)展生產(chǎn)驗(yàn)證,包衣合格率達(dá)97.05%、破損率0.40%,達(dá)到了較為理想的效果。該研究可為甩盤式花生種子包衣機(jī)工藝參數(shù)優(yōu)化提供參考。
機(jī)械化;優(yōu)化;農(nóng)作物;甩盤滾筒式;花生種子;機(jī)械化包衣;響應(yīng)曲面法
王建楠,謝煥雄,胡志超,胡良龍,彭寶良,劉敏基. 甩盤滾筒式花生種子機(jī)械化包衣工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):43-50.doi:10.11975/j.issn.1002-6819.2017.07.006 http://www.tcsae.org
Wang Jiannan, Xie Huanxiong, Hu Zhichao, Hu Lianglong, Peng Baoliang, Liu Minji. Parameter optimization on mechanical coating processing of rotary table-roller coating machine for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 43-50. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.006 http://www.tcsae.org
花生是重要的油料作物和優(yōu)質(zhì)蛋白資源,是中國(guó)極具國(guó)際競(jìng)爭(zhēng)力的重要經(jīng)濟(jì)作物之一[1-3]。中國(guó)花生種植面積世界第二,產(chǎn)量世界第一[4-6],常年種植面積約467 萬(wàn)hm2?;ㄉN植用種量大,約占總產(chǎn)8%~10%。種子加工是花生生產(chǎn)必不可少的重要環(huán)節(jié),包衣是花生種子加工的關(guān)鍵工序,也是實(shí)現(xiàn)播前植保、提高產(chǎn)量的重要手段[7-8]。
包衣是種子加工流程的末端工序,其作業(yè)質(zhì)量是影響種子質(zhì)量的關(guān)鍵。現(xiàn)有大型包衣加工設(shè)備(以小麥計(jì),生產(chǎn)率5 t/h以上)多為甩盤滾筒式或甩盤攪龍式結(jié)構(gòu),其工藝參數(shù)主要針對(duì)水稻、小麥、玉米等種子設(shè)計(jì),工藝參數(shù)相對(duì)成熟,在包衣作業(yè)時(shí)根據(jù)不同作物或同一作物不同品種適當(dāng)調(diào)整作業(yè)參數(shù)即能滿足工廠化生產(chǎn)要求[9]。而與水稻、小麥、玉米種子相比,花生種子物理特性差異懸殊,種皮(紅衣)與胚(籽仁)結(jié)合力受水分影響較大,當(dāng)水分達(dá)到某一值結(jié)合力降至最低[10],并易于破碎,致使現(xiàn)有水稻、小麥、玉米大型甩盤滾筒式包衣設(shè)備工藝參數(shù)難以滿足花生種子包衣加工需求,大型工廠化花生種子包衣參數(shù)研究空白,已成為花生種子包衣加工技術(shù)瓶頸之一,嚴(yán)重制約花生種業(yè)發(fā)展。近年,國(guó)內(nèi)外研究人員對(duì)花生包衣防治病蟲害、增產(chǎn)效果研究較多[11-13],而對(duì)種皮特性特殊的花生種子大型機(jī)械化包衣設(shè)備工藝研究未見(jiàn)報(bào)道。胡良龍等[14-19]開(kāi)展了包衣設(shè)備性能研究,但未針對(duì)特定物料開(kāi)展相關(guān)工藝參數(shù)研究。
針對(duì)上述問(wèn)題,本文利用包衣試驗(yàn)臺(tái),采用二次正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn)及響應(yīng)曲面分析法,開(kāi)展花生種子機(jī)械化包衣工藝研究及參數(shù)優(yōu)化,探明大型甩盤滾筒式花生種子機(jī)械化包衣最佳參數(shù),以期提高包衣質(zhì)量,為破解大型花生種子機(jī)械化包衣難題提供參考。
1.1 工作原理
甩盤式包衣試驗(yàn)臺(tái)結(jié)構(gòu)簡(jiǎn)圖如圖 1所示,包衣過(guò)程簡(jiǎn)述如下:花生種子由振動(dòng)給料裝置1進(jìn)入料斗18,種子下落到旋轉(zhuǎn)的光滑料盤17上后下落形成料簾,料盤17與霧化甩盤6在甩盤電機(jī)4帶動(dòng)下旋轉(zhuǎn),藥液通過(guò)計(jì)量泵10經(jīng)藥管15供向霧化甩盤6,在霧化甩盤高速旋轉(zhuǎn)下使藥液霧化,種子和霧化藥液在種藥混配室7初次混配,表面被不均勻的包覆上藥液,完成初次包衣。初次包衣的花生種子外表藥液包覆均勻性較差,隨后種子經(jīng)導(dǎo)料口8進(jìn)入包衣滾筒13,包衣滾筒13在滾筒電機(jī)12帶動(dòng)下旋轉(zhuǎn),種子在包衣滾筒13帶動(dòng)下相對(duì)運(yùn)動(dòng)摩擦,外表不均勻的藥液通過(guò)相互摩擦而進(jìn)一步均勻,包衣后種子經(jīng)出料口14出料,完成整個(gè)包衣過(guò)程。
1.2 包衣質(zhì)量影響因素
