• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Rheological Characteristics of a Grease Used in High Speed Bearing

    2017-05-09 15:37:40WangYanshuangLiShaochuanGuoDan
    中國(guó)煉油與石油化工 2017年1期

    Wang Yanshuang; Li Shaochuan; Guo Dan

    (1. College of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222; 2. School of Mechanical Engineering, Tsinghua University)

    Study on Rheological Characteristics of a Grease Used in High Speed Bearing

    Wang Yanshuang1,2; Li Shaochuan1; Guo Dan2

    (1. College of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222; 2. School of Mechanical Engineering, Tsinghua University)

    On a self-made super-high shear strain rate rheometer, the rheological characteristics and apparent viscosity curves of a high-speed bearing grease were obtained under different working conditions. A new grease rheological model suited to a shear strain rate range of 0—3.5×106s-1was presented. The results showed that the shear stress increased linearly at frst and then increased nonlinearly with the increase in shear strain rate up to1.5×106s-1, and fnally the shear stress decreased slightly with the successive increase in shear strain rate. The shear stress increased with a decreasing rolling speed and an increasing contact pressure. The apparent viscosity decreased rapidly with the increase of shear strain rate at beginning and could approach the viscosity of the base oil if the shear strain rate surpassed 1.5×106s-1. The fts between the test data and the predicted values by the new model were fairly good.

    grease; rheological characteristic; rheological model; high speed bearing; high shear strain rate

    1 Introduction

    The ability of flow and deformation of grease by the effect of the external force is known as the grease rheological characteristic. The rheological characteristics of lubricating greases are complicated because the greases are non-Newtonian fluids. With the development of science and technology, the requirements for improving the movement accuracy and life of the high speed bearings are urgent. Rolling bearings are frequently faced with challenges primarily relating to the failure of lubrication system rather than the surface fatigue. The rheological characteristics of lubricating greases can determine the friction characteristics of high speed bearings, which thereby can affect the bearing life and bearing movement accuracy. So, the study on rheological characteristics of greases for high speed bearing is of great significance. It is well-known that when a shear force is applied on a portion of grease, a reorientation of the composite fbers is induced and the overall fuidity of the grease improves. To characterize this behavior, many rheological models have been presented.

    Sasaki[1]firstly used the Bingham model to describe the rheological characteristics of lubricating grease and presented a lubrication theory for roller bearings. In 1972, a relatively complete EHL theory of lubricating greases was presented by Kauzlarich, who used the Herschel-Bulkley constitutive equation to derive lubrication equations of lubricating greases under the line contact[2]. Till now, the researches on the rheological characteristics and models of lubricating greases have not achieved too much development yet. Goncalves[3]and González[4]used a MCR 301 rheometer to perform the rheology measurements. The storage and loss moduli were measured in the linear visco-elastic region at a frequency of 1 s-1. Cousseau Tiago[5]measured the apparent grease viscosity as a function of the shear rate, in which the power-law model was used. In the literature[6], the rheological characteristics of several greases were studied with a MCR 501 rheometer in a shear rate range of 3×10-3—102s-1, resulting in flow curves which could be satisfactorily described by the well-known powerlaw model. In the literature reports[7-9], the fow curve of each grease was also measured and a modifed Herschel-Buckley model was applied. Мenéndez[10]presented the numerical simulation of an air-operated piston pump for lubricating greases, and the power-law model for non-Newtonian fuids was applied. The grease related thermal elastohydrodynamic lubrication (TEHL) problems of line contacts were analyzed numerically in the literature[11]. The effects of temperature and rheological parameters on grease TEHL were investigated using the Herschel-Bulkley model as a rheological model of greases. It is found that the effect of yield stress of the Herschel-Bulkley model on minimum flm thickness is negligible, while the flow index and viscosity parameter have signifcant effects on the minimum flm thickness. Cheng Jinshan[12]studied the colloidal structure, the elastic modulus, and the apparent viscosity of several greases, as well as the characteristics of shear stress in relation to the change of temperatures and shear rates. Мa(chǎn)o Jingjing[13]studied the relationship between the rheological parameters and the microstructure of lubricating greases through the rheological tests of five kinds of lithium greases.

    However, the shear strain rates of lubricating greases studied in the above literature reports cannot exceed 104s-1because of the constraints in the structure of the rotary rheometer. In practical applications, many greases, especially those greases used in high speed bearings, are applied under the operating conditions with shear strain rates reaching up to 106s-1. The rheological characteristics of greases are strongly shear strain rate dependent because of the non-Newtonian characteristics of greases. The rheology measurements and rheological models referred to in the above literature reports cannot give the reference to the grease characteristics used in high speed bearings when the shear strain rate ranges from 104—3.5×106s-1.

