• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of New Structure Energetic Composite of HNIW Implanted into Macroporous Fibosa

    2017-05-07 06:06:59LIYaruRENHuiJIAOQingjie
    含能材料 2017年4期

    LI Ya-ru, REN Hui, JIAO Qing-jie

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    With the development of insensitive ammunition, ignition charges are required to have higher energy. Traditional charges are faced with new challenges and explosives with high energy density were hence introduced to the ignition system to improve the energy output[1]. Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW) has been widely investigated for its all respects especially explosion and combustion abilities since it was synthesized[2-6]. Relative documents showed HNIW would be a potential component of higher ignition charge[7]. As a new generation explosive, HNIW has higher energy density than other pyrotechnic charges[8-9], however, its thermal sensitivity is lower than other pyrotechnic charges. It is vital to improve the sensitivity of HNIW to heat to make it a perfect ignition charge. One way to achieve this is to combine HNIW with another material of more thermal sensitive, such as polymer.

    Electrostatic spinning(ES) technique has become a mature technology for the preparation of micro/nano-scale fibers in recent years. The fibers fabricated by ES have been widely used in tissue engineering[10-11], battery[12-13], filter[14]. In the electrostatic spinning process, an electrically conducting polymer solution is charged when it flows through a fine nozzle connected to high voltage. The electric field between the nozzle and the ground receptor exerts electrostatic forces to stretch polymer solution into micro/nano-scale fibers[15]. Fibrosa with various pore structures and mechanical properties can be fabricated by adjusting the high voltage, viscosity of precursor solution, the receptor, and so on[16-19]. After the solvent evaporation, fibers remain on the receptor and form a macro porous fibrosa. The diameter, morphology and porosity of fiber will be determined by different synthesized parameters[20-22]. So it offers a new route to fabricate composite energetic materials. Polyacrylonitrile(PAN) is one of the materials easy to be electrospun, and carbon fibers prepared by PAN have good mechanical properties, therefore PAN has been widely used as electrospinning precursor[23-24]. We can use the fibers prepared by electrospinning as the matrix, then some high energy density compounds were coated or deposited on the surface of micor & nano-fibers. Besides, we noted that other researches have completed the fabrication of thermite fibers by means of electrospinning[25-27]. Previous researches focused on the thermite or nitrocellulose etc. Up to now, no published articles discussed explosive-contained composite energetic fibers. Consideration of electrostatic danger, the high voltage may trigger explosive reaction during electrospinning. We first obtained the fibrosa, followed by explosive implanted into the porous mats, energetic composites were resulted. In this work, PAN was chosen to be electrospun into fibrous mats as a matrix to strengthen the mechanical property and to improve the thermal sensitivity of mixed ignition charge.

    2 Experiment Section

    2.1 Materials and Instruments

    The polyacrylonitrile(PAN), with average relative molecular mass of 102700, was acquired from Scientific Polymer Product Company(New York, USA).N,N-dimethylformamide(DMF) was produced by Sinopharm Chemcial Reagent Co., Ltd.(Shanghai, China). Acetone was produced by Beijing Reagent Company(Beijing, China). PAN, DMF and acetone were of analytical purity. HNIW (5-15 μm, 40% ε and 60%αcrystal form) was produced by Qingyang Liaoning Special Chemical Co., Ltd.(Liaoning, China) with chemical purity, higher than 99% .

    A model RCT basic magnetic heated stirrer was obtained from IKA Company(Germany). A model BGG high voltage supply with +40 kV was supplied by Beijing Electro-mechanical Research Institute Supesvoltage Technique Company(Beijing, China). A model LSP02-1B constant flow pump was from Longer Precision Pump Co.,Ltd(Baoding, China).

    Micromorphology was characterized by a Hitachi S4800 scanning electron microscope(Japan). Infrared spectra were recorded in KBr discs on a Bruker VERTEX70 infrared spectrometer(Germany) in the range of 4000-400 cm-1. Thermal behavior was studied on a STA449F3 differential scanning calorimeter(NET Co, Germany) at the rate of 5 ℃·min-1. A SIMD8 high-speed camera(Britain) was applied to record the ignition process with the sampling frequency of 250 fps.