包衣合格率、破損率是種子包衣質(zhì)量的主要衡量指標(biāo)。由甩盤式包衣試驗(yàn)臺(tái)工作原理、花生種子物理特性分析可知,花生種子包衣質(zhì)量主要影響因素有:種藥比(種子質(zhì)量與藥比,g/mL)、種衣劑稀釋比(稀釋用水與藥質(zhì)量之比)、包衣滾筒轉(zhuǎn)速(r/min)。種藥比、種衣劑稀釋比、包衣滾筒轉(zhuǎn)速參數(shù)選擇不當(dāng),可造成花生種子包衣不均勻、種衣過(guò)于潮濕、種皮脫落、胚破損等問(wèn)題,嚴(yán)重影響包衣質(zhì)量。因此,需通過(guò)試驗(yàn)研究并優(yōu)化包衣工藝參數(shù),提高包衣質(zhì)量。
圖1 甩盤式包衣試驗(yàn)臺(tái)簡(jiǎn)圖Fig.1 Sketch map of rotary table-roller coating test rig
2.1 試驗(yàn)儀器設(shè)備
利用自主研發(fā)包衣試驗(yàn)臺(tái)開(kāi)展試驗(yàn)。試驗(yàn)所需主要其他儀器設(shè)備主要有電子天平(測(cè)量精度1 g)、1臺(tái)優(yōu)利德UT371/372轉(zhuǎn)速表、1臺(tái)施耐德ATV12H075M2變頻器以及用于種衣劑稀釋的燒杯、玻璃棒等。
2.2 試驗(yàn)材料
根腐病、蠐螬是花生生長(zhǎng)期間常見(jiàn)病害及蟲害,如得不到有效防控將嚴(yán)重影響花生生長(zhǎng)及產(chǎn)量。適樂(lè)時(shí)、吡蟲啉可有效防止花生根腐病及蠐螬,故本試驗(yàn)采用二者1∶1混合液為包衣藥劑防治花生病蟲害[20-21],二者混合液為鮮紅色。供試花生種子品種為花育 33,含水率在11.6%,花生種子形狀為橢圓形,花生的長(zhǎng)度、寬度及厚度尺寸分布主要集中在16.22~19.16、8.06~10.36、7.16~8.36 mm,千粒質(zhì)量為812.1 g,流動(dòng)性較好[22-23]。
2.3 試驗(yàn)響應(yīng)參數(shù)
以花生種子包衣合格率Ji、破損率Pj為花生包衣作業(yè)質(zhì)量考核指標(biāo),按中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn)種子包衣機(jī)試驗(yàn)方法(JB/T 7730-2011)開(kāi)展花生種子包衣試驗(yàn)及工藝參數(shù)優(yōu)化。
式中Ji為包衣合格率,%;Zd為種衣劑包覆種子面積大于或等于 80%的種子粒數(shù),粒;Zx為種衣劑包覆種子面積小于 80%的種子粒數(shù),粒;Pu為原始物料破損率,%;Pj為包衣破損率,%,指破碎率、損傷率(其判定方法參照標(biāo)準(zhǔn) NY/T 994-2006)總和,破損花生易受病菌侵?jǐn)_,嚴(yán)重影響田間發(fā)芽率;Ghp為經(jīng)包衣機(jī)樣品中的破損種子質(zhì)量,g;Ghz為經(jīng)包衣機(jī)樣品總質(zhì)量,g。
為便于試驗(yàn)數(shù)據(jù)整理記錄,試驗(yàn)前人工挑出試驗(yàn)樣品中破損及不合格的種子,避免物料原始破損,即使式(1)中Pu為0,每次試驗(yàn)重復(fù)3次,取平均值。
2.4 單因素和二次正交旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì)
在 Design-Expert中,按照中心組合響應(yīng)曲面設(shè)計(jì)(Central composite design,CCD)試驗(yàn)方案,試驗(yàn)結(jié)果見(jiàn)表2。對(duì)表2結(jié)果進(jìn)行分析并分別建立包衣合格率Ji、破損率Pj與各因素之間關(guān)系的數(shù)學(xué)模型,同時(shí)采用響應(yīng)面分析法,考察兩因素間交互作用效應(yīng)。
為確定參數(shù)最佳組合,根據(jù)單因素試驗(yàn)結(jié)果,采用二次正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn)方法,開(kāi)展三因素三水平試驗(yàn),共計(jì)17組[24-26],試驗(yàn)因素及編碼水平表如表1所示。
表1 因素編碼水平表Table1 Coding table of level of experimental factors
3.1 單因素試驗(yàn)結(jié)果
為確定各因素對(duì)包衣合格率及破損率影響的最佳區(qū)間、顯著性,以及二次回歸試驗(yàn)編碼 0水平值,首先開(kāi)展種藥比、種衣劑稀釋比、包衣滾筒轉(zhuǎn)速單因素試驗(yàn)。綜合分析單因素試驗(yàn)結(jié)果,選取較優(yōu)參數(shù)為二次回歸試驗(yàn)編碼0水平并進(jìn)行試驗(yàn)設(shè)計(jì)。
3.1.1 種藥比對(duì)包衣質(zhì)量影響
根據(jù)預(yù)備試驗(yàn)結(jié)果,將種衣劑稀釋比為4進(jìn)行稀釋,包衣滾筒轉(zhuǎn)速設(shè)定在18 r/min,在種藥比20、25、30、35、40、45、50、55、60 g/mL條件下,分別對(duì)花生種子進(jìn)行包衣試驗(yàn),不同種藥比與包衣合格率Ji及破損率Pj關(guān)系如圖2所示。結(jié)果表明:花生包衣合格率 Ji與種藥比呈二次非線性關(guān)系,且隨種藥比增大而逐漸減小,在種藥比最小時(shí)合格率最大;破損率Pj隨種藥比增大變化幅度較小。綜合考慮包衣合格率及破損率,選取種藥比40為0水平值。