    In this paper, the rheological characteristics and apparent viscosity of a high speed bearing grease were measured on a self-made super-high shear strain rate rheometer, and a new grease rheological model suitable for the super-high shear strain rates was presented fnally.

    2 Test Device and Principle

    The test device used in this experiment can be named as a super-high shear strain rate rheometer, with its main structure shown in Figure 1. The super-high shear strain rate rheometer is composed of a ball specimen and a disc specimen that are driven by a horizontal motor I and a vertical motor II, respectively. During the test, the hydrostatic shaft which supports motor I is employed to apply a contact load between the rotating ball and the disc. The contact load is measured by a load sensor fxed beneath the hydorstatic shaft. The motor I can swing along the horizontal plane.

    Figure 1 The super-high shear strain rate rheometer

    The tested grease is fed with a gas-pressure activated grease feeding device shown in Figure 2, by which a controlled amount of fresh grease can be deposited on the contact zone between the ball and the disc. The device for gas-pressure activated grease feeding consists of an air suction flter, a pressure control valve, a grease cylinder, a switch valve, a surveyor’s pole and a grease export. The speed of grease feed and the volume of the grease in the grease cylinder can be surveyed by the surveyor’s pole. The speed of grease feed can be adjusted to 4—8 g/min to assure a continuous supply of fresh grease to the contact. The head of the surveyor’s pole is the piston. There are two seal rings between the piston and the grease cylinder. The seal rings can keep the air out of the left space of thegrease cylinder, in which the grease is stored.

    Figure 2 The device for feeding grease under gas pressure

    in which A is the contact area and can be computed by means of the Hertzian contact theory.

    Since the grease film thickness is close to that of its base oil for the grease the soap concentration of which is less than 15%[14], the value of h can be calculated by the formula of the central film thickness of the base oil according to the Hamrock-Downson’s equation[15]:

    where k is the ellipticity ratio, W is the contact load, E′=E1E2/(E1+E2) is the equivalent modulus of elasticity (E1and E2are modulus of elasticity of the ball and the disc, respectively), R=R1R2/(R1+R2) is the equivalent radius, α is the viscosity-pressure coeffcient of base oil, η0is the dynamic viscosity of the base oil at the ambient temperature, and U=(U1+U2)/2 is the rolling speed.

    The grease used in this investigation was LGLT produced by the SKF Corporation. This LGLT grease is classifed as the super-high-speed grease, the base oil of which is a synthetic oil. The dynamic viscosity of its base oil at ambient temperature was η0=0.05 Pa·s, and its viscositypressure coefficient was α=1.80×10-8Pa-1. The soap concentration of the LGLT grease was below 15%.

    The test conditions simulating the operating conditions of SKF rolling bearings were as follows: rolling speeds: 20 m/s, 25 m/s, 30 m/s, 35 m/s, and 40 m/s; maximum Hertzian contact pressures: 0.8 GPa, 1.0 GPa, 1.2 GPa, 1.35 GPa, and 1.5 GPa; and the shear strain rates: 0—3.5×106s-1. The grease inlet temperature was 25oC.

    3 Shear Stress-Shear Strain Rate Curves

    A total of 25 curves describing the rheological behavior of the grease in terms of the shear stress versus shear strain rate were obtained in the range of the test conditions, as shown in Figures 3—8 (with the points representing test data).

    It can be seen from Figures 3—8 that the shear stress increased linearly at frst and then increased nonlinearly with the increase of shear strain rate, and finally the shear stress slightly decreased with a further increase of the shear strain rate. When the shear strain rates exceeded 1.5×106s-1, the shear stress decreased slightly with the successive increase in the shear strain rate. This phenomenon could occur because the shear strain rate became so big that the grease structure was broken down, and at this moment the shear properties were mainlydetermined by the base oil. The thermal effect would result in the reduction of the base oil viscosity, making the shear stress-shear strain rate curves decrease at high shear strain rates.

    Figure 3 Shear stress versus shear strain rate under different contact pressure at a rolling speed of 20 m/s■—0.8 GPa;●—1.0 GPa;★—1.2GPa;?—1.35 GPa;?—1.5 GPa——Predicted values by the new model

    Figure 4 Shear stress versus shear strain rate under different contact pressure at a rolling speed 25 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35GPa;?—1.5 GPa——Predicted values by the new model

    Figure 5 Shear stress versus shear strain rate under different contact pressure at a rolling speed of 30 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35GPa;?—1.5 GPa——Predicted values by the new model

    Figure 6 Shear stress versus shear strain rate under different contact pressure at a rolling speed of 35 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35GPa;?—1.5 GPa——Predicted values by the new model

    Figure 7 Shear stress versus shear strain rate under different contact pressure at a rolling speed of 40 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35GPa;?—1.5 GPa——Predicted values by the new model

    Figure 8 Shear stress versus shear strain rate under different rolling speed at a contact pressure of 1.2 GPa■—20 m/s;●—25 m/s;▲—30 m/s;?—35 m/s;★—40 m/s

    It can be seen from Figures 3—7 that the shear stress increased with an increasing contact load or with a maximum Hertzian contact pressure at a constant rolling speed. It is evident that the effect of contact load or the Herzian contact pressure on the shear stress tended to become smaller when the maximum Hertzian pressure surpassed 1.35 GPa, indicating that the grease tended towards plasticization. Figure 8 indicates that a lower rolling speed could yield a larger shear stress under a constant pressure.