    2.2 Preparation of Fibrosa

    PAN (8 g) was dissolved in DMF (92 mL) under agitation by magnetic heated stirrer at 60 ℃ for 6 h. The electrostatic spinning solution was loaded into a 20 mL syringe capped with blunt tipped needle. The positive lead of a high voltage supply was attached by an alligator clip to the blunt tipped needle. A 25 kV accelerating voltage was used in the electrostatic spinning process. A constantly-flow longer pump was used to meter the delivery of the PAN solution to the electric field, the delivery rate was set to 4 mL·h-1. The distance between needle and the receptor was 15 cm. After solvent evaporation, pure PAN fibrosa was obtained.

    2.3 Fabrication of Composites

    Composites of HNIW and PAN fibrosa were fabricated by dipping the PAN fibrosa into acetone solution of HNIW with certain concentration. The content of HNIW in the composite could be adjusted by changing the amount of HNIW in acetone. After solvent was completely evaporated, composites dried in vacuum drying oven at 50 ℃ for 2 h were obtained.

    2.4 Ignition Experiment

    To judge the feasibility of composite as ignition charge, an ignition experiment was designed. Test material was cut into strips and then loosely filled into quartz tube to obtain enough oxygen. After that, electric igniter device was connected to the side of quartz tube with test materials to ensure the ignition head was fully contacted with materials. Moreover, to make sure the ignition head would not recoil the moment materials ignited, it should be deep enough into the tube. High-speed camera was employed to record and analyze the combustion process. To make a comparison, both pure PAN fibrosa and composite were ignited under the same condition.

    3 Results and Discussions

    3.1 Prediction of Optimal Proportion

    The ingredient, proportion, thermodynamic state of energetic composites will influence its combustion reaction. In order to acquire the optimal proportion of the composites, it is necessary to have a thorough understanding on the reaction behavior of the composite with different proportions. Therefore, we conducted a serial of calculations both on the heat of formation and the adiabatic flame temperature(AFT) of the composites at different proportions according to principle of minimum free energy. The calculated results are shown in Fig.1. It can be learnt that both AFT and the heat of formation rise first and then fall with the mass ratio of PAN increasing. One should be noted that at the mass ratio of 3∶7, the heat of formation reaches the highest point which nearly the same to AFT, showing the advantage of that ratio over the rest. So we obtain the better stoichiometry used in following experiments.

    Fig.1 Calculated heat of formation and adiabatic flame temperature (AFT) of composite at different ratio of PAN/HNIW

    3.2 Characterization of Morphology

    To observe the microstructure of composites, the morphologies of fibrosa, composites and combustion residue of PAN fibrosa and composite were investigated by scanning electron microscope(SEM). Their SEM images are shown in Fig.2.

    a. electrostatic spinning fibre

    b. composite of explosive and fibrosa

    c. combustion residue of PAN fibrosa

    d. combustion residue of composite

    Fig.2 SEM images of samples

    Fig.2a displays the electrostatic spinning fibers randomly distributed with smooth surface and an average diameter of 500 nm. The pore space between fibers is big enough to contain high mass loading. Fig.2b shows that HNIW particles uniformly adhere to the mat, which fully proves the feasibility of compound explosive and fibrosa together. And the structure of PAN fiber is very beneficial to be adhered by explosive.

    PAN fibrosa and composite were separately ignited under the same condition, and the combustion residues of them were observed by SEM, as shown in Fig.2c and Fig.2d. During the ignition experiment, just small part of PAN fibrosa were fired due to no constant thermal source supplied. Fibers and carbides exist in the combustion residues according to Fig.2c, in accord with the experiment. In contrast, the composite with HNIW can be fully burnt. And compared with PAN fibrosa (see Fig.2c), there are more pores in combustion residue (see Fig.2d) of composite. Porous parts are speculated to be the combustion loss of HNIW.

    3.3 FT-IRAnalysis

    Fig.3 FT-IR spectra of four samples

    3.4 Thermal Behavior

    DSC/TG analysis is mainly used to analyze the reaction of energetic system under heat stimulus, and it is usually used to study the thermal decomposition of explosive. To know the thermal decomposition interaction between PAN fibrosa and HNIW, differential scanning calorimetry was used to analyze the thermal decomposition behaviors of PAN fibrosa, HNIW and their composite. Results are shown in Fig.4. In the thermal decomposition process, the starting point of decomposition for HNIW is 221.9 ℃ (see Fig.4b), while that for composite and PAN is 204.7 ℃(see Fig.4c) and 270 ℃(see Fig.4a), respectively. According to the above results, we can speculate that PAN makes the initial exothermic temperature of HNIW shifts

