• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes

    2017-05-06 06:16:59JingWangZhenBaoMaZhenLingZengXueWenYangYingHuangJianHuaLiu
    Zoological Research 2017年2期

    Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu

    ?

    The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes

    Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu*

    College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China

    Antimicrobial resistance is an urgent global health challenge in human and veterinary medicine. Wild animals are not directly exposed to clinically relevant antibiotics; however, antibacterial resistance in wild animals has been increasingly reported worldwide in parallel to the situation in human and veterinary medicine. This underlies the complexity of bacterial resistance in wild animals and the possible interspecies transmission between humans, domestic animals, the environment, and wildlife. This review summarizes the current data on expanded-spectrum β-lactamase (ESBL), AmpC β-lactamase, carbapenemase, and colistin resistance genes inisolates of wildlife origin. The aim of this review is to better understand the important role of wild animals as reservoirs and vectors in the global dissemination of crucial clinical antibacterial resistance. In this regard, continued surveillance is urgently needed worldwide.

    AmpC; ESBLs; IMP,; NDM; Wild birds

    INTRODUCTION

    Over several decades, antimicrobial resistance has become a global clinical and public health threat against the effective treatment of common infections caused by resistant pathogens, resulting in treatment failure and increased mortality (WHO, 2014). The development of bacterial resistance is a natural evolution of microorganisms, but the widespread use and misuse of antibacterial agents in humans and animals has accelerated this process (WHO, 2014). Furthermore, the increasing frequency of global travel and trade has also contributed to the rapid worldwide spread of antimicrobial resistance (Laxminarayan et al., 2013). Some resistant clones, such asST131,ST258 and ST11, and methicillin-resistant(MRSA) USA 300, which are involved in the spread of resistance to crucially significant antibiotics in human medicine, have been widely disseminated (Lee et al., 2016; Mathers et al., 2015; Nimmo, 2012). Antimicrobial resistance is a complex and multifaceted problem involving humans, animals, and the environment. However, the role of wildlife in the emergence of antibacterial resistance might be underestimated. The first report of antibacterial resistance in wildlife revealed chloramphenicol resistance inisolates obtained from Japanese wild birds (Sato et al., 1978). Since then, the occurrence of resistant bacteria in wild animals has been increasingly reported within diverse animal species across different geographical areas. In addition, several important antimicrobial resistant pathogens, such as MRSA (Loncaric et al., 2013a; Porrero et al., 2014), vancomycin-resistant enterococci (Drobni et al., 2009; Sellin et al., 2000),spp. (Lee et al., 2011a),(Aberkane et al., 2015), andspp. (Weis et al., 2016), have been described in wild animals, highlighting the importance and complexity of wildlife, not normally exposed to antibiotics directly, in the transmission of resistant bacteria.

    This review gives a brief overview of the emergence and prevalence of expanded-spectrum β-lactamase (ESBL), AmpC β-lactamase, carbapenemase, and colistin resistance genes instrains from wild animals, all of which have significant public health impact. Furthermore, this review aims to better understand the role of wildlife in the transmission of clinically significant antimicrobial resistance in.

    ESBL-PRODUCING ENTEROBACTERIACEAE FROM WILDLIFE

    The global dissemination of ESBL-producingin human clinics is an urgent problem that poses a serious challenge to the treatment of infectious diseases, particularly the worldwide emergence of CTX-M-15-producing ST131(Alghoribi et al., 2015; Blanco et al., 2013; Hansen et al., 2014; Hussain et al., 2014; Mathers et al., 2015; Platell et al., 2011; Sauget et al., 2016). ESBL-producinghave also been increasingly reported in livestock, companion animals, and food (Aliyu et al., 2016; Braun et al., 2016; Ewers et al., 2010; Hordijk et al., 2013; Michael et al., 2016). The CTX-M-type β-lactamases are the most common ESBLs amongisolates of human and veterinary origin worldwide (Hordijk et al., 2013; Liu et al., 2016a; Pietsch et al., 2017; Wang et al., 2016; Wellington et al., 2013).

    Since the first report on ESBL-producingisolates from wild animals in Portugal in 2006 (Costa et al., 2006), ESBL-producingof wildlife origin have so far been reported in Europe, Africa, Asia, South America, North America, and Australia (Table 1). Although ESBLs have been found in various, most ESBL-producing bacterial pathogens in wild animals are, followed by(Table 1). To date, at least 80 wildlife species have been found to be carriers of ESBL-producing, most being wild birds (Table 1). Similar to that among isolates from human and veterinary medicine, the CTX-M family is the most prevalent type of ESBL-producingfound in wild animals (Table 1). BothCTX-M-1andCTX-M-15are commonly reported in wild animals and are the most prevalent ESBL genes, followed byCTX-M-14,CTX-M-32,CTX-M-9,CTX-M-3,CTX-M-2, andCTX-M-22. Other ESBL genes, such asCTX-M-27,CTX-M-55,CTX-M-8,CTX-M-24,CTX-M-25,CTX-M-28,CTX-M-29, andCTX-M-124, have also been detected, though infrequently (Table 1). Significant geographical differences have been observed in the occurrence of CTX-M enzymes. As summarized in Table 1, CTX-M-15 is the only reported CTX-M-type β-lactamase in Africa to date, and is the most common CTX-M-type enzyme reported in Bangladesh. In Canada and the US, CTX-M-14 is dominant, followed by CTX-M-15. Diversity in CTX-M β-lactamases has been reported in European countries, with the predominance of CTX-M-1 and CTX-M-15. Interestingly, CTX-M-15 is also reported to be the most common CTX-M enzyme in Franklin’s gulls () in northern Chile (Báez et al., 2015), although CTX-M-1 was previously reported to be dominant in the same gull species in central Chile (Hernandez et al., 2013). Báez et al. (2015) hypothesized that, based on their migratory habits, Franklin’s gulls from the north acquired resistant CTX-M-15-producing ST131 and ST10clones, which are highly prevalent in humans in the US and Canada but scarce in Chile. However, this hypothesis, though possible, needs further investigation.