    4 Apparent Viscosity of the Grease

    The ratio of the grease shear stress and shear strain rate is called the apparent grease viscosity as shown in formula (4):

    5 Rheological Model of Grease

    5.1 Herschel-Bulkley model and four-parameter modelThe rheological models of greases presented in most literature reports belong to the Herschel-Bulkley model and the four-parameter model. The Herschel-Bulkley model can be defned as:

    Figure 9 Apparent grease viscosity versus shear strain rate under different contact pressure at a rolling speed of 20 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35 GPa; ?—1.5 GPa

    Figure 1 0Apparent grease viscosity versus shear strain rate under different contact pressure at a rolling speed of 25 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35 GPa; ?—1.5 GPa

    Figure 1 1Apparent grease viscosity versus shear strain rate under different contact pressure at a rolling speed of 30 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35 GPa; ?—1.5 GPa

    Figure 12Apparent grease viscosity versus shear strain rate under different contact pressure at a rolling speed of 35 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35 GPa; ?—1.5 GPa

    Figure 1 3Apparent grease viscosity versus shear strain rate under different contact pressure at a rolling speed of 40 m/s■—0.8 GPa;●—1.0 GPa;▲—1.2 GPa;★—1.35 GPa; ?—1.5 GPa

    Figure 1 4Apparent grease viscosity versus shear strain rate under different rolling speed at a contact pressure of 0.8 GPa■—20 m/s;●—25 m/s;▲—30 m/s;★—35 m/s;?—40 m/s

    It is confirmed that the grease film thickness under elastohydrodynamic conditions exceeds that of the corresponding base oil, when there is a continuous supply of fresh grease to the contact[14]. The higher flm thickness given by grease indicates that the apparent viscosity of grease is greater than the viscosity of base oil. At very high shear stresses or shear strain rates, the grease structure will be broken down, and the base oil will be released from the soap fbres to form perhaps a suspension of soap in oil. So, at extremely high shear rates, the grease viscosity will be close to that of the base oil. The fourparameter model has been accepted widely, because it satisfes the fact that the apparent grease viscosity cannot decrease below the base oil viscosity. The four-parameter model proposed by Bauer, et al. is shown as:

    where,ηbis the viscosity of the base oil,nis the rheological index,φis the plastic viscosity, and τsis the yield shear stress. Eq. (6) has been ftted to the test data from our super-high shear strain rate rheometer, using the least squares method. When the test data for a shear strain rate range of 0—1×106s-1were used to fit the model, the four-parameter model is valid as shown in Figure 15. But this model becomes invalid, if the test data for a shear strain rate covering the range of 0—3.5×106s-1were used to fit the model, as shown in Figure 16. As regards the lubricating grease, its shear stresses would increase with the increase of shear strain rate ranging from 0 to 1.5×106s-1, and then the shear stresses tended to be a constant valueor slightly decreased with an increasing shear strain rate covering the range from 1.5×106s-1to 3.5×106s-1. This phenomenon cannot be described by the four-parameter model as shown in Figure 16, which can only describe the relation of shear stress that increases all the time with an increasing shear strain rate. So, the four-parameter model is useful for predicting the grease performance up to a shear strain rate of 1×106s-1, but it will become erroneous at higher values.

    Figure 1 5Prediction by four-parameter model at a shear strain rate range of 0—3.5×106s-1■—U=20 m/s,P0=0.8 GPa;●—U=40 m/s,P0=1.5 GPa——Predicted values by four-parameter model

    Figure16Prediction by four-parameter model at a shear strain rate range of 0—1×106s-1■—U=20 m/s,P0=0.8 GPa;●—U=40 m/s,P0=1.5 GPa——Predicted values by four-parameter model

    5.2 New rheological model

    For high speed bearings, the operating conditions for a shear strain rate range of 0—3.5×106s-1can be always found under elastohydrodynamic contacts. So, a new rheological model fitting the flow data for shear strain rates covering from low to super-high shear environments, namely 0—3.5×106s-1, or even up to the higher values, is presented as following:

    In whicha,nandbare coefficients which can be obtained by a nonlinear regression analysis to minimize the squared deviation between the test data and the corresponding computed values by Eq. (6). A total of 25 predicted curves by the new rheological model can also be obtained as shown in Figures 3—7. It is obvious that Eq. (6) yields a behavior similar to that of the test curves and the fts between the test data and the predicted values are fairly good. The correlation coeffcients representing the quality of the ft for the total 25 curves are all greater than 0.98.