    a. PAN

    b. HNIW

    c. PAN/HNIW

    Fig.4 DSC and TG curves of samples

    about 38 ℃ downwards. Besides, PAN enhances the exothermic quantity of HNIW, making the exothermic peak of HNIW shifts 19 ℃ downwards. The thermogravimetric analysis results reveal that the exothermic rate of composite is highest of all, which proves that the composite is more sensitive than HNIW. Based on the above analyses, the interaction process between PAN and HNIW includes three steps: first, reaching its decomposition point of HNIW and releasing heat, then, reaching its decomposition point of PAN by absorbing the decomposition heat of HNIW, finally, occurring the further thermal decomposition of HNIW by absorbing the exothermic quantity of PAN. In conclusion, the thermal decomposition of composite is the result of interaction of HNIW and PAN.

    3.5 Combustion Properties

    Fig.5 shows the ignition and combustion process of PAN fibosa recorded by a high-speed camera. The highest temperature of ignition head is about 300 ℃, but only few fibers contacted with ignition head are fired. Besides, fibosa flame is disappeared with ignition head dying out, indicating electrostatic spinning fibers can not burn constantly. Fig.6 shows the combustion process of composite recorded by a high-speed camera. According to combustion behavior, the whole process can be divided into four stages. First, composite contacted with ignition head is ignited by the combustion heat of ignition head (see Fig.6a). According to the record by camera, there is obvious flame which becomes lighter and longer. Second, the ignited part starts its long combustion process which moves to the near part (see Fig.6b). Material of this part can be totally burnt due to enough oxygen and heat supply. Then, due to the consumption of combustible and oxygen in the former stage, the combustion of this stage becomes weak and the flame becomes shorter and dimmer (see Fig.6c). The final combustion process is for the part inside the tube. Combustion of this stage is incomplete with no flame but tan smoke, due to lack of oxygen.

    4 Conclusions

    (1) Composite of PAN fibrosa and HNIW was successfully fabricated through the combination of electrostatic spinning method and self-assembly method. HNIW can physically imbed in PAN fibrosa and the composite showed a good uniformity, with no new organic groups appeared after imbed process.

    (2) The addition of HNIW to PAN fibrosa efficiently increases combustion ability of PAN which can not burn constantly itself. The composite burnt process can be divided into four stages and it burnt more thoroughly than PAN itself under the same condition.

    (3) The thermal decomposition of composite is a result of

    c. 108 ms b. 140 ms c. 172 ms d. 316 ms

    Fig.5 Ignition of PAN fibrosa

    c. 160 ms b. 1520 ms c. 2400 ms d. 3040 ms

    Fig.6 Ignition of PAN/HNIW composite

    interaction of HNIW and PAN. DSC/TG demonstrated that composites had a higher thermal sensitivity than HNIW itself, which meets the demand of high ignition energy in narrow space. PAN makes the initial exothermic temperature of HNIW shifts about 38 ℃ downwards. This new composite have the potential application on ignition devices.

    [1] YI Nai-rong, SHI Chun-hong, LU Qiao-li. A new HMX-containing high energetic ignition mixture[J].Initiators&Pyrotechnics, 2004, (3): 9-12.

    [2] Elbeih A, Zeman S, Pachman J, et al. Heat of combustion and detonation characteristics of HNIW bonded by different plastic matrices[C]∥8th Asia-Pacific Conference on Combustion, Hyderabad, India, 2010: 295-300

    [3] WANG Yu-ping, YANG Zong-wei, LI Hong-zhen. A novel cocrystal explosive of HNIW with good comprehensive properties[J].Propellants,Explosives,Pyrotechnics, 2014, 39(4): 590-596.

    [4] YANG Zong-wei, LI Hong-zhen, HUANG Hui, et al. Preparation and performance of a HNIW/TNT cocrystal explosive[J].Propellants,Explosives,Pyrotechnics, 2013, 38(4): 495-501.

    [5] CHEN Song-lin, LIU Jia-bin, WEI Shu-qiong, et al. Study on thermal decomposition kinetics of hexanitrohexaazaisowurtzitane[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2002, 10(1): 46-48.

    [6] LIAO Su-ran, LUO Yun-jun, SUN Jie, et al. Preparation of WPU-g-SAN and its coating on HNIW[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(2): 155-160.

    [7] Elbeih A, Pachman J, Zeman S, et al. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly(methyl methacrylate) binders[J].JournalofEnergeticMaterials, 2012, 30(4): 358-371.