圖2 種藥比對(duì)包衣質(zhì)量及破損率的影響Fig.2 Effects of ratio of seeds weight to coating volume on coating quality and breakage rate
3.1.2 種衣劑稀釋比對(duì)包衣質(zhì)量影響
將包衣滾筒轉(zhuǎn)速設(shè)定在18 r/min,種藥比在50 g/mL的條件下,種衣劑稀釋比為分別在0(原液)、1、2、3、4、5、6、7、8、9、10的條件下,對(duì)花生種子進(jìn)行包衣試驗(yàn),種衣劑稀釋比與包衣合格率Ji及破損率Pj關(guān)系如圖3所示。結(jié)果表明:包衣合格率Ji隨種衣劑稀釋比波動(dòng)較小;破損率Pj與種衣劑稀釋比呈現(xiàn)二次非線性關(guān)系,且隨稀釋比增大逐漸增大。綜合考慮包衣合格率及破損率,選取種衣劑稀釋比5為0水平值。
圖3 種衣劑稀釋比對(duì)包衣質(zhì)量及破損率的影響Fig.3 Effects of dilution ratio of seed coating on qualified coating rate and breakage rate
3.1.3 包衣滾筒轉(zhuǎn)速對(duì)包衣質(zhì)量影響
將包衣種藥比設(shè)定在50 g/mL,藥液稀釋比為4的條件下,包衣滾筒轉(zhuǎn)速分別設(shè)定為 10、12、14、16、18、20、22、24、26、28、30 r/min的條件下,對(duì)花生種子包衣試驗(yàn),包衣滾筒轉(zhuǎn)速與包衣合格率Ji及破損率Pj關(guān)系如圖 4所示。結(jié)果表明:包衣滾筒轉(zhuǎn)速與包衣合格率間呈二次非線性關(guān)系,滾筒轉(zhuǎn)速越快包衣合格率越高;包衣滾筒轉(zhuǎn)速與破損率呈指數(shù)關(guān)系,隨滾筒轉(zhuǎn)速提高破損率大幅提高。綜合考慮包衣合格率及破損率,選取滾筒轉(zhuǎn)速20 r/min為0水平值。
圖4 包衣滾筒轉(zhuǎn)速對(duì)包衣質(zhì)量及破損率的影響Fig.4 Effects of roller speed on coating quality and breakage rate
3.2 二次正交旋轉(zhuǎn)組合試驗(yàn)結(jié)果分析
3.2.1 包衣合格率
1)包衣合格率的回歸結(jié)果分析
采用逐步回歸法對(duì)表 2結(jié)果進(jìn)行包衣合格率的三元二次回歸分級(jí)及方差分析,結(jié)果見(jiàn)表3。
根據(jù)表2試驗(yàn)結(jié)果得到包衣合格率Ji的編碼值簡(jiǎn)化回歸數(shù)學(xué)模型為:
式中A、B、C分別為種藥比、種衣劑稀釋比和包衣滾筒轉(zhuǎn)速對(duì)應(yīng)的編碼值。
由表3方差分析可知,模型的P值極顯著、失擬項(xiàng)不顯著、模型的調(diào)整決定系數(shù)R2=0.955 8,說(shuō)明所得回歸數(shù)學(xué)模型與實(shí)際結(jié)果擬合精度高,可用此模型對(duì)包衣合格率進(jìn)行分析和預(yù)測(cè)。
回歸方程中,系數(shù)絕對(duì)值大小決定該因素對(duì)包衣合格率的影響大小,因此可知各因素對(duì)包衣合格率的影響大小次序依次為A、C、B。
2)包衣合格率與各參數(shù)響應(yīng)曲面分析
根據(jù)表 2試驗(yàn)數(shù)據(jù),各因素對(duì)包衣合格率響應(yīng)曲面如圖 5所示,據(jù)此可判定二者交互作用顯著性[27-31]:種藥比與種衣劑稀釋比、種藥比與包衣滾筒轉(zhuǎn)速交互作用較強(qiáng),這與表3方差分析結(jié)果一致。
表2 試驗(yàn)設(shè)計(jì)方案及結(jié)果Table2 Results and design of tests
表3 包衣合格率方差分析Table3 Analysis of variance of qualified coating rate
由圖5a可知,種藥比和種衣劑稀釋比存在交互作用,當(dāng)包衣滾筒轉(zhuǎn)速處于0水平時(shí),包衣合格率Ji隨種藥比增大而逐漸減小,這是因?yàn)榉N藥比增大時(shí),混配室內(nèi)單位質(zhì)量花生種子與霧化藥液均勻接觸的概率降低,從而導(dǎo)致包衣合格率降低;包衣合格率Ji隨種衣劑稀釋比雖有變化,但波動(dòng)區(qū)間較小,這是因?yàn)榘潞细衤逝袛喾椒ㄊ且曰ㄉ獗砻姹环N衣劑包覆的顏色的面積(大于80%)評(píng)價(jià),稀釋比能決定花生包衣后顏色深淺及單位質(zhì)量花生的包衣藥量,但對(duì)包衣合格率影響不大。
圖5 各因素交互作用對(duì)包衣合格率的響應(yīng)曲面Fig.5 Response surfaces of all factors’ interaction on qualified coating rate
由圖5b可知,種藥比和包衣滾筒轉(zhuǎn)速存在交互作用,在種衣劑稀釋比處于 0水平時(shí),在種藥比處于低水平條件下,包衣合格率Ji隨包衣滾筒轉(zhuǎn)速增大而大幅增加。當(dāng)種藥比處于高水平時(shí),包衣合格率Ji隨包衣滾筒轉(zhuǎn)速波動(dòng)不大。主要是因?yàn)榉N藥比在低水平時(shí),混配室單位質(zhì)量花生獲得包衣藥液較多,初次混配即能較為均勻甚至達(dá)到合格標(biāo)準(zhǔn),故而包衣滾筒轉(zhuǎn)速只能使包衣進(jìn)一步均勻,對(duì)合格率判定影響不大;種藥比過(guò)大時(shí),花生與藥液初次混配不能得到適量藥液,此時(shí)無(wú)論包衣滾筒轉(zhuǎn)速大小,均不能達(dá)到合格包覆的要求。由圖4b亦可看出,種藥比越小包衣滾筒轉(zhuǎn)速越快,包衣合格率越高。由表3可知,種衣劑稀釋比和包衣滾筒轉(zhuǎn)速交互項(xiàng)不顯著。