    Actually, the yield stress could not be measured with a cone and plate viscometer which would only give an approximate value. Because the errors of rotational speed unavoidably existed, the results from the measurement obtained by our super-high shear strain rate rheometer were not close enough to give a correct yield stress. But the yield stress was very small compared to other terms. Thus the yield stress has been ignored in Eq. (6). The coeffcientsa,nandbgenerally vary with the operating conditions and the physical properties of grease. The physical signifcance for the coeffcientsa,nandbwill be investigated by further study on the properties of greases and the base oils.

    6 Conclusions

    Based on a self-made super-high shear strain rate rheometer with its shear rate ranging from 0 to 3.5×106s-1, a total of 25 curves describing the rheological behavior of a high-speed bearing grease in terms of the shear stress versus the shear strain rate were obtained under the specified test conditions, and 25 curves of the apparent grease viscosity versus the shear strain rate were also obtained.

    The shear stress increased linearly frst and then increased nonlinearly with the increase of shear strain rate up to 1.5×106s-1, and fnally the shear stress decreased slightly with the successive increase in shear strain rate. The shear stress increased with the increase in the contact load or the maximum Hertzian pressure at a constant rolling speed. The effect of contact load or the Herzian pressureon the shear stress tended to become smaller when the maximum Hertzian pressure surpassed 1.35 GPa, indicating that the grease tended towards plasticization. A lower rolling speed could yield a larger shear stress at a constant pressure.

    The apparent viscosity of the grease was strongly shear strain rate dependent under all test conditions. The tested grease showed a shear thinning behaviour. The apparent viscosity decreased rapidly at the beginning and would approach the viscosity of the base oil if the shear strain rate surpassed 1.5×106s-1. The apparent grease viscosity increased with an increasing contact load or a maximum Hertzian pressure, and decreased with an increasing rolling speed. The effects of contact load and rolling speed on the apparent grease viscosity were signifcant at low shear strain rates up to 5×105s-1, and the effects became smaller as the shear strain rate increased from 5×105s-1to 3.5×106s-1.

    A new rheological model fitting the flow data for shear strain rate covering from low to the super-high shear environments, namely 0—3.5×106s-1, or even up to the higher values, was presented. The new model yielded a grease behavior similar to that of the test curves and the fts between the test data and the predicted values were fairly good. The correlation coeffcients representing the quality of the ft for the total 25 curves were all greater than 0.98.

    Acknowledgements:This research is financially supported by the National Natural Science Foundation of China (No. 51475143) and the Tianjin Natural Science Foundation (No.16JCYBJC18900).

    [1] Sasakit Tokio, Мori H, Okino N. Theory of grease lubrication of cylindrical roller bearings[J]. Bulletin of the JSМE, 1960, 3(10): 31-36

    [2] Kauzlarich J J. Elastohydrodynamic lubrication with Herschel-Bulkley model grease[J]. ASLE Transaction, 1972, 15(4): 267-277

    [3] Goncalves D, Graca B, Campos A V, et al. Film thickness and friction behaviour of thermally aged lubricating greases[J]. Tribology International, 2016, 100: 231-241

    [4] Мercedes G, Gallego R, Romero М A, et al. Impact of natural sources-derived antioxidants on the oxidative stability and rheological properties of castor oil basedlubricating greases[J]. Industrial Crops and Products, 2016, 87: 297-303

    [5] Tiago C, Beatriz G М, Armando C V, et al. Influence of grease rheology on thrust ball bearings friction torque [J]. Tribology International, 2012, 46: 106-113

    [6] Gallego R, Cidade T, Sánchez R, et al. Tribological behaviour of novel chemically modified biopolymerthickened lubricating greases investigated in a steel–steel rotating ball-on-three plates tribology cell [J]. Tribology International, 2016, 94: 652-660

    [7] Мa(chǎn)rtín-Alfonso J E, Valencia C. Tribological, rheological, and microstructural characterization of oleogels based on EVA copolymer and vegetable oils for lubricant applications[J]. Tribology International, 2015, 90: 426-434

    [8] Goncalves D, Graca B, Campos A V, et al. Formulation, rheology and thermal ageing of polymer greases --Part I: Influence of the thickener content[J]. Tribology International, 2015, 87: 160-170

    [9] Мa(chǎn) Fangbo, Li Zhengmei, Qiu Shengchang, et al. Transient thermal analysis of grease-lubricated spherical roller bearings[J]. Tribology International, 2016, 93: 115-123