    [8] Simpson R L, Urtiev P A, Ornellas D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].Propellants,Explosives,Pyrotechnics, 1997, 22(5): 249-255.

    [9] Bazaki H, Kawabe S, Miya H, et al. Synthesis and sensitivity of hexanitrohexaaza-isowurtzitane(HNIW)[J].Propellants,Explosives,Pyrotechnics, 1998, 23(6): 333-336.

    [10] Erben J, Pilarova K, Sanetrnik F, et al. The combination of melt blown and electrospinning for bone tissue engineering[J].MaterialsLetters, 2015, 143(15): 172-176.

    [11] ZHU Wei, Masood F, O′Brien J, et al. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration[J].Nanomedicine:Nanotechnology,BiologyandMedicine, 2015, 11(3): 693-704.

    [12] Croce F, Focarete M L, Hassoun J, et al. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning[J].Energy&EnvironmentalScience, 2011, 4(3): 921-927.

    [13] LI Jia-xin, ZOU Ming-zhong, ZHAO Yi, et al. A simple integrated design and manufacture by electrospinning of stabilized lithium battery tin-based anodes[J].RSCAdvances, 2013, 3: 19251-19254.

    [14] Chuang Y H, Hong G B, Chang C T. Study on particulates and volatile organic compounds removal with TiO2nonwoven filter prepared by electrospinning[J].JournaloftheAir&WasteManagementAssociation, 2014, 64(6): 738-742.

    [15] WANG Ce, LU Xiao-Feng. Organic functional nano-materials-high voltage electrospinning technique and nanofibers[M]. Beijing: Science Press, 2011: 18.

    [16] LI Dan, WANG Yu-liang, XIA You-nan. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J].NanoLetters, 2003, 3(8): 1167-1171.

    [17] WEN Shi-peng, LIU Li, ZHANG Li-feng. Hierarchical electrospun SiO2nanofibers containing SiO2nanoparticles with controllable surface-roughness and/or porosity[J].MaterialsLetters, 2010, 64(13): 1517-1520.

    [18] Demir M M. Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF[J].ExpressPolymerLetters, 2010, 4(1): 2-8.

    [19] Simonet M, Schneider O D, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template[J].PolymerEngineering&Science, 2007, 47(12):2020-2026.

    [20] Lubasova D, Martinova L. Controlled morphology of porous polyvinyl butyral nanofibers[J].JournalofNanomaterials, 2011, 6(20):157-165.

    [21] Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameter determined from electrospinning model[J].Polymer, 2007, 48(23): 6913-6922.

    [22] Nayani K, Katepalli H, Sharma C S, et al. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers[J].IndustrialEngineeringChemistryResearch, 2011, 51(4): 1761-1766.

    [23] WANG Gang, PAN Chao, WANG Liu-ping, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J].ElectrochimicaActa, 2012, 69(5): 65-70.

    [24] Katepalli H, Bikshapathi M, Sharma C S, et al. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications[J].ChemicalEngineeringJournal, 2011, 171(3): 1194-1200.

    [25] YAN Shi, JIAN Guoqiang, Zachariah M R. Electrospun nanofiber-based thermite textiles and their reactive properties[J].ACSAppliedMaterials&Interfaces, 2012, 4(12): 6432-6435.

    [26] XU Hong-mei, LI Rui, SHEN Jin-peng, et al. Preparation and characterisation of nanofibrous CuO/Al metastable intermolecular composite films[J].Micro&NanoLetters, 2012, 7(12): 1251-1255.

    [27] Ji Y A, Kim W D, Kim S H. Synthesis of metal oxide porous nanowires and their applications into energetic materials[C]∥10th IEEE Conference on Nanotechnology (IEEE-NANO). Kintex, Korea, 2010: 422-425.