由圖5響應(yīng)曲面可以看出,當(dāng)種藥比及包衣滾筒轉(zhuǎn)速變化時(shí),包衣合格率變化區(qū)間較大,當(dāng)種衣劑稀釋比變化時(shí),包衣合格率變化區(qū)間較小,這說(shuō)明種藥比、包衣滾筒轉(zhuǎn)速對(duì)包衣合格率影響較大,是包衣合格率主要影響因素,種衣劑稀釋比對(duì)包衣合格率影響較弱,這與回歸方程分析結(jié)果、各單因素影響主次排序結(jié)果一致。
3.2.2 破損率
1)破損率的回歸結(jié)果分析
同理,根據(jù)表 2結(jié)果進(jìn)行三元二次回歸分析及方差分析可得包衣破損率Pj的回歸數(shù)學(xué)模型為
方差分析結(jié)果見(jiàn)表4,分析結(jié)果可知,模型的P值極顯著、失擬項(xiàng)不顯著、模型的調(diào)整系數(shù)R2=0.976 7,說(shuō)明所得回歸數(shù)學(xué)模型與實(shí)際結(jié)果擬合精度高,可用此模型對(duì)包衣破損率進(jìn)行分析和預(yù)測(cè)。
回歸方程中,系數(shù)絕對(duì)值大小決定該因素對(duì)包衣合格率的影響大小,因此可知各因素對(duì)包衣合格率的影響大小次序依次為:C、B、A。
2)破損率與各參數(shù)響應(yīng)曲面分析
根據(jù)試驗(yàn)數(shù)據(jù),各因素對(duì)包衣破損率響應(yīng)曲面如圖6所示。據(jù)響應(yīng)曲面圖可判斷種藥比、種衣劑稀釋比、包衣滾筒轉(zhuǎn)速任意二者交互作用對(duì)破損率影響均較明顯,其中種藥比與包衣機(jī)滾筒轉(zhuǎn)速交互作用影響最為明顯,種衣劑稀釋比與包衣滾筒轉(zhuǎn)速交互作用相對(duì)較弱,這與表4方差分析結(jié)果一致。
表4 破碎率數(shù)學(xué)模型方差分析Table4 Analysis of variance of breakage rate
圖6 各因素交互作用對(duì)破損率的響應(yīng)曲面Fig.6 Response surfaces of all factors’ interaction on breakage rate
由圖6a可知,當(dāng)包衣滾筒轉(zhuǎn)速處于0水平時(shí),破損率隨種藥比增大先減小后增大,隨種衣劑稀釋比增大逐漸增大。這與花生種子貯藏安全水分及種皮特性有關(guān),通常花生安全貯藏水分在8%~9%之間,該水分下花生種皮與胚結(jié)合力差,種子間相互摩擦既能使種皮脫落。而在包衣過(guò)程中,花生種子隨著藥液稀釋中水分的補(bǔ)充,種皮與胚結(jié)合力增加,此時(shí)種皮較難脫落并能對(duì)胚起保護(hù)作用,破損率下降。當(dāng)種藥比增加到一定程度時(shí),種衣能得到藥劑中水分適當(dāng)補(bǔ)充,使得獲得適當(dāng)水分補(bǔ)充的紅衣能較安全貯藏水分種子的紅衣更能對(duì)胚起到保護(hù)作用;種藥比繼續(xù)增大時(shí),這種水分補(bǔ)充隨之減少,花生種子相互摩擦?xí)r紅衣較易脫落,嚴(yán)重時(shí)胚發(fā)生破損。種衣劑稀釋比增大時(shí),藥劑里含水隨之增加,種子在包衣時(shí)種皮極易潮濕而致含水率過(guò)大,種皮產(chǎn)生皺褶并脫落形成破損。
由圖6b可知,當(dāng)種衣劑稀釋比處于0水平時(shí),破損率隨種藥比、包衣滾筒轉(zhuǎn)速增加而增大。這主要是因?yàn)榉N藥比增加時(shí),花生較小概率得到種衣劑包覆,極為干燥的花生種子紅衣難于得到種衣劑及稀釋后種衣劑中水分的浸染,致使紅衣在花生種子下落及在與輸送管道、滾筒的摩擦中產(chǎn)生脫落及破損、破損率增加;包衣滾筒轉(zhuǎn)速增加時(shí),種子種皮間的相互摩擦頻率、種子種皮與滾筒壁的摩擦頻率增加,種皮在摩擦過(guò)程中發(fā)生脫落甚至破損,破損率增加。圖6b亦可看出包衣滾筒轉(zhuǎn)速、種藥比均處于低水平時(shí)破損率達(dá)到最低。
由6c可知,當(dāng)種藥比處于0水平,種衣劑稀釋比處于低水平時(shí),破損率隨包衣滾筒轉(zhuǎn)速增加大幅增加;在種衣劑稀釋比處于高水平時(shí),破損率隨包衣滾筒轉(zhuǎn)速增加變化區(qū)間不大。這主要是因?yàn)榉N衣劑稀釋比在低水平時(shí)藥液含水較少,花生種皮包衣過(guò)程中種皮較難吸收藥液中水分,種皮保持干燥狀態(tài)與胚結(jié)合力較小,此時(shí)包衣滾筒轉(zhuǎn)速增加易使種皮脫落而破損。種衣劑稀釋比在高水平時(shí),藥液中含水較多,種子包衣過(guò)程中種皮受潮后與胚結(jié)合較緊,此時(shí)種皮難以脫落,花生種子破損率隨滾筒轉(zhuǎn)速波動(dòng)不大。圖6c中當(dāng)種衣劑稀釋比及包衣滾筒轉(zhuǎn)速均在低水平時(shí)破損率最低,均在高水平時(shí)破損率達(dá)到最大。