    In addition to CTX-M enzymes, SHV and TEM enzymes have also been reported in wildlife, especially SHV-12 and TEM-52, which accords with that found in ESBL-producing isolates from humans, livestock, and companion animals (Table 1) (Blanco et al., 2013; Carattoli et al., 2005; Hordijk et al., 2013; Michael et al., 2016; Smet et al., 2010). For example, SHV-12 has been frequently detected in wildlife in Spain (Alcalá, 2016; Gon?alves, 2012), and is highly prevalent in ESBL-producingobtained from 8- to 16-month-old healthy children in northern Spain (Fernández-Reyes et al., 2014) and in raw poultry meat from southern Spain (Egea et al., 2012), as well as from hospitals (Blanco et al., 2013). Other SHV-type enzymes, such as SHV-102, SHV-1, SHV-2, and SHV-5, and TEM-type enzymes, such as TEM-19, TEM-40, TEM-176, and TEM-20, have also been sporadically reported in wild animals (Table 1).

    More than 170 different sequence types (STs) have been identified in ESBL-producingisolates of wildlife origin (Table 1). Among them, ST131 is the most commonly detected clone. The dominant ST131 clone identified in wild animals, which has been frequently described in humans, companion animals, food products, and the environment, is involved in the international dissemination ofCTX-M-15andCTX-M-14(Alghoribi et al., 2015; Bogaerts et al., 2015; Ewers et al., 2010; Hu et al., 2013; Hussain et al., 2014; Kawamura et al., 2014; Kim et al., 2017; Mathers et al., 2015). Additionally, other STs described in wild animals, such as ST10, ST69, ST405, ST410, and ST648, have also been reported in various sources and are responsible for the intercontinental distribution of CTX-M (Fischer et al., 2014, 2017; Hansen et al., 2014; Hu et al., 2013; Liu et al., 2016a; Müller et al., 2016; Su et al., 2016; Wang et al., 2016). However, some STs found in wildlife, such as ST1340, ST1646, ST2687, ST3018, and ST3056, have been identified as new types and have not yet been reported in human or veterinary isolates (Bonnedahl, 2010; Hasan, 2014; Jamborova, 2015).

    As for ESBL-producing, limited studies are currently available on the clonal group offrom wildlife (Table 1). Loncaric et al. (2016) found an SHV-11-encodingstrain from mouflon () in Austria belonging to the epidemic clone ST11, which is associated with carbapenemase (Hu et al., 2016; Kim et al., 2013; Lee et al., 2016; Voulgari et al., 2016) and ESBL in humans worldwide (Hu et al., 2016; Lee et al., 2011b; Lu et al., 2016; Sennati et al., 2012), and previously described in companion animals and Eurasian beaver () (Donati et al., 2014; Pilo et al., 2015). In Algeria, all 17CTX-M-15-bearingisolates found in wild boars and Barbary macaques belong to ST584, which has also been detected in silver gulls as carriers of carbapenemase IMP-4 in Australia (Dolejska et al., 2016) as well as in human in Brazil (http: //bigsdb.pasteur.fr/klebsiella/klebsiella.html).

    Successful clones found in humans and domestic and wild animals indicate possible interspecies transmission of ESBL-producing isolates. However, horizontal transfer mediated by mobile elements, such as insertion sequences and plasmids, is also one of the main methods for ESBL dissemination worldwide (Carattoli, 2013; Partridge, 2015). Only limited (mostly European) studies are available on ESBL-encoding plasmids in wild animals (Table 1). For example,CTX-M-15is reportedly associated with IncF plasmids (mostly multiple replicons containing IncFIA and IncFIB) and IncI1 (Guenther et al., 2010a; Loncaric et al., 2016; Poirel et al., 2012; Tausova et al., 2012; Veldman et al., 2013), which agrees with previous research involving CTX-M-15-producingobtained from the environment, healthy cattle, and humans (Zurfluh et al., 2015). IncHI2 plasmids have also been reported as carriers ofCTX-M-15in humans (Harrois et al., 2014; Nilsen et al., 2013), companion animals (Haenni et al., 2016), pigs (Tamang et al., 2015), and wild birds (Veldman et al., 2013). Though rare, IncI2 plasmid has also been described withCTX-M-15in the lesser black-backed gull from the Netherlands (Veldman et al., 2013) and identified in a chickenstrain in China (Liu et al., 2015). Inof human and veterinary origin,CTX-M-1has been frequently found associated with IncN and IncI1 plasmids (Carattoli, 2009; Jakobsen et al., 2015; Madec et al., 2015). Interestingly,CTX-M-1has been mainly located on IncI1 plasmids in wildlife in Europe as well (Literak et al., 2010a, b; Loncaric et al., 2013b; Veldman et al., 2013). However, IncN, IncF, and IncHI1 plasmids have also been reported as carriers ofCTX-M-1(Literak et al., 2010a; Loncaric et al., 2013b; Veldman et al., 2013). Furthermore, IncI1 plasmids are also carriers of other ESBL genes in wild animals, such asCTX-M-3,SHV-12, andTEM-52(Poirel et al., 2012; Veldman et al., 2013). Similarly, IncF plasmids are also reported to be associated withCTX-M-3,CTX-M-9,CTX-M-14,CTX-M-27,CTX-M-32, andSHV-12in wildlife (Guenther et al., 2010b; Poirel et al., 2012; Tausova et al., 2012; Veldman et al., 2013). The narrow-host-range plasmid IncX has been found to carry several ESBL genes, namelyTEM-135,TEM-52b,TEM-176, andSHV-12, inisolated from diverse sources in Australia, Czech Republic, Spain, and Poland (Dobiasova & Dolejska, 2016). Notably, plasmid replicon typing was performed on ESBL-producing isolates with multiple plasmids in several studies, thus the replicons of ESBL-carrying plasmids could not be confirmed (Gon?alves et al., 2012; Hernandez et al., 2013).

    Insertion sequences also play an important role in facilitating the spread of ESBL genes (Partridge, 2015). Though few studies are available on horizontal transfer mediated by insertion sequences, associations of insertion sequence ISandCTX-M, includingCTX-M-1,CTX-M-14,CTX-M-15,CTX-M-27, andCTX-M-32, have been observed infrom wild animals (Costa et al., 2006; Gon?alves et al., 2012; Poeta et al., 2008; Radhouani et al., 2010; Tausova et al., 2012).