    99久久九九国产精品国产免费| 99久久精品国产亚洲精品| 天天躁日日操中文字幕| 琪琪午夜伦伦电影理论片6080| 丰满人妻一区二区三区视频av | 国产91精品成人一区二区三区| eeuss影院久久| 啦啦啦免费观看视频1| 在线视频色国产色| 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| 黄片小视频在线播放| 母亲3免费完整高清在线观看| 又爽又黄无遮挡网站| 国产欧美日韩精品一区二区| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 18禁在线播放成人免费| 精品无人区乱码1区二区| 高清在线国产一区| 国产精品98久久久久久宅男小说| 婷婷六月久久综合丁香| 久久久久国内视频| 黄色丝袜av网址大全| 欧美绝顶高潮抽搐喷水| 久久久久久九九精品二区国产| 国产伦精品一区二区三区视频9 | 亚洲熟妇熟女久久| 亚洲av免费高清在线观看| 两人在一起打扑克的视频| 高清在线国产一区| 白带黄色成豆腐渣| 亚洲精品日韩av片在线观看 | 亚洲成人久久爱视频| 成人亚洲精品av一区二区| 蜜桃久久精品国产亚洲av| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 亚洲欧美日韩无卡精品| 长腿黑丝高跟| 成人无遮挡网站| 两人在一起打扑克的视频| 人妻丰满熟妇av一区二区三区| 亚洲最大成人中文| 伊人久久大香线蕉亚洲五| 国产主播在线观看一区二区| 国内毛片毛片毛片毛片毛片| 日韩有码中文字幕| 国产色爽女视频免费观看| 一本综合久久免费| 精品一区二区三区人妻视频| 日韩欧美一区二区三区在线观看| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 国产高清三级在线| 欧美不卡视频在线免费观看| 色在线成人网| 国产黄a三级三级三级人| av女优亚洲男人天堂| 亚洲国产色片| 午夜激情欧美在线| 国产伦精品一区二区三区四那| 小说图片视频综合网站| eeuss影院久久| 一个人免费在线观看的高清视频| 久9热在线精品视频| 一卡2卡三卡四卡精品乱码亚洲| 窝窝影院91人妻| 国产精品1区2区在线观看.| 免费看a级黄色片| 日韩欧美三级三区| 免费看十八禁软件| 蜜桃久久精品国产亚洲av| 亚洲国产欧美网| 国产午夜福利久久久久久| eeuss影院久久| 噜噜噜噜噜久久久久久91| 嫁个100分男人电影在线观看| 成年女人毛片免费观看观看9| 一级毛片女人18水好多| 午夜福利在线观看免费完整高清在 | 国产高清videossex| 中文字幕久久专区| 欧美日韩综合久久久久久 | 两个人看的免费小视频| 中文亚洲av片在线观看爽| 一级a爱片免费观看的视频| 国产一区二区激情短视频| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 内射极品少妇av片p| 亚洲 国产 在线| 国产免费av片在线观看野外av| 免费看美女性在线毛片视频| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 精品一区二区三区视频在线观看免费| 国产精品久久久久久精品电影| 免费看美女性在线毛片视频| 熟女人妻精品中文字幕| 国产综合懂色| 麻豆成人av在线观看| 日韩成人在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 麻豆国产av国片精品| 国产成人啪精品午夜网站| 99久久99久久久精品蜜桃| 精品一区二区三区人妻视频| 亚洲精品美女久久久久99蜜臀| 99久久无色码亚洲精品果冻| 狂野欧美激情性xxxx| 亚洲中文日韩欧美视频| 在线观看av片永久免费下载| 有码 亚洲区| 最近在线观看免费完整版| 国产欧美日韩精品一区二区| 五月伊人婷婷丁香| 性色avwww在线观看| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 一二三四社区在线视频社区8| 69av精品久久久久久| 国产精品亚洲av一区麻豆| 欧美中文综合在线视频| 欧美日韩精品网址| 最新中文字幕久久久久| 日日干狠狠操夜夜爽| 国产97色在线日韩免费| 色综合婷婷激情| 亚洲 国产 在线| 变态另类丝袜制服| 国产淫片久久久久久久久 | 亚洲第一电影网av| 波野结衣二区三区在线 | 成人无遮挡网站| 欧美成人免费av一区二区三区| 人人妻人人看人人澡| 人妻久久中文字幕网| 亚洲午夜理论影院| 日韩欧美国产一区二区入口| 十八禁网站免费在线| 叶爱在线成人免费视频播放| av视频在线观看入口| 国产一区在线观看成人免费| 97人妻精品一区二区三区麻豆| 日韩成人在线观看一区二区三区| 国产精品av视频在线免费观看| 国产精品久久久久久精品电影| 18禁国产床啪视频网站| or卡值多少钱| 