從圖6中響應(yīng)曲面可看出,當(dāng)包衣滾筒轉(zhuǎn)速變化時(shí),破損率變化區(qū)間較大;當(dāng)種衣劑稀釋比變化時(shí),破損率變化區(qū)間相對(duì)較?。划?dāng)種藥比變化時(shí),包衣破損率變化最小。這說(shuō)明包衣滾筒轉(zhuǎn)速是影響花生破損率的主要因素,種藥比是破損率影響的次要因素,這與包衣合格率的影響大小次序分析一致。
綜合上述分析,為使包衣機(jī)作業(yè)質(zhì)量達(dá)到最佳,需使包衣合格率最大、破損率達(dá)到最低。為此,建立包衣合格率Ji、破損率Pj雙目標(biāo)函數(shù)的數(shù)學(xué)模型,并進(jìn)行求解。目標(biāo)函數(shù)如下
式中X1、X2、X3分別表示種藥比(種子質(zhì)量與藥比值,g/mL)、種衣劑稀釋比(稀釋用水與藥質(zhì)量之比)、包衣滾筒轉(zhuǎn)速(r/min)的實(shí)際值。包衣合格率Ji最大、破損率Pj最小時(shí)最優(yōu)解為:X1=31.73 g/mL,X2=4.76,X3=18.32 r/min。此時(shí),包衣合格率為97.22%,破損率為0.36%。2015年12月28日,根據(jù)優(yōu)化結(jié)果及試驗(yàn)的可操作性,將種藥比、種衣劑稀釋比、包衣滾筒轉(zhuǎn)速分別控制在31.7 g/mL、4.76、18.32 r/min的條件下進(jìn)行試驗(yàn)驗(yàn)證,此時(shí)花生包衣合格率為97.35%、破損率為0.37%。驗(yàn)證試驗(yàn)結(jié)果與表2中2、10、13、14、16號(hào)試驗(yàn)相比較,在種衣劑稀釋比、包衣滾筒轉(zhuǎn)速處于 0水平時(shí),由于優(yōu)化結(jié)果種藥比的變化,包衣合格率大幅提高、且破損率較低,說(shuō)明優(yōu)化結(jié)果具有較高可信度,本研究模型是可靠的。
為進(jìn)一步檢驗(yàn)上述優(yōu)化試驗(yàn)結(jié)果的實(shí)際應(yīng)用效果,將該試驗(yàn)參數(shù)應(yīng)用在南京農(nóng)牧機(jī)械廠 5BY-500-J型包衣設(shè)備上,該生產(chǎn)設(shè)備為甩盤滾筒式結(jié)構(gòu),其工作原理與試驗(yàn)臺(tái)相同,生產(chǎn)率約為5 t/h(以小麥計(jì)),該設(shè)備固有參數(shù)主要適用于小麥、水稻、玉米、大豆等作物包衣作業(yè)。按照文中優(yōu)化所得參數(shù)進(jìn)行種衣劑稀釋,并采用變頻調(diào)節(jié)對(duì)滾筒調(diào)速,通過(guò)調(diào)節(jié)計(jì)量泵及喂料量調(diào)節(jié)種藥比。試驗(yàn)前將設(shè)備在固定參數(shù)下空載運(yùn)行10 min并試噴藥1~2次,每次1 min,以查驗(yàn)設(shè)備在該參數(shù)下運(yùn)行的穩(wěn)定性。對(duì)待試物料進(jìn)行嚴(yán)格處理,人工剔除其中破損及霉變種子,試驗(yàn)重復(fù) 3次并取平均值,可得包衣合格率可達(dá)97.05%、破損率0.40%,較試驗(yàn)改進(jìn)前包衣合格率 89.7%、破損率 4.32%大幅改善。包衣后種子按照GB/T3543.4-1995農(nóng)作物種子檢驗(yàn)規(guī)程(發(fā)芽試驗(yàn))進(jìn)行實(shí)驗(yàn)室試驗(yàn)及田間種植試驗(yàn),其發(fā)芽率分別為 99.2%、96.1%,可滿足生產(chǎn)要求。
1)開(kāi)展單因素試驗(yàn)確定了包衣試驗(yàn)各參數(shù)的0水平值,并采用二次正交旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì),建立了花生包衣合格率、破損率與各因素之間關(guān)系的數(shù)學(xué)模型。分析得出種藥比對(duì)包衣合格率影響最大,包衣滾筒轉(zhuǎn)速對(duì)包衣破損率影響最大。
2)采用響應(yīng)曲面分析法對(duì)試驗(yàn)結(jié)果進(jìn)行了分析,并采用多目標(biāo)優(yōu)化分析對(duì)各參數(shù)進(jìn)行了優(yōu)化,通過(guò)優(yōu)化得到種藥比31.73 g/mL、種衣劑稀釋比4.76、包衣滾筒轉(zhuǎn)速18.32 r/min的條件下,包衣合格率及破損率達(dá)到最佳,分別為97.35%,破損率為0.37%。
3)驗(yàn)證試驗(yàn)結(jié)果與優(yōu)化結(jié)果基本一致,并將優(yōu)化后參數(shù)應(yīng)用于 5BY-500-J型甩盤滾筒式包衣設(shè)備上進(jìn)行生產(chǎn)實(shí)證,包衣合格率可達(dá)97.05%、破損率0.40%,實(shí)證結(jié)果表明優(yōu)化參數(shù)可滿足花生種子工廠化生產(chǎn)要求。
[1] 謝煥雄,王建楠,胡志超,等. 我國(guó)種用花生機(jī)械化脫殼技術(shù)路線[J]. 江蘇農(nóng)業(yè)科學(xué),2012,40(10):356-358.
[2] 魏海,謝煥雄,胡志超,等. 花生莢果氣力輸送設(shè)備參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):6-12. Wei Hai, Xie Huanxiong, Hu Zhichao, et al.Parameter optimization and test of pneumatic conveying equipment for peanut pods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 6-12. (in Chinese with English abstract)