    In summary, the ESBL gene types identified in wild animals are the same as those in human and veterinary medicine. Thus, interspecies transmission mediated by successful pandemic ESBL-producing clones and plasmids in humans, domestic animals, and wildlife might occur.

    PLASMID-MEDIATED AmpC β-LACTAMASE-PRODUCING ENTEROBACTERIACEAE FROM WILDLIFE

    Plasmid-mediated AmpC β-lactamases amongin human and veterinary medicine are of considerable global concern because they confer resistance to clinically important cephalosporin antibiotics and β-lactamase inhibitors (Jacoby, 2009; Smet et al., 2010). CMY-2 is the most prevalent AmpC β-lactamase and has been globally disseminated amongin humans, companion animals, food-producing animals, and retail meat (Bogaerts et al., 2015; Carmo et al., 2014; Hansen et al., 2016; Jacoby, 2009; Ma et al., 2012; Smet et al., 2010; Vogt et al., 2014; Wu et al., 2015). As shown in Table 2, AmpC β-lactamases have been reported in,, andisolates of wildlife origin in Europe, North America, and Asia, and particularly in central Europe, similar to ESBL-producing(Table 2). To date, 20 different wild animal species, mostly birds, have been identified asCMY-2carriers (Table 2). Like that in human and veterinary medicine,CMY-2is the most commonly detected AmpC-type β-lactamase among wild animals, though its identification has been limited toisolates.

    TheCMY-2gene is mainly located on IncA/C and IncI1 plasmids fromisolates of human and veterinary origin (Bogaerts et al., 2015; Bortolaia et al., 2014; Carattoli, 2009; Guo et al., 2014; Sidjabat et al., 2014). Among wild animals,CMY-2has been reported to be mainly associated with IncI1 plasmids infrom Dutch wild birds and wild seagulls in the US (Poirel et al., 2012; Veldman et al., 2013). Other plasmid types, such as IncB/O, IncK, and IncF, have also been identified as carriers ofCMY-2in wildlife (Poirel et al., 2012; Veldman et al., 2013), as previously reported in humans, companion animals, broiler chickens, and retail meat (Bortolaia et al., 2014; Hansen et al., 2016; Hiki et al., 2013; So et al., 2012; Vogt et al. 2014). Thus far, the IncA/C plasmid, a major carrier ofCMY-2, has not yet been identified in wild animals. The absence ofCMY-2-bearing IncA/C plasmids could simply reflect the limited studies on the characterization ofCMY-2-carrying plasmids in wildlife, or might indicate thatCMY-2-harbouring IncI1 plasmids are more successful among wildlife.

    In addition to CMY-2, DHA-type AmpC β-lactamase genes have also been detected infrom mouflons () in Austria,from hill mynah () in Saudi Arabia, andST11 isolates from Eurasian beaver () in Switzerland (Hassan & Shobrak, 2015; Loncaric et al., 2016; Pilo et al., 2015). FOX-5 encoded by an IncA/C plasmid has been obtained fromisolates in the US (Poirel et al., 2012). Furthermore, a novel variant of the ACT AmpC β-lactamase gene has been identified in anstrain originating from glaucous gull () in Arctic Svalbard, Norway (Literak et al., 2014).

    CARBAPENEMASE-PRODUCINGENTEROBACTERIACEAE From WILDLIFE

    Carbapenemase-producingisolates pose an urgent public health threat. New Delhi metallo-β-lactamase (NDM), as one of the most widespread carbapenemases, has been increasingly reported in human clinics, foods, domestic animals, and the environment worldwide (Abdallah et al., 2015; Chandran et al., 2014; He et al., 2017; Kumarasamy et al., 2010; Lee et al., 2016; Qin et al., 2014; Toleman et al., 2015; Yaici et al., 2016; Yong et al., 2009).

    The first reported carbapenemase-producing bacteria in wild animals were isolated from black kites () in Germany (Fischer et al., 2013). Among 184 cefotaxime-resistantspp. isolates, only oneCorvallis isolate belonging to ST1541 has shown reduced susceptibility to carbapenem, and carries the carbapenemase geneNDM-1located on ~180 kb IncA/C conjugative plasmid pRH-1738 (Fischer et al., 2013). The broad-host-range IncA/C plasmids are among the most predominant plasmids associated withNDM-1in humans (Carattoli, 2013). Fischer et al. (2013) supposed that theNDM-1-bearingCorvallis isolate might have originated from non-European countries and was transferred to Germany through the black kite migratory route, sinceCorvallis was prevalent in South-East Asia and was emerging in North Africa and Nigeria, rather than in European countries. The complete sequence of plasmid pRH-1738 further confirms this hypothesis. Plasmid pRH-1738 exhibited high relatedness with plasmid pMR0211 obtained from humanisolate in Afghanistan, but showed distinct differences from other sequenced NDM-1-IncA/C2plasmids from Western countries (Villa et al., 2015). In addition, fosfomycin resistance gene, which has been rarely detected in Europe but is prevalent among CTX-M-encodingandisolates in Asia (i.e., China, Japan, and South Korea), has also been identified on NDM-1-producing plasmid pRH-1738.NDM-1transferred withon IncA/C plasmid has only been described in clinicalandisolates in China (Qin et al., 2014). Taken together, these findings suggest that the origin of this plasmid might be in the Asiatic region.