    [10] Мenéndez B A, Fernández O J М. Unsteady numerical simulation of an air-operated piston pump for lubricating greases using dynamic meshes[J]. Computers & Fluids, 2012, 57: 138-150

    [11] Yoo Jin-Gyoo, Kim Kyung-Woong. Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel-Bulkley model[J]. Tribology International, 1997, 30(6): 401-408

    [12] Chen Jinshan, Guo Xiaotao, Li Tao, et al. Relationship between rheological properties of lubricating grease and bearing vibration value[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 674-680 (in Chinese)

    [13] Мa(chǎn)o Jingjing, Cheng Xingguo, Zhang Suixin. Study on relationship between rheological properties and microstructure for lithium complex grease[J]. Lubrication Engineering, 2013, 38(12): 79-83

    [14] Gérard D, René N. An evaluation of grease behaviour in rolling bearing contacts[J]. STLE Transactions, Lubrication Engineering, 1986, 43: 905-915

    [15] Hamrock B J, Downson D. Isothermal elastohydrodynamic lubrication of point contacts, Part III – Fully flooded results[J]. ASМE Journal of Lubrication Technology, 1977, 99(2): 264-276

    Received date: 2016-10-08; Accepted date: 2017-01-09.

    Wang Yanshuang, E-mail: hkd_wang_ yan_shuang@126.com.