[3] 李建東,尚書旗,李西振,等. 我國(guó)花生脫殼機(jī)械研究應(yīng)用現(xiàn)狀及進(jìn)展[J]. 花生學(xué)報(bào),2006,35(4):23-27. Li Jiandong, Shang Shuqi, Li Xizhen, et al. Application situation and developing analysis on peanut shelling machinery[J]. Journal of Peanut Science, 2006, 35(4): 23-27. (in Chinese with English abstract)
[4] 胡志超. 半喂入花生聯(lián)合收獲機(jī)關(guān)鍵技術(shù)研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2011. Hu Zhichao. Study on Key Technologies of Half-feed Peanut Combine Harvester[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract)
[5] 高連興,張文,杜鑫,等. 花生脫殼機(jī)脫出物的漂浮系數(shù)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):289-292. Gao Lianxing, Zhang Wen, Du Xin, et al. Experiment on aerodynamic characteristics of threshed mixtures of peanut shelling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 289-292. (in Chinese with English abstract)
[6] 劉明國(guó). 花生脫殼與損傷機(jī)理及立錐式脫殼機(jī)研究[D].沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2011. Liu Mingguo. Study on Peanut Shelling Damage Mechanism and Development of the Vertical Cone Type Shelling Machine[D]. Shenyang: Shenyang Agricultural University, 2011. (in Chinese with English abstract)
[7] 楊玲,楊明金,李慶東,等. 包衣稻種物理特性的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(9):7-11. Yang Ling, Yang Mingjin, Li Qingdong, et al. Experimental study on physical properties of coated rice seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 7-11. (in Chinese with English abstract)
[8] 管磊,郭貝貝,王曉坤,等. 苯醚甲環(huán)唑和氟啶胺的兩種制劑包衣種子對(duì)花生土傳真菌病害的防治效果[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(11):2176-2186. Guan Lei, Guo Beibei, Wang Xiaokun, et al. Control efficacies of two preparations of difenoconazole and fluazinam by seed-coating against peanut soil-borne fungal diseases[J]. Scientia Agricultura Sinica, 2015, 48(11): 2176-2186. (in Chinese with English abstract)
[9] 胡良龍,胡志超,高剛?cè)A,等. 基于PLC的種子包衣機(jī)自動(dòng)控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(8):140-144. Hu Lianglong, Hu Zhichao, Gao Ganghua, et al. Design and realization of automatic controlling system for seed coater based on PLC[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(8): 140-144. (in Chinese with English abstract)
[10] 易啟偉. 大處理量花生脫紅衣機(jī)脫皮裝置的設(shè)計(jì)[J]. 包裝與食品機(jī)械,2010(4):31-33.