    Large-scale transmission of IMP-producing bacteria into wildlife was first reported in 2015. In total, 120 carbapenemase-producingof 10 species were obtained from silver gulls in Australia, mainly(=85), carryingIMP-4,IMP-38, orIMP-26(Dolejska et al., 2016). TheIMP-4gene has been found in 116 isolates, and is the most commonly detected gene among carbapenemase-producingisolates in human clinics in Australia (Bell et al., 2016; Sidjabat et al., 2015).IMP-4in gulls is carried by various conjugative plasmids, mostly IncHI2-N plasmid type, followed by IncA/C plasmids, as well as IncL/M and IncI1, and is associated with a class 1 integron-containingIMP-4---array in most positive strains (Dolejska et al., 2016). The same array carried by IncA/C and IncL/M plasmids is also reportedly responsible for the dissemination ofIMP-4in clinical isolates in Australia (Espedido et al., 2008), and by the IncHI2 plasmid inTyphimurium from a cat in Australia (Abraham et al., 2016). Furthermore, 19 different STs have been detected in IMP-4-producingisolates, including five prevalent lineages (ST216, ST58, ST354, ST167, and ST224), in which ST58, ST354, and ST167 are clinically relevant clone lineages (Ben Sallem et al., 2015; Fernández et al., 2014; Huang et al., 2016).

    Although carbapenem resistance reported in wild animals is rare, the emergence of NDM-1 and IMP carbapenemases in wild birds is of concern.

    COLISTIN RESISTANCE GENE mcr-1 IN ENTEROBACTERIACEAE FROM WILDLIFE

    Colistin is widely applied in food-producing animals and is currently used as the last resort for treating infections caused by multi-resistant gram-negative bacteria (Kaye et al., 2016). Since the first identification of the plasmid-mediated colistin resistance genein China in 2015 (Liu et al., 2016b), it has been identified inisolates from food-producing animals, companion animals, food products, the environment, and humans worldwide (Anjum et al., 2016; Doumith et al., 2016; Hasman et al., 2015; McGann et al., 2016; Xavier et al., 2016; Zhang et al., 2016; Zurfluh et al., 2016).

    The role of wild birds as reservoirs and vectors for the global distribution ofshould be considered. Recently,was described in anstrain isolated from European herring gull () feces collected from the Kaunas (Lithuania) city dump (Ruzauskas & Vaskeviciute, 2016). However, the emergence ofin wildlife could be traced back tostrains isolated in 2012 (Liakopoulos et al., 2016). Five extended-spectrum cephalosporin-resistantisolates obtained from kelp gulls in Ushuaia, Argentina in 2012 were found to carryandCTX-M-2(=1) andCTX-M-14(=4) and exhibited elevated colistin MICs (4–8 mg/L). Thegene was located on a ~57 kb IncI2 plasmid withoutCTX-Min all five isolates. IncI2 plasmids, which have been detected inandisolates from food, food-producing animals, and humans in China, Great Britain, the US, Venezuela, and Denmark, have been reported to be associated with the transmission of(Anjum et al., 2016; Delgado-Blas et al., 2016; Doumith et al., 2016; Hasman et al., 2015; Meinersmann et al., 2016; Yang et al., 2016). Notably, four-carrying isolates, which belong to ST744, have been previously described in Denmark and carry the-bearing IncI2 plasmid (Hasman et al., 2015; Liakopoulos et al., 2016).

    CONCLUSIONS

    Clinically relevant resistance, such as ESBL, AmpC cephalosporinase, carbapenemase, and colistin resistance, has been detected in wild animals, particularly wild birds, from distinct geographical areas. Thus, wild animals could serve as important reservoirs of resistant bacteria. Although the origin of bacterial resistance genes in wild animals remains unclear, as wildlife are not exposed to antibiotics directly, contact with sewage or animal manure might be one possibility (Wellington et al., 2013). Additionally, the potential of wild animals as vectors of resistant bacteria or genetic determinants should not be underestimated. Wildlife, especially migratory birds with their instinctive mobility, can carry resistant bacteria over long distances, even between continents; thus, this might be a new transmission route and partly responsible for the global dissemination of bacterial resistance. Contamination of food or water by wildlife is recognized as an important risk factor for the transmission of antimicrobial resistance or pathogens to food animals and humans (Greig et al., 2015).

    Wild animals might play a vital role in the worldwide spread of clinically relevant pathogens or resistance genes. Pandemic ESBL-producingclones or plasmids shared by humans, domestic animals, and wildlife further strengthen this hypothesis. Thus, continued surveillance of multi-resistant bacteria in wild animals is warranted.

    Abdallah HM, Reuland EA, Wintermans BB, Al Naiemi N, Koek A, Abdelwahab AM, Ammar AM, Mohamed AA, Vandenbroucke-Grauls CMJE. 2015. Extended-spectrum β-lactamases and/or carbapenemases-producingisolated from retail chicken meat in Zagazig, Egypt.10(8): e0136052, doi: 10.1371/journal.pone.0136052.

    Aberkane S, Compain F, Barraud O, Ouédraogo AS, Bouzinbi N, Vittecoq M, Jean-Pierre H, Decré D, Godreuil S. 2015. Non-O1/Non-O139avian isolate from France co-carrying theVIM-1andVIM-4genes.59(10): 6594-6596.

    Abraham S, O'Dea M, Trott DJ, Abraham RJ, Hughes D, Pang S, Mckew G, Cheong EYL, Merlino J, Saputra S, Malik R, Gottlieb T. 2016. Isolation and plasmid characterization of carbapenemase (IMP-4) producingfrom cats.6: 35527, doi: 10.1038/srep35527.

    Alcalá L, Alonso CA, Simón C, González-Esteban C, Orós J, Rezusta A, Ortega C, Torres C. 2016. Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producingof CTX-M and SHV-12 types.72(4): 861-869.

    Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH, Upton M. 2015. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenicclones in Riyadh, Saudi Arabia.70(10): 2757-2762.

    Aliyu AB, Saleha AA, Jalila A, Zunita Z. 2016. Risk factors and spatial distribution of extended spectrum β-lactamase-producing-at retail poultry meat markets in Malaysia: a cross-sectional study.16: 699, doi: 10.1186/s12889-016-3377-2.

    Anjum MF, Duggett NA, AbuOun M, Randall L, Nunez-Garcia J, Ellis RJ, Rogers J, Horton R, Brena C, Williamson S, Martelli F, Davies R, Teale C. 2016. Colistin resistance inandisolates from a pig farm in Great Britain.71(8): 2306-2313.