性色av乱码一区二区三区2| 国产av不卡久久| 日韩 欧美 亚洲 中文字幕| 日本 av在线| 男女做爰动态图高潮gif福利片| 听说在线观看完整版免费高清| 免费搜索国产男女视频| 听说在线观看完整版免费高清| 国产成人影院久久av| 嫩草影院入口| 亚洲国产色片| 精品无人区乱码1区二区| 国产综合懂色| 久久久久国产精品人妻aⅴ院| 亚洲精品在线美女| 啦啦啦免费观看视频1| 美女高潮喷水抽搐中文字幕| 久久久精品欧美日韩精品| 色播亚洲综合网| 国产亚洲精品久久久com| 成人无遮挡网站| 国产亚洲精品久久久com| 别揉我奶头~嗯~啊~动态视频| 99在线视频只有这里精品首页| 黄色片一级片一级黄色片| 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线播| 精品久久久久久成人av| 91麻豆av在线| 成人18禁在线播放| 精品久久久久久成人av| 男插女下体视频免费在线播放| 69av精品久久久久久| 午夜免费激情av| avwww免费| 久久中文看片网| 亚洲国产精品999在线| 我的老师免费观看完整版| 亚洲精品一卡2卡三卡4卡5卡| 变态另类成人亚洲欧美熟女| 成人精品一区二区免费| 小蜜桃在线观看免费完整版高清| 一级毛片高清免费大全| 色老头精品视频在线观看| 一进一出抽搐gif免费好疼| 国产高清视频在线观看网站| 午夜精品久久久久久毛片777| 日日夜夜操网爽| 国产高潮美女av| 久久久国产精品麻豆| 免费在线观看亚洲国产| 日韩国内少妇激情av| 男人舔奶头视频| 国产精品精品国产色婷婷| 成年免费大片在线观看| 国产精品1区2区在线观看.| 2021天堂中文幕一二区在线观| 听说在线观看完整版免费高清| 最新在线观看一区二区三区| 内射极品少妇av片p| 少妇人妻一区二区三区视频| 久久亚洲真实| 午夜日韩欧美国产| 男人舔女人下体高潮全视频| 俺也久久电影网| 欧美一级a爱片免费观看看| 不卡一级毛片| 少妇的逼好多水| 欧美日韩福利视频一区二区| 91在线观看av| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 熟女少妇亚洲综合色aaa.| 成年版毛片免费区| 99精品欧美一区二区三区四区| 亚洲av免费高清在线观看| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 国产97色在线日韩免费| 黄色日韩在线| 亚洲精品粉嫩美女一区| 母亲3免费完整高清在线观看| 最新美女视频免费是黄的| 一区二区三区激情视频| 久久久久久久午夜电影| 蜜桃亚洲精品一区二区三区| 又紧又爽又黄一区二区| 亚洲内射少妇av| 三级毛片av免费| 国产伦在线观看视频一区| 啦啦啦免费观看视频1| a在线观看视频网站| 国产免费男女视频| 国产精品爽爽va在线观看网站| 婷婷丁香在线五月| av中文乱码字幕在线| 18禁美女被吸乳视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 中文字幕熟女人妻在线| 国产久久久一区二区三区| 女同久久另类99精品国产91| 亚洲内射少妇av| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 美女大奶头视频| 中国美女看黄片| 高潮久久久久久久久久久不卡| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 国产色婷婷99| 国产精品久久久久久精品电影| 日韩亚洲欧美综合| 91九色精品人成在线观看| 国产精品香港三级国产av潘金莲| 真人一进一出gif抽搐免费| 午夜免费男女啪啪视频观看 | 亚洲av电影在线进入| 免费看日本二区| 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 在线看三级毛片| www日本在线高清视频| 搡女人真爽免费视频火全软件 | 亚洲天堂国产精品一区在线| 18+在线观看网站| 1000部很黄的大片| 国产高清激情床上av| 国产精品一及| 日本免费a在线| 欧美中文日本在线观看视频| 国产精品亚洲美女久久久| 久久久久久九九精品二区国产| 国产欧美日韩一区二区三| 国产精品久久久久久人妻精品电影| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久v下载方式 | 变态另类成人亚洲欧美熟女| 精品久久久久久久毛片微露脸| 久久草成人影院| 网址你懂的国产日韩在线| 亚洲精品粉嫩美女一区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产高清在线一区二区三| 亚洲精品美女久久久久99蜜臀| 欧美色视频一区免费| 亚洲无线观看免费| 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 