    日本一二三区视频观看| 国产高清视频在线播放一区| 亚洲人成网站高清观看| 日本一本二区三区精品| 亚洲欧洲精品一区二区精品久久久| 国产日本99.免费观看| 久久久色成人| 国产真实乱freesex| tocl精华| 国产精品美女特级片免费视频播放器 | 欧美日韩瑟瑟在线播放| 午夜日韩欧美国产| 小蜜桃在线观看免费完整版高清| 天堂av国产一区二区熟女人妻| 久久久精品大字幕| 级片在线观看| www.熟女人妻精品国产| 女人被狂操c到高潮| 亚洲人成电影免费在线| 久9热在线精品视频| 久久久色成人| 99精品久久久久人妻精品| 日本一二三区视频观看| 真人一进一出gif抽搐免费| 欧美成人性av电影在线观看| 国产精品自产拍在线观看55亚洲| 亚洲精品国产精品久久久不卡| 一进一出好大好爽视频| 久久精品aⅴ一区二区三区四区| 欧美又色又爽又黄视频| 国产99白浆流出| 精品一区二区三区视频在线观看免费| xxxwww97欧美| 亚洲无线在线观看| 88av欧美| 久久久久久久久久黄片| 美女黄网站色视频| 他把我摸到了高潮在线观看| 久久亚洲精品不卡| 久久精品aⅴ一区二区三区四区| 精品国产美女av久久久久小说| 国产高清激情床上av| 宅男免费午夜| 国产精品一及| 婷婷六月久久综合丁香| 色综合亚洲欧美另类图片| 91av网一区二区| 日本与韩国留学比较| 日韩中文字幕欧美一区二区| 一级黄色大片毛片| 亚洲专区字幕在线| 国产伦精品一区二区三区四那| 久久热在线av| 婷婷丁香在线五月| 特大巨黑吊av在线直播| 国产真实乱freesex| 真人一进一出gif抽搐免费| 色播亚洲综合网| 听说在线观看完整版免费高清| 国产精品精品国产色婷婷| 18禁国产床啪视频网站| 亚洲激情在线av| 亚洲熟妇中文字幕五十中出| or卡值多少钱| 观看美女的网站| 日本 欧美在线| 亚洲五月天丁香| 久久精品91无色码中文字幕| 琪琪午夜伦伦电影理论片6080| 19禁男女啪啪无遮挡网站| 97超视频在线观看视频| 九九久久精品国产亚洲av麻豆 | 听说在线观看完整版免费高清| 亚洲av日韩精品久久久久久密| 美女免费视频网站| 国产高清激情床上av| 黄色女人牲交| 色吧在线观看| 国产精品免费一区二区三区在线| 久久久久久大精品| 天天添夜夜摸| 午夜亚洲福利在线播放| av视频在线观看入口| 亚洲黑人精品在线| 亚洲国产精品成人综合色| 日本 欧美在线| 别揉我奶头~嗯~啊~动态视频| 在线观看免费午夜福利视频| 很黄的视频免费| 一卡2卡三卡四卡精品乱码亚洲| 国内精品久久久久久久电影| 久久久国产成人精品二区| 人妻久久中文字幕网| 两个人看的免费小视频| 精品国产乱子伦一区二区三区| 人人妻人人看人人澡| 欧美乱色亚洲激情| 国产毛片a区久久久久| 不卡一级毛片| 午夜福利高清视频| 91字幕亚洲| 亚洲自拍偷在线| 香蕉av资源在线| 岛国视频午夜一区免费看| 久久久国产精品麻豆| 我要搜黄色片| 18美女黄网站色大片免费观看| 欧美在线一区亚洲| 搡老妇女老女人老熟妇| 国产精品久久久久久人妻精品电影| 欧美成狂野欧美在线观看| 国产淫片久久久久久久久 | 国产精品野战在线观看| 91九色精品人成在线观看| 特级一级黄色大片| 国产精品久久久久久久电影 | 国产精品综合久久久久久久免费| 在线视频色国产色| 国产伦精品一区二区三区视频9 | 国产精品98久久久久久宅男小说| 成人高潮视频无遮挡免费网站| 亚洲午夜精品一区,二区,三区| 九九在线视频观看精品| 动漫黄色视频在线观看| 三级国产精品欧美在线观看 | 久久久色成人| 美女cb高潮喷水在线观看 | 亚洲欧美日韩无卡精品| 免费在线观看影片大全网站| 97碰自拍视频| 久久精品国产亚洲av香蕉五月| 国产91精品成人一区二区三区| АⅤ资源中文在线天堂| 久久久久久国产a免费观看| 琪琪午夜伦伦电影理论片6080| 嫩草影院精品99| 国产高清有码在线观看视频| 欧美zozozo另类| 一边摸一边抽搐一进一小说| 青草久久国产| 美女 人体艺术 gogo| 精品久久蜜臀av无| 色综合欧美亚洲国产小说| 国产高清videossex| 天堂网av新在线| 黑人操中国人逼视频| 国产毛片a区久久久久| 精品国产亚洲在线| 亚洲国产高清在线一区二区三| 国产高清视频在线播放一区| 精华霜和精华液先用哪个| 国内揄拍国产精品人妻在线| 丰满人妻一区二区三区视频av | 国产一区二区三区视频了| 欧美三级亚洲精品| 村上凉子中文字幕在线| 1024香蕉在线观看| 宅男免费午夜| 九色成人免费人妻av| 日韩欧美免费精品| 欧美乱妇无乱码| 黄色片一级片一级黄色片| 成熟少妇高潮喷水视频| 久久国产精品人妻蜜桃| 日日夜夜操网爽| 成人永久免费在线观看视频| 久久精品91蜜桃| 久久久久亚洲av毛片大全| 午夜福利欧美成人| 老汉色av国产亚洲站长工具| 岛国在线免费视频观看| 欧美乱妇无乱码| 在线观看日韩欧美| 法律面前人人平等表现在哪些方面| 欧美另类亚洲清纯唯美| 啦啦啦观看免费观看视频高清| 成人永久免费在线观看视频| 亚洲熟女毛片儿| 我的老师免费观看完整版| 国产爱豆传媒在线观看| 国产野战对白在线观看| 少妇丰满av| 19禁男女啪啪无遮挡网站| 观看美女的网站| 亚洲欧美日韩高清专用| 久久这里只有精品19| 婷婷丁香在线五月| 亚洲在线观看片| 中文字幕高清在线视频| 成人国产综合亚洲| 精品电影一区二区在线| 精品国产三级普通话版| 热99在线观看视频| 日本精品一区二区三区蜜桃| 91久久精品国产一区二区成人 | 亚洲国产精品sss在线观看| 国产精品一及| 噜噜噜噜噜久久久久久91| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 国产精品永久免费网站| 国产人伦9x9x在线观看| 国产免费男女视频| 大型黄色视频在线免费观看| 美女黄网站色视频| av视频在线观看入口| 国产单亲对白刺激| 国产av麻豆久久久久久久| 白带黄色成豆腐渣| 夜夜看夜夜爽夜夜摸| 最好的美女福利视频网| 1024香蕉在线观看| 叶爱在线成人免费视频播放| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 757午夜福利合集在线观看| 欧美一区二区精品小视频在线| 日韩欧美一区二区三区在线观看| 极品教师在线免费播放| 美女cb高潮喷水在线观看 | 麻豆成人av在线观看| 亚洲真实伦在线观看| 黄色女人牲交| 国产伦人伦偷精品视频| 狂野欧美白嫩少妇大欣赏| 