    Atterby C, Ramey AM, Hall GG, J?rhult J, B?rjesson S, Bonnedahl J. 2016. Increased prevalence of antibiotic-resistant.in gulls sampled in Southcentral Alaska is associated with urban environments.6(1): 32334, doi: 10/3402/iee.v6.32334.

    Bachiri T, Bakour S, Ladjouzi R, Thongpan L, Rolain JM, Touati A. 2017. High rates of CTX-M-15-producingandin wild boars and Barbary macaques in Algeria.8: 35-40.

    Báez J, Hernández-García M, Guamparito C, Díaz S, Olave A, Guerrero K, Cantón R, Baquero F, Gahona J, Valenzuela N, del Campo R, Silva J. 2015. Molecular characterization and genetic diversity of ESBL-producingcolonizing the migratory Franklin's gulls () in Antofagasta, North of Chile.21(1): 111-116.

    Bell JM, Turnidge JD, Coombs GW, Daley DA, Gottlieb T, Robson J, George N. 2016. Australian group on antimicrobial resistance Australiansepsis outcome programme annual report, 2014.40(2): E229-E235.

    Ben Sallem R, Ben Slama K, Estepa V, Cheikhna EO, Mohamed AM, Chairat S, Ruiz-Larrea F, Boudabous A, Torres C. 2015. Detection of CTX-M-15-producingisolates of lineages ST410-A, ST617-A and ST354-D in faecal samples of hospitalized patients in a Mauritanian hospital.27(2): 114-116.

    Blanco J, Mora A, Mamani R, López C, Blanco M, Dahbi G, Herrera A, Marzoa J, Fernández V, de la Cruz F, Martínez-Martínez L, Alonso MP, Nicolas-Chanoine MH, Johnson JR, Johnston B, López-Cerero L, Pascual á, Rodríguez-Ba?o J. 2013. Four main virotypes among extended-spectrum-β-lactamase-producing isolates ofO25b: H4-B2-ST131: bacterial, epidemiological, and clinical characteristics.51(10): 3358-3367.

    Bogaerts P, Huang TD, Bouchahrouf W, Bauraing C, Berhin C, El Garch F, Glupczynski Y, the ComPath Study Group. 2015. Characterization of ESBL- and AmpC-producingfrom diseased companion animals in Europe.21(6): 643-650.

    Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernandez J, Granholm S, Kayser Y, Melhus ?, Kahlmeter G, Waldenstr?m J, Johansson A, Olsen B. 2009. Dissemination ofwith CTX-M type ESBL between humans and yellow-legged gulls in the south of France.4(6): e5958, doi: 10.1371/journal.pone.0005958.

    Bonnedahl J, Drobni P, Johansson A, Hernandez J, Melhus ?, Stedt J, Olsen B, Drobni M. 2010. Characterization, and comparison, of human clinical and black-headed gull () extended-spectrum β-lactamase-producing bacterial isolates from Kalmar, on the southeast coast of Sweden.65(9): 1939-1944.

    Bonnedahl J, Hernandez J, Stedt J, Waldenstr?m J, Olsen B, Drobni M. 2014. Extended-spectrum β-lactamases inandin gulls, Alaska, USA.20(5): 897-899.

    Bonnedahl J, Stedt J, Waldenstr?m J, Svensson L, Drobni M, Olsen B. 2015. Comparison of extended-spectrum β-lactamase (ESBL) CTX-M genotypes in Franklin gulls from Canada and Chile.10(10): e0141315, doi: 10.1371/journal.pone.0141315.

    Bortolaia V, Hansen KH, Nielsen CA, Fritsche TR, Guardabassi L. 2014. High diversity of

    plasmids harbouringCMY-2among clinicalisolates from humans and companion animals in the upper Midwestern USA.69(6): 1492-1496.

    Brahmi S, Dunyach-Rémy C, Touati A, Lavigne JP. 2015. CTX-M-15-producingand the pandemic clone O25b-ST131 isolated from wild fish in Mediterranean Sea.21(3): e18-e20, doi: 10.1016/j.cmi.2014.09.019.

    Braun SD, Ahmed MF, El-Adawy H, Hotzel H, Engelmann I, Wei? D, Monecke S, Ehricht R. 2016. Surveillance of extended-spectrum beta-lactamase-producingin dairy cattle farms in the Nile Delta, Egypt.7: 1020, doi: 10.3389/fmicb.2016.01020.

    Carattoli A, Lovari S, Franco A, Cordaro G, Di Matteo P, Battisti A. 2005. Extended-spectrum β-lactamases inisolated from dogs and cats in Rome, Italy, from 2001 to 2003.49(2): 833-835.

    Carattoli A. 2009. Resistance plasmid families in.53(6): 2227-2238.

    Carattoli A. 2013. Plasmids and the spread of resistance.303(6-7): 298-304.

    Carmo LP, Nielsen LR, Costa PMD, Alban L. 2014. Exposure assessment of extended-spectrum beta-lactamases/AmpC beta-lactamases-producingin meat in Denmark.4: 22924, doi: 10.3402/iee.v4.22924.

    Chandran SP, Diwan V, Tamhankar AJ, Joseph BV, Rosales-Klintz S, Mundayoor S, Lundborg CS, Macaden R. 2014. Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along withgene inin hospital wastewater: a matter of concern.117(4): 984-995.

    Costa D, Poeta P, Sáenz Y, Vinué L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C. 2006. Detection ofharbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal.58(6): 1311-1312.

    Costa D, Poeta P, Sáenz Y, Vinué L, Coelho AC, Matos M, Rojo-Bezares B, Rodrigues J, Torres C. 2008. Mechanisms of antibiotic resistance inisolates recovered from wild animals.14(1): 71-77.

    Delgado-Blas JF, Ovejero CM, Abadia-Pati?o L, Gonzalez-Zorn B. 2016. Coexistence ofandNDM-1infrom Venezuela.60(10): 6356-6358.

    Dobiasova H, Dolejska M. 2016. Prevalence and diversity of IncX plasmids carrying fluoroquinolone and β-lactam resistance genes inoriginating from diverse sources and geographical areas.71(8): 2118-2124.