欧美日本视频| 黄片小视频在线播放| 免费在线观看成人毛片| 国语自产精品视频在线第100页| 亚洲精品美女久久久久99蜜臀| 久久久国产成人精品二区| 黄色日韩在线| 欧美日韩中文字幕国产精品一区二区三区| 美女高潮的动态| 精品不卡国产一区二区三区| av在线天堂中文字幕| 国产久久久一区二区三区| 一区二区三区高清视频在线| 日韩av在线大香蕉| 人人妻人人看人人澡| 久久这里只有精品中国| 午夜激情福利司机影院| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 色综合欧美亚洲国产小说| 中文字幕av成人在线电影| 久久6这里有精品| 久久人妻av系列| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 亚洲人成电影免费在线| 搞女人的毛片| 99精品欧美一区二区三区四区| 又爽又黄无遮挡网站| 亚洲精品在线美女| 欧美在线一区亚洲| 久久久久久久久中文| 久久精品国产清高在天天线| e午夜精品久久久久久久| 亚洲五月天丁香| 欧美中文日本在线观看视频| 国产亚洲精品久久久com| 99热只有精品国产| 日韩高清综合在线| 看免费av毛片| 999久久久精品免费观看国产| 村上凉子中文字幕在线| 国产不卡一卡二| 久久久久久国产a免费观看| 午夜精品在线福利| xxx96com| 成人国产综合亚洲| 成人国产一区最新在线观看| 亚洲av成人av| 91麻豆精品激情在线观看国产| 男女之事视频高清在线观看| 91在线精品国自产拍蜜月 | 午夜免费男女啪啪视频观看 | 18美女黄网站色大片免费观看| 亚洲中文日韩欧美视频| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在 | 亚洲美女黄片视频| 中出人妻视频一区二区| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线 | 一边摸一边抽搐一进一小说| netflix在线观看网站| 88av欧美| 亚洲欧美精品综合久久99| 国产高清视频在线播放一区| 欧美黑人巨大hd| 一区二区三区国产精品乱码| 一进一出好大好爽视频| xxxwww97欧美| 夜夜看夜夜爽夜夜摸| 叶爱在线成人免费视频播放| 中文字幕久久专区| 香蕉av资源在线| 亚洲一区高清亚洲精品| 97碰自拍视频| a在线观看视频网站| 日韩国内少妇激情av| 国产国拍精品亚洲av在线观看 | 欧美一级a爱片免费观看看| 97人妻精品一区二区三区麻豆| 操出白浆在线播放| 女同久久另类99精品国产91| 欧美成人性av电影在线观看| 亚洲欧美日韩东京热| 极品教师在线免费播放| 成人欧美大片| 国产三级在线视频| 午夜精品久久久久久毛片777| 网址你懂的国产日韩在线| 亚洲无线在线观看| 黑人欧美特级aaaaaa片| 亚洲精品成人久久久久久| 亚洲成人久久爱视频| 一个人看视频在线观看www免费 | 午夜福利在线在线| 九九热线精品视视频播放| 高清在线国产一区| 久久久久久九九精品二区国产| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 亚洲成人久久性| 日韩高清综合在线| 欧美日韩精品网址| av视频在线观看入口| 免费av观看视频| 精品乱码久久久久久99久播| 亚洲久久久久久中文字幕| 久久人人精品亚洲av| 久久久久国内视频| 啦啦啦韩国在线观看视频| 日韩国内少妇激情av| 国内久久婷婷六月综合欲色啪| 青草久久国产| 国产探花在线观看一区二区| 亚洲久久久久久中文字幕| 欧美激情久久久久久爽电影| 日本与韩国留学比较| 丝袜美腿在线中文| 精品国内亚洲2022精品成人| 国产乱人视频| 午夜亚洲福利在线播放| 成人18禁在线播放| 日本黄大片高清| 超碰av人人做人人爽久久 | 国产精品久久久久久精品电影| 一本一本综合久久| 免费在线观看日本一区| 全区人妻精品视频| 国产亚洲欧美在线一区二区| 国产美女午夜福利| 成人永久免费在线观看视频| 国产真实伦视频高清在线观看 | 亚洲欧美日韩高清专用| 国产伦精品一区二区三区四那| 神马国产精品三级电影在线观看| 手机成人av网站| 成年版毛片免费区| 狠狠狠狠99中文字幕| 国产黄片美女视频| 久久性视频一级片| 日本黄大片高清| 日本一二三区视频观看| 日韩人妻高清精品专区| 51国产日韩欧美| 精品一区二区三区人妻视频| 美女黄网站色视频| 国产高清三级在线| 在线视频色国产色| 免费看日本二区| 久久香蕉精品热| 精品熟女少妇八av免费久了| 国产爱豆传媒在线观看| 欧美黄色淫秽网站| 亚洲欧美日韩无卡精品| 久久草成人影院| 精品久久久久久,| 99riav亚洲国产免费| 欧美日韩综合久久久久久 | 精品人妻一区二区三区麻豆 | 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 