[11] Guzel E, Akcali I D, Mutlu H, et al. Research on the fatigue behavior for peanut shelling[J]. Journal of Food Engineering, 2005, 67: 373-378.
[12] 莊偉建,官德義,蔡來(lái)龍,等. 促進(jìn)花生種子在低溫脅迫下發(fā)芽的種衣劑的篩選研究[J]. 花生學(xué)報(bào),2003,32(增刊):346-351.
[13] 游春平,傅瑩,韓靜君,等. 我國(guó)花生病害的種類及其防治措施[J]. 江西農(nóng)業(yè)學(xué)報(bào),2010,22(1):97-101. You Chunping, Fu Ying, Han Jingjun, et al. Occurrence andmanagement of main peanut diseases in China[J]. Acta Agriculture Jiangxi, 2010, 22(1): 97-101. (in Chinese with English abstract)
[14] 胡良龍,胡志超,計(jì)福來(lái),等. 新型包衣機(jī)種子供給計(jì)量誤差校正技術(shù)研究與實(shí)現(xiàn)[J]. 江蘇農(nóng)業(yè)科學(xué),2010(4):414-416.
[15] 胡志超,計(jì)福來(lái),高剛?cè)A,等. 5B-5型智能化種子包衣機(jī)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(9):205-207.
[16] 魏海,趙武云,胡志超,等. 小型花生種子包衣設(shè)備包衣性能影響因素研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2014,35(3):193-196. Wei Hai, Zhao Wuyun, Hu Zhichao, et al. Studies of factors affecting the peanut-coating performance of a small seed-coating equipment[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(3): 193-196 (in Chinese with English abstract)
[17] 韓豹,申建英,范偉. 種子包衣機(jī)的研制[J]. 農(nóng)機(jī)化研究,2003,6(2):151-152. Han Bao, Shen Jianying, Fan Wei. The development of seed coating machine[J]. Journal of Agricultural Mechanization Research, 2003, 6(2): 151-152. (in Chinese with English abstract)
[18] 趙德春,趙巍. 5BJZ-3.0型新型種子包衣機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2006(3):97-98.
[19] 胡良龍. 種子包衣機(jī) PLC控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D]. 南京:南京理工大學(xué),2008.
[20] 鞠倩,李曉,蘇衛(wèi)華,等. 不同施藥方法對(duì)花生田蠐螬的防治效果評(píng)價(jià)[J]. 花生學(xué)報(bào),2016,45(1):43-47. Ju Qian, Li Xiao, Su Weihua, et al. The control effect of different application methods on peanut white grub[J]. Journal of Peanut Science, 2016, 45(1): 43-47. (in Chinese with English abstract)
[21] 管磊. 防治花生土傳真菌病害種子處理藥劑的篩選[D].泰安:山東農(nóng)業(yè)大學(xué),2015. Guan Lei. Screening for Controlling Peanut Soilborne Fungal Diseases on Peanut by Seed-coating[D]. Taian: Shandong Agriculture University, 2015.
[22] 禹山林. 中國(guó)花生品種及其系譜[M]. 上海:上海科學(xué)技術(shù)出版社,2008.
[23] 呂小蓮,胡志超,于昭洋,等. 花生籽粒幾何尺寸及物理特性的研究[J]. 揚(yáng)州大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2013,34(3):61-65. Lü Xiaolian, Hu Zhichao, Yu Zhaoyang, et al. Experimental research on the geometric dimensions and physical properties of peanut seeds[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2013, 34(3): 61-65. (in Chinese with English abstract)
[24] 陳魁. 試驗(yàn)設(shè)計(jì)與分析[M]. 北京:清華大學(xué)出版社,2005.
[25] 徐向宏,何明珠. 試驗(yàn)設(shè)計(jì)與Design-Expert SPSS應(yīng)用[M].北京:科學(xué)出版社責(zé)任有限公司,2016.
[26] 潘麗軍,陳錦權(quán). 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 南京:東南大學(xué)出版社,2008.
[27] 胡永光,楊葉成,肖宏儒,等. 茶園施肥機(jī)離心撒肥過(guò)程仿真與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):77-82. Hu Yongguang, Yang Yecheng, Xiao Hongru, et al. Simulation and parameter optimization of centrifugal fertilizer spreader for tea plants[J].Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(5): 77-82. (in Chinese with English abstract)
[28] 蔣恩臣,孫占峰,潘志洋,等. 超級(jí)稻摘穗收獲機(jī)沉降箱性能分析與運(yùn)行參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,46(1):100-105. Jiang Enchen, Sun Zhanfeng, Pan Zhiyang, et al. Performance analysis and operational parameters optimization of deposition chamber to clean super rice in stripper combine harvester[J]. Transaction of the Chinese Society for Agricultural Machinery, 2015, 46(1): 100-105. (in Chinese with English abstract)
[29] 王軍,王敏,于智峰. 基于響應(yīng)曲面法的苦蕎麩皮總黃酮提取工藝優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(7):205-208.