    Dolejská M, Biero?ová B, Kohoutová L, Literák I, ?í?ek A. 2009. Antibiotic-resistantandisolates with integrons and extended-spectrum beta-lactamases in surface water and sympatric black-headed gulls.106(6): 1941-1950.

    Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence ofand IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia.71(1): 63-70.

    Donati V, Feltrin F, Hendriksen RS, Svendsen CV, Cordaro G, García-Fernández A, Lorenzetti S, Lorenzetti R, Battisti A, Franco A. 2014.Extended-spectrum-beta-lactamases, AmpC beta-lactamases and plasmid mediated quinolone resistance inspp. from companion animals in Italy.9(3): e90564, doi: 10.1371/journal. pone.0090564.

    Doumith M, Godbole G, Ashton P, Larkin L, Dallman T, Day M, Day M, Muller-Pebody B, Ellington MJ, Pinna ED, Johnson AP, Hopkins KL, Woodford N. 2016. Detection of the plasmid-mediatedgene conferring colistin resistance in human and food isolates ofandin England and Wales.71(8): 2300-2305.

    Drobni M, Bonnedahl J, Hernandez J, Haemig P, Olsen B. 2009. Vancomycin-resistant enterococci, point barrow, Alaska, USA.15(5): 838-839.

    Egea P, López-Cerero L, Torres E, Gómez-Sánchez MDC, Serrano L, Navarro Sánchez-Ortiz MD, Rodriguez-Ba?o J, Pascual A. 2012. Increased raw poultry meat colonization by extended spectrum beta-lactamase-producingin the south of Spain.159(2): 69-73.

    Espedido BA, Partridge SR, Iredell JR. 2008.IMP-4in different genetic contexts inisolates from Australia.52(8): 2984-2987.

    Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH, Guenther S. 2010. Emergence of human pandemic O25: H4-ST131 CTX-M-15 extended-spectrum-β-lactamase-producingamong companion animals.65(4): 651-660.

    Fernández J, Montero I, Fleites A, Rodicio MR. 2014. Cluster ofisolates producing a plasmid-mediated OXA-48 β-lactamase in a Spanish hospital in 2012.52(9): 3414-3417.

    Fernández-Reyes M, Vicente D, Gomariz M, Esnal O, Landa J, O?ate E, Pérez-Trallero E. 2014. High rate of fecal carriage of extended-spectrum-β-lactamase-producingin healthy children in Gipuzkoa, northern Spain.58(3): 1822-1824.

    Fischer J, Schmoger S, Jahn S, Helmuth R, Guerra B. 2013. NDM-1 carbapenemase-producingsubsp.serovar Corvallis isolated from a wild bird in Germany.68(12): 2954-2956.

    Fischer J, Rodríguez I, Baumann B, Guiral E, Beutin L, Schroeter A, Kaesbohrer A, Pfeifer Y, Helmuth R, Guerra B. 2014.CTX-M-15-carryingandisolates from livestock and food in Germany.69(11): 2951-2958.

    Fischer J, Hille K, Ruddat I, Mellmann A, K?ck R, Kreienbrock L. 2017. Simultaneous occurrence of MRSA and ESBL-producingon pig farms and in nasal and stool samples from farmers.200: 107-113, doi: 10.1016/j.vetmic.2016.05.021.

    Garmyn A, Haesebrouck F, Hellebuyck T, Smet A, Pasmans F, Butaye P, Martel A. 2011. Presence of extended-spectrum β-lactamase-producingin wild geese.66(7): 1643-1644.

    Gon?alves A, Igrejas G, Radhouani H, Estepa V, Alcaide E, Zorrilla I, Serra R, Torres C, Poeta P. 2012. Detection of extended-spectrum beta-lactamase-producingisolates in faecal samples of.54(1): 73-77.

    Greig J, Raji? A, Young I, Mascarenhas M, Waddell L, Lejeune J. 2015. A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain.62(4): 269-284.

    Guenther S, Grobbel M, Beutlich J, Bethe A, Friedrich ND, Goedecke A, Lübke-Becker A, Guerra B, Wieler LH, Ewers C. 2010a. CTX-M-15-type extended-spectrum beta-lactamases-producingfrom wild birds in Germany.2(5): 641-645.

    Guenther S, Grobbel M, Beutlich J, Guerra B, Ulrich RG, Wieler LH, Ewers C. 2010b. Detection of pandemic B2-O25-ST131harbouring the CTX-M-9 extended-spectrum β-lactamase type in a feral urban brown rat ().65(3): 582-584.

    Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler LH, Ewers C. 2012. Comparable high rates of extended-spectrum-beta-lactamase-producingin birds of prey from Germany and Mongolia.7(12): e53039, doi: 10.1371/journal. pone.0053039.

    Guo YF, Zhang WH, Ren SQ, Yang L, Lü DH, Zeng ZL, Liu YH, Jiang HX. 2014. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistantfrom food animals in China.9(5): e96738, doi: 10.1371/journal.pone.0096738.

    Haenni M, Saras E, Ponsin C, Dahmen S, Petitjean M, Hocquet D, Madec JY. 2016. High prevalence of international ESBL CTX-M-15-producingST114 clone in animals.71(6): 1497-1500.

    Hansen F, Olsen SS, Heltberg O, Justesen US, Fuglsang-Damgaard D, Knudsen JD, Hammerum AM. 2014. Characterization of third-generation cephalosporin-resistantfrom bloodstream infections in Denmark.20(4): 316-324.

    Hansen KH, Bortolaia V, Nielsen CA, Nielsen JB, Sch?nning K, Agers? Y, Guardabassi L. 2016. Host-Specific patterns of genetic diversity among IncI1-Iγ and IncK plasmids encoding CMY-2 β-Lactamase inisolates from humans, poultry meat, poultry, and dogs in Denmark.82(15): 4705-4714.

    Harrois D, Breurec S, Seck A, Delauné A, Le Hello S, Pardos de la Gándara M, Sontag L, Perrier-Gros-Claude JD, Sire JM, Garin B, Weill FX. 2014. Prevalence and characterization of extended-spectrum β-lactamase-producing clinicalisolates in Dakar, Senegal, from 1999 to 2009.20(2): O109-O116.