99热这里只有精品一区 | 午夜视频精品福利| 在线永久观看黄色视频| 亚洲av电影在线进入| 亚洲国产色片| 最新美女视频免费是黄的| 欧美日韩国产亚洲二区| 动漫黄色视频在线观看| 午夜a级毛片| 精品免费久久久久久久清纯| 国产高清视频在线播放一区| 精品电影一区二区在线| 亚洲精品美女久久久久99蜜臀| 国产精品 国内视频| 国产成人欧美在线观看| 一本精品99久久精品77| 日日夜夜操网爽| 亚洲成人免费电影在线观看| 99久久久亚洲精品蜜臀av| 一级a爱片免费观看的视频| 欧美黑人欧美精品刺激| 色播亚洲综合网| 老司机福利观看| 搡老熟女国产l中国老女人| 好男人电影高清在线观看| 色综合站精品国产| 国产亚洲av嫩草精品影院| 成年免费大片在线观看| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久av美女十八| 噜噜噜噜噜久久久久久91| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 熟女电影av网| 国产精品av视频在线免费观看| 免费大片18禁| xxxwww97欧美| 国产亚洲精品一区二区www| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 欧美3d第一页| 亚洲自偷自拍图片 自拍| 男人舔女人下体高潮全视频| 免费人成视频x8x8入口观看| 中出人妻视频一区二区| 亚洲自偷自拍图片 自拍| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 亚洲五月婷婷丁香| 亚洲欧美精品综合久久99| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 亚洲欧美日韩卡通动漫| 美女高潮的动态| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 免费看美女性在线毛片视频| 女警被强在线播放| xxx96com| 国产精品99久久99久久久不卡| 国内揄拍国产精品人妻在线| 亚洲国产精品成人综合色| 精品久久蜜臀av无| 国产激情偷乱视频一区二区| 男女午夜视频在线观看| 久久久水蜜桃国产精品网| 国产亚洲精品久久久com| 午夜精品一区二区三区免费看| 午夜视频精品福利| 国产亚洲欧美在线一区二区| 青草久久国产| 中文在线观看免费www的网站| 国产精品98久久久久久宅男小说| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 中文字幕精品亚洲无线码一区| 久久久久免费精品人妻一区二区| 久久人人精品亚洲av| 69av精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜| 国产精品女同一区二区软件 | 欧美日韩亚洲国产一区二区在线观看| netflix在线观看网站| 国产野战对白在线观看| 午夜福利免费观看在线| 真人一进一出gif抽搐免费| 久久久精品大字幕| 日韩中文字幕欧美一区二区| 少妇丰满av| 丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 夜夜爽天天搞| 男女那种视频在线观看| 精品国产超薄肉色丝袜足j| 亚洲国产欧洲综合997久久,| 精品无人区乱码1区二区| 欧美日韩瑟瑟在线播放| 在线免费观看的www视频| 操出白浆在线播放| 亚洲在线观看片| 亚洲成人久久性| 欧美一区二区国产精品久久精品| 在线免费观看不下载黄p国产 | 久久精品亚洲精品国产色婷小说| 91字幕亚洲| 免费看美女性在线毛片视频| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| av女优亚洲男人天堂 | 国产高清视频在线观看网站| 99精品久久久久人妻精品| 少妇的逼水好多| 人人妻,人人澡人人爽秒播| 综合色av麻豆| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区| 禁无遮挡网站| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| 国产三级黄色录像| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 黄色丝袜av网址大全| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 免费观看人在逋| 夜夜夜夜夜久久久久| 国产免费男女视频| 国产精品,欧美在线| 精品欧美国产一区二区三| 看黄色毛片网站| 欧美av亚洲av综合av国产av| 国产精华一区二区三区| 午夜日韩欧美国产| 久久这里只有精品中国| 国产欧美日韩一区二区精品| 国产成人精品久久二区二区免费| 久久这里只有精品中国| 亚洲国产欧美人成| 国产成人欧美在线观看| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av | av天堂在线播放| 日韩av在线大香蕉| 国产成人av激情在线播放| 国产视频一区二区在线看| 亚洲av电影在线进入| 精品99又大又爽又粗少妇毛片 | 午夜免费成人在线视频| av在线天堂中文字幕| 亚洲性夜色夜夜综合| 亚洲午夜精品一区,二区,三区| 久久久久久久久免费视频了| 夜夜夜夜夜久久久久| 黄频高清免费视频| 久久国产乱子伦精品免费另类| 国产真人三级小视频在线观看| 免费搜索国产男女视频| 国产aⅴ精品一区二区三区波| 三级国产精品欧美在线观看 | 亚洲在线观看片| 午夜福利18| 性色avwww在线观看| 亚洲av片天天在线观看| 国产一区二区在线观看日韩 | 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频| 午夜影院日韩av| 男插女下体视频免费在线播放| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 超碰成人久久| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| h日本视频在线播放| 国产一区二区在线av高清观看| 日本在线视频免费播放| 男人舔奶头视频| 久久亚洲真实| 精品国产乱子伦一区二区三区| 91av网一区二区| 精品一区二区三区视频在线 | 欧美绝顶高潮抽搐喷水| 国产精品香港三级国产av潘金莲| 一本一本综合久久| 