[30] 王永維,唐海燕,王俊,等. 蔬菜缽苗高速移栽機(jī)吊杯式栽植器參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):91-99. Wang Yongwei, Tang Yanhai, Wang Jun, et al. Parameter optimization for dibble-type planting apparatus of vegetable pot seedling transplanter in high-speed condition[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(1): 91-99. (in Chinese with English abstract)
[31] 王俊,申立中,楊永忠,等. 基于響應(yīng)曲面法的非道路用高壓共軌柴油機(jī)設(shè)計(jì)點(diǎn)優(yōu)化標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):31-39. Wang Jun, Shen Lizhong, Yang Yongzhong, et al, Optimizing calibration of design points for non-road high pressure common rail diesel engine base on response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 31-39. (in Chinese with English abstract)
Parameter optimization on mechanical coating processing of rotary table-roller coating machine for peanut seeds
Wang Jiannan, Xie Huanxiong※, Hu Zhichao, Hu Lianglong, Peng Baoliang, Liu Minji
(Nanjing Research Institute for Agricultural Mechanization,Ministry of Agriculture,Nanjing210014,China)
In order to improve both poor coating qualified rate and high breakage rate of peanut seeds caused by unreasonable working parameters of rotary table-roller coating equipment, the single factor and central composite experiments were conducted. The effects of the main working parameters, including ratio of seeds weight to coating volume, dilution ratio of seed coating, speed of roller, on coating qualified rate and breakage rate of peanuts coating were analyzed by means of the rotary table-roller coating test rig. The study object was “Huayu 33”, which was 16.22-19.16 mm in length, 8.06-10.36 mm in width, and 7.16-8.36 mm in thickness and whose moisture was 11.6%, and thousand kernel weight was 812.1 g. The single factor experiments were firstly conducted, and the results showed the influence laws of the 3 main working parameters on coating qualified rate and breakage rate, which were necessary to determine zero level of each parameter in the quadratic regression revolution design. And then the composite experiment methods of quadratic orthogonal rotation were adopted, the data were analyzed based on the Design-Expert software, the mathematical regression models of peanuts coating rate and breakage rate were built, and their corresponding variance analysis were conducted too. A regression equation of the relationship between variation coefficient of the 3 main working parameters was obtained. Through the analysis of variance, the results showed that the most influential factor for the coating qualified rate was the ratio of seeds weight to coating volume, and the minimum impact factor was the dilution ratio of seed coating; regarding to the breakage rate, the most influential factor was the speed of roller, and the minimum impact factor was the ratio of seeds weight to coating volume. The response surface method was utilized to analyze the effects of factors’ interaction on the coating qualified rate and breakage rate, and the multi-objective optimizations were conducted for the regression models. The optimal combination working parameters of the drum coating test rig were the roller speed of 18.32 r/min, ratio of seeds weight to coating volume of 31.73 g/mL, and dilution ratio of seed coating of 4.76. All of those were obtained by the optimization solution of all factors with the quadratic regression model equation of performance evaluation indices in the range of experimental parameters constraints. Under the condition of the optimal combination working parameters, the coating qualified rate and the breakage rate were 97.35% and 0.37%, respectively. This coating quality met the need of peanut seeds processing industry. The results of verification test were consistent with those of optimization solution. Production verification test was conducted with the 5BY-500-J coating machine (the productivity was 5 t/h when it was used for corn seeds coating operation) in Nanjing Agricultural Machinery Factory. The coating machine worked the same as the rotary table-roller coating test rig, but the working parameters were not reasonable for peanut coating. In the experiment, the working parameters of 5BY-500-J coating machine were adjusted according the optimization results by variable frequency regulation of the drum and the control of feeding parts of seeds coating. With the optimal parameters applied by the coating machine, the coating quality was improved greatly, and the coating qualified rate and breakage rate were 97.05% and 0.40%, respectively, which were very close to those obtained from the previous model results. The results of verification showed that the coating machine could be used for peanut seeds processing after working parameters optimization. The study provides the scientific basis for the working parameter optimization of rotary table-roller coating machine for peanut seeds.
mechanization; optimization; crops; rotary table-roller; peanut seeds; mechanical coating; response surface methodology
10.11975/j.issn.1002-6819.2017.07.006
S226
A
1002-6819(2017)-07-0043-08
2016-09-26
2017-03-08
國(guó)家花生產(chǎn)業(yè)技術(shù)體系產(chǎn)后加工機(jī)械崗位(CARS14);中國(guó)農(nóng)科院創(chuàng)新工程農(nóng)產(chǎn)品分級(jí)貯藏團(tuán)隊(duì)。
王建楠,男,河南潢川人,副研究員,主要從事農(nóng)產(chǎn)品加工技術(shù)裝備研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。
Email:wjnsunrise@126.com
※通信作者:謝煥雄,男,廣西浦北人,研究員,國(guó)家花生產(chǎn)業(yè)技術(shù)體系產(chǎn)后加工機(jī)械崗位專家,主要從事花生產(chǎn)后加工技術(shù)裝備研究。南京 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,210014。
Email:nfzhongzi@163.com