    Hasan B, Sandegren L, Melhus ?, Drobni M, Hernandez J, Waldenstr?m J, Alam M, Olsen B. 2012. Antimicrobial drug-resistantin wild birds and free-range poultry, Bangladesh.18(12): 2055-2058.

    Hasan B, Melhus ?, Sandegren L, Alam M, Olsen B. 2014. The gull () as an environmental bioindicator and reservoir for antibiotic resistance on the coastlines of the Bay of Bengal.20(5): 466-471.

    Hasan B, Olsen B, Alam A, Akter L, Melhus ?. 2015. Dissemination of the multidrug-resistant extended-spectrum β-lactamase-producingO25b-ST131 clone and the role of house crow () foraging on hospital waste in Bangladesh.21(11): 1000.e1-1000.e4, doi: 10.1016/j.cmi.2015.06.016.

    Hasan B, Laurell K, Rakib MM, Ahlstedt E, Hernandez J, Caceres M, J?rhult JD. 2016. Fecal carriage of extended-spectrum β-lactamases in healthy humans, poultry, and wild birds in Le?n, Nicaragua-A shared pool ofCTX-Mgenes and possible interspecies clonal spread of extended-spectrum β-lactamases-producing.22(8): 682-687.

    Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agers? Y, Zankari E, Leekitcharoenphon P, Stegger M, Kaas RS, Cavaco L, Hansen DS, Aarestrup FM, Skov RL. 2015. Detection ofencoding plasmid-mediated colistin-resistantisolates from human bloodstream infection and imported chicken meat, Denmark 2015.20(49), doi: 10.2807/1560-7917.ES.2015.20.49.30085.

    Hassan SA, Shobrak MY. 2015. Detection of genes mediating beta-lactamase production in isolates of enterobacteria recovered from wild pets in Saudi Arabia.8(12): 1400-1404.

    He T, Wang Y, Sun L, Pang MD, Zhang LL, Wang R. 2017. Occurrence and characterization ofNDM-5-positiveisolates from dairy cows in Jiangsu, China.72(1): 90-94.

    Hernandez J, Bonnedahl J, Eliasson I, Wallensten A, Comstedt P, Johansson A, Granholm S, Melhus ?, Olsen B, Drobni M. 2010. Globally disseminated human pathogenicof O25b-ST131 clone, harbouringCTX-M-15, found in Glaucous-winged gull at remote Commander Islands, Russia.2(2): 329-332.

    Hernandez J, Johansson A, Stedt J, Bengtsson S, Porczak A, Granholm S, González-Acu?a D, Olsen B, Bonnedahl J, Drobni M. 2013. Characterization and comparison of extended-spectrum β-lactamase (ESBL) resistance genotypes and population structure ofisolated from Franklin’s gulls () and humans in Chile.8(9): e76150, doi: 10.1371/journal.pone.0076150.

    Hiki M, Usui M, Kojima A, Ozawa M, Ishii Y, Asai T. 2013. Diversity of plasmid replicons encoding theCMY-2gene in broad-spectrum cephalosporin-resistantfrom livestock animals in Japan.10(3): 243-249.

    Ho PL, Chow KH, Lai EL, Lo WU, Yeung MK, Chan J, Chan PY, Yuen KY. 2011. Extensive dissemination of CTX-M-producingwith multidrug resistance to ‘critically important’ antibiotics among food animals in Hong Kong, 2008-10.66(4): 765-768.

    Ho PL, Lo WU, Lai EL, Law PY, Leung SM, Wang Y, Chow KH. 2015. Clonal diversity of CTX-M-producing, multidrug-resistant Escherichia coli from rodents.64(2): 185-190.

    Hordijk J, Schoormans A, Kwakernaak M, Duim B, Broens E, Dierikx C, Mevius D, Wagenaar JA. 2013. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producingin cats and dogs.4: 242, doi: 10.3389/fmicb.2013.00242.

    Hu LH, Liu YL, Deng LQ, Zhong QS, Hang YP, Wang ZZ, Zhan LL, Wang LX, Yu FY. 2016. Outbreak by ventilator-associated ST11.with co-production of CTX-M-24 and KPC-2 in a SICU of a tertiary teaching hospital in Central China.7: 1190, doi: 10.3389/fmicb.2016.01190.

    Hu YY, Cai JC, Zhou HW, Chi D, Zhang XF, Chen WL, Zhang R, Chen GX. 2013. Molecular typing of CTX-M-producingisolates from environmental water, swine feces, specimens from healthy humans, and human patients.79(19): 5988-5996.

    Huang YL, Yu XN, Xie MM, Wang X, Liao K, Xue WC, Chan EWC, Zhang R, Chen S. 2016. Widespread dissemination of carbapenem-resistantsequence type 167 strains harboring theNDM-5in clinical settings in China.60(7): 4364-4368.

    Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N. 2014. Genotypic and phenotypic profiles ofisolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India.58(12): 7240-7249.

    Jacoby GA. 2009. AmpC β-lactamases.22(1): 161-182.

    Jakobsen L, Bortolaia V, Bielak E, Moodley A, Olsen SS, Hansen DS, Frimodt-M?ller N, Guardabassi L, Hasman H. 2015. Limited similarity between plasmids encoding CTX-M-1 β-lactamase infrom humans, pigs, cattle, organic poultry layers and horses in Denmark.3(2): 132-136.

    Jamborova I, Dolejska M, Vojtech J, Guenther S, Uricariu R, Drozdowska J, Papousek I, Pasekova K, Meissner W, Hordowski J, Cizek A, Literak I, Nojiri H. 2015. Plasmid-mediated resistance to cephalosporins and fluoroquinolones in varioussequence types isolated from rooks wintering in Europe.81(2): 648-657.

    Jardine CM, Janecko N, Allan M, Boerlin P, Chalmers G, Kozak G, Mcewen SA, Reid-Smith RJ. 2012. Antimicrobial resistance inisolates from raccoons () in Southern Ontario, Canada.78(11): 3873-3879.