亚洲欧美日韩东京热| 久久精品影院6| 首页视频小说图片口味搜索| 国产一区二区三区视频了| 我要搜黄色片| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 桃色一区二区三区在线观看| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清| 久久久久久久久免费视频了| 亚洲片人在线观看| 国产淫片久久久久久久久 | АⅤ资源中文在线天堂| 久久久久国产一级毛片高清牌| 不卡一级毛片| 老鸭窝网址在线观看| 久久久久久久久中文| 美女高潮喷水抽搐中文字幕| 成人鲁丝片一二三区免费| 日韩欧美 国产精品| 这个男人来自地球电影免费观看| 国产熟女xx| 十八禁网站免费在线| 久久久久精品国产欧美久久久| 国产av在哪里看| 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| 国产免费男女视频| 男女床上黄色一级片免费看| 99久国产av精品| 午夜视频精品福利| 这个男人来自地球电影免费观看| 一个人看视频在线观看www免费 | 久久久水蜜桃国产精品网| 国产激情久久老熟女| 午夜福利18| 午夜激情欧美在线| 国产极品精品免费视频能看的| 国产精品久久久久久人妻精品电影| 亚洲av片天天在线观看| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 午夜影院日韩av| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 久久九九热精品免费| 免费无遮挡裸体视频| 舔av片在线| 国产精品野战在线观看| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 国产精品一区二区精品视频观看| 极品教师在线免费播放| 日日夜夜操网爽| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 国产av在哪里看| 成人性生交大片免费视频hd| 国产精品久久久久久久电影 | 啪啪无遮挡十八禁网站| 亚洲无线观看免费| 老汉色av国产亚洲站长工具| 九色国产91popny在线| 热99在线观看视频| 久久久国产成人精品二区| 男人舔奶头视频| tocl精华| 国产亚洲精品久久久久久毛片| av视频在线观看入口| 亚洲av成人一区二区三| 国产一区二区激情短视频| xxx96com| 国产欧美日韩一区二区三| 午夜福利成人在线免费观看| 村上凉子中文字幕在线| 精品一区二区三区视频在线 | 全区人妻精品视频| 母亲3免费完整高清在线观看| 天天一区二区日本电影三级| 免费大片18禁| 99久久99久久久精品蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 99热这里只有精品一区 | 在线观看美女被高潮喷水网站 | 日本 av在线| 久久久久国产一级毛片高清牌| 最好的美女福利视频网| 非洲黑人性xxxx精品又粗又长| 日韩免费av在线播放| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| av视频在线观看入口| 欧美精品啪啪一区二区三区| 午夜亚洲福利在线播放| 免费在线观看视频国产中文字幕亚洲| 国产精品女同一区二区软件 | 老司机在亚洲福利影院| 亚洲欧美日韩卡通动漫| 欧美乱码精品一区二区三区| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 久久精品影院6| 国产伦精品一区二区三区四那| АⅤ资源中文在线天堂| 国产探花在线观看一区二区| 中文字幕人妻丝袜一区二区| 99热这里只有是精品50| 久久午夜亚洲精品久久| 欧美日韩综合久久久久久 | 亚洲av电影在线进入| 欧美日本视频| 免费观看人在逋| 国产精品乱码一区二三区的特点| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 国产精品一及| 久久久久久久久免费视频了| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 国产精品九九99| 国内精品久久久久精免费| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3| 黄片小视频在线播放| 亚洲人成网站高清观看| 长腿黑丝高跟| 99久久精品一区二区三区| 午夜福利免费观看在线| 欧美乱码精品一区二区三区| 免费观看人在逋| www日本在线高清视频| 亚洲国产精品成人综合色| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 欧美在线一区亚洲| 国产精品98久久久久久宅男小说| 18美女黄网站色大片免费观看| 亚洲熟女毛片儿| 香蕉国产在线看| 日韩免费av在线播放| 在线看三级毛片| 亚洲成人精品中文字幕电影| 校园春色视频在线观看| 久久99热这里只有精品18| 欧美国产日韩亚洲一区| 18禁国产床啪视频网站| 亚洲欧洲精品一区二区精品久久久| avwww免费| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久| 可以在线观看毛片的网站| 中文字幕熟女人妻在线| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 全区人妻精品视频| 99精品久久久久人妻精品| 男女午夜视频在线观看| 精品久久久久久成人av| 黄色女人牲交| 国产精品电影一区二区三区| 综合色av麻豆| 又黄又粗又硬又大视频| 日韩av在线大香蕉| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 悠悠久久av| 日本撒尿小便嘘嘘汇集6| 巨乳人妻的诱惑在线观看| 国产高清videossex| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 天天添夜夜摸| 激情在线观看视频在线高清| 俺也久久电影网| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 久久亚洲精品不卡| 男女那种视频在线观看| 淫秽高清视频在线观看| 久久久久国产精品人妻aⅴ院| 成人无遮挡网站| 12—13女人毛片做爰片一| 99久久精品国产亚洲精品| 在线观看一区二区三区| 亚洲在线观看片|