90打野战视频偷拍视频| 在线播放无遮挡| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 久久国产精品影院| 久久亚洲真实| 成人永久免费在线观看视频| 欧美激情在线99| 九九在线视频观看精品| 男插女下体视频免费在线播放| 久久久久久九九精品二区国产| bbb黄色大片| 亚洲最大成人中文| 亚洲五月婷婷丁香| 身体一侧抽搐| 国产精品嫩草影院av在线观看 | 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| aaaaa片日本免费| 99视频精品全部免费 在线| 久久久久国内视频| av天堂中文字幕网| 国产真实乱freesex| 亚洲一区二区三区色噜噜| 亚洲欧美一区二区三区黑人| 亚洲av二区三区四区| or卡值多少钱| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 免费av不卡在线播放| 久久久久国内视频| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看| 99久久成人亚洲精品观看| 久久精品综合一区二区三区| 国产亚洲精品综合一区在线观看| 国产精品久久久人人做人人爽| 亚洲在线观看片| 中文字幕人妻丝袜一区二区| 黑人欧美特级aaaaaa片| 我要搜黄色片| 欧美绝顶高潮抽搐喷水| 观看美女的网站| 成人特级黄色片久久久久久久| 国产精品嫩草影院av在线观看 | av视频在线观看入口| 伊人久久精品亚洲午夜| 一本一本综合久久| 国产精品综合久久久久久久免费| 国产成人aa在线观看| 一区福利在线观看| 亚洲天堂国产精品一区在线| 精品人妻偷拍中文字幕| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 级片在线观看| 国产av不卡久久| 中文字幕高清在线视频| 夜夜爽天天搞| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 成年版毛片免费区| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 欧美一级毛片孕妇| 亚洲美女视频黄频| 九色国产91popny在线| 欧美黑人欧美精品刺激| 啦啦啦观看免费观看视频高清| 亚洲18禁久久av| 亚洲国产日韩欧美精品在线观看 | 免费观看精品视频网站| 床上黄色一级片| svipshipincom国产片| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 乱人视频在线观看| 久久久久国产精品人妻aⅴ院| 久久6这里有精品| 中文亚洲av片在线观看爽| 亚洲欧美日韩高清专用| 亚洲精品亚洲一区二区| 欧美3d第一页| 国内揄拍国产精品人妻在线| 91在线精品国自产拍蜜月 | 啪啪无遮挡十八禁网站| 日本成人三级电影网站| 午夜精品在线福利| 好男人电影高清在线观看| 国产美女午夜福利| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 岛国视频午夜一区免费看| 国产av麻豆久久久久久久| 听说在线观看完整版免费高清| 激情在线观看视频在线高清| 制服丝袜大香蕉在线| 国产精品乱码一区二三区的特点| 成人av在线播放网站| 国产野战对白在线观看| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 看片在线看免费视频| 69人妻影院| 免费无遮挡裸体视频| 免费在线观看亚洲国产| 3wmmmm亚洲av在线观看| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 国内精品一区二区在线观看| 男人的好看免费观看在线视频| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看 | 国产精品免费一区二区三区在线| 国产色爽女视频免费观看| 免费高清视频大片| 一个人看的www免费观看视频| 桃红色精品国产亚洲av| 日韩欧美 国产精品| 成人鲁丝片一二三区免费| 国产蜜桃级精品一区二区三区| 99热精品在线国产| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 少妇的逼水好多| 性色av乱码一区二区三区2| 小说图片视频综合网站| bbb黄色大片| eeuss影院久久| 99久久精品国产亚洲精品| 久久久成人免费电影| 成人一区二区视频在线观看| 亚洲欧美一区二区三区黑人| 欧美日韩综合久久久久久 | 变态另类成人亚洲欧美熟女| 青草久久国产| 此物有八面人人有两片| 国产97色在线日韩免费| 久久这里只有精品中国| 看免费av毛片| 性色av乱码一区二区三区2| 国产爱豆传媒在线观看| 欧美极品一区二区三区四区| 久久久久久久久久黄片|