    Kawamura K, Goto K, Nakane K, Arakawa Y. 2014. Molecular epidemiology of extended-spectrum β-lactamases andisolated from retail foods including chicken meat in Japan.11(2): 104-110.

    Kaye KS, Pogue JM, Tran TB, Nation RL, Li J. 2016. Agents of last resort: polymyxin resistance.30(2): 391-414.

    Kim SY, Shin J, Shin SY, Ko KS. 2013. Characteristics of carbapenem-resistantisolates from Korea.76(4): 486-490.

    Kim YA, Kim JJ, Kim H, Lee K. 2017. Community-onset extended-spectrum-β-lactamase-producingsequence type 131 at two Korean community hospitals: the spread of multidrug-resistant.to the community via healthcare facilities.54: 39-42.

    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study.10(9): 597-602.

    Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So Anthony D, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. 2013. Antibiotic resistance-the need for global solutions.13(12): 1057-1098.

    Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. 2016. Global dissemination of carbapenemase-producing: epidemiology, genetic context, treatment options, and detection methods.7: 895, doi: 10.3389/fmicb.2016.00895.

    Lee K, Iwata T, Nakadai A, Kato T, Hayama S, Taniguchi T, Hayashidani H. 2011a. Prevalence of,and. in feral raccoons (Procyon lotor) and masked palm civets (Paguma larvata) in Japan.58(6): 424-431.

    Lee MY, Ko KS, Kang CI, Chung DR, Peck KR, Song JH. 2011b. High prevalence of CTX-M-15-producingisolates in Asian countries: diverse clones and clonal dissemination.38(2): 160-163.

    Liakopoulos A, Mevius DJ, Olsen B, Bonnedahl J. 2016. The colistin resistancegene is going wild.71(8): 2335-2336.

    Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, Bzoma S, Cizek A. 2010a. Antibiotic-resistantbacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland.76(24): 8126-8134.

    Literak I, Dolejska M, Radimersky T, Klimes J, Friedman M, Aarestrup FM, Hasman H, Cizek A. 2010b. Antimicrobial-resistant faecalin wild mammals in central Europe: multiresistantproducing extended-spectrum beta-lactamases in wild boars.108 (5): 1702-1711.

    Literak I, Manga I, Wojczulanis-Jakubas K, Chroma M, Jamborova I, Dobiasova H, Sedlakova MH, Cizek A. 2014.with a novel variant of ACT AmpC beta-lactamase originating from glaucous gull () in Svalbard.171(3-4): 432-435.

    Liu LP, He DD, Lv LC, Liu WL, Chen XJ, Zeng ZL, Partridge SR, Liu JH. 2015.CTX-M-1/9/1hybrid genes may have been generated fromCTX-M-15on an IncI2 plasmid.59(8): 4464-4470.

    Liu XQ, Thungrat K, Boothe DM. 2016a. Occurrence of OXA-48 Carbapenemase and other β-lactamase genes in ESBL-producing multidrug resistantfrom dogs and cats in the United States, 2009-2013.7: 1057, doi: 10.3389/fmicb.2016.01057.

    Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian GB, Dong BL, Huang XH, Yu LF, Gu DX, Ren HW, Chen XJ, Lv LC, He DD, Zhou HW, Liang ZS, Liu JH, Shen JH. 2016b. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.16(2): 161-168.

    Loncaric I, Kübber-Heiss A, Posautz A, Stalder GL, Hoffmann D, Rosengarten R, Walzer C. 2013a. Characterization of methicillin-resistantspp. carrying thegene, isolated from wildlife.68(10): 2222-2225.

    Loncaric I, Stalder GL, Mehinagic K, Rosengarten R, Hoelzl F, Knauer F, Walzer C. 2013b. Comparison of ESBL- and AmpC producingand methicillin-resistant(MRSA) isolated from migratory and resident population of rooks () in Austria.8(12): e84048, doi: 10.1371/journal.pone.0084048.

    Loncaric I, Beiglb?ck C, Fe?ler AT, Posautz A, Rosengarten R, Walzer C, Ehricht R, Monecke S, Schwarz S, Spergser J, Kübber-Heiss A. 2016. Characterization of ESBL- and AmpC-producing and fluoroquinolone-resistantisolated from Mouflons () in Austria and Germany.11(5): e0155786, doi: 10.1371/journal.pone.0155786.

    Lu PL, Hsieh YJ, Lin JE, Huang JW, Yang TY, Lin L, Tseng SP. 2016. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producingisolates.48(5): 564-568.

    Ma JY, Liu JH, Lv LC, Zong ZY, Sun Y, Zheng HQ, Chen ZL, Zeng ZL. 2012. Characterization of extended-spectrum β-lactamase genes found amongisolates from duck and environmental samples obtained on a duck farm.78(10): 3668-3673.

    Madec JY, Haenni M, Métayer V, Saras E, Nicolas-Chanoine MH. 2015. High prevalence of the animal-associatedCTX-M-1IncI1/ST3 plasmid in humanisolates.59(9): 5860-5861.

    Mathers AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant.28(3): 565-591.

    McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, Hinkle M, Whitman T, Lesho E, Schaecher KE. 2016.harboringandCTX-Mon a novel IncF plasmid: first report ofin the United States.60(7): 4420-4421.

    Meinersmann RJ, Ladely SR, Plumblee JR, Hall MC, Simpson SA, Ballard LL, Scheffler BE, Genzlinger LL, Cook KL. 2016. Colistin resistance-gene-bearingstrain from the United States., 4(5): e00898-16, doi: 10.1128/genomeA.00898-16.

    Michael GB, Kaspar H, Siqueira AK, de Freitas Costa E, Corbellini LG, Kadlec K, Schwarz S. 2017. Extended-spectrum β-lactamase (ESBL)-producingisolates collected from diseased food-producing animals in the GE-Vet monitoring program 2008-2014.200: 142-150, doi: 10.1016/j.vetmic.2016.08.023.

    Müller A, Stephan R, Nüesch-Inderbinen M. 2016. Distribution of virulence factors in ESBLproducingisolated from the environment, livestock, food and humans.541: 667-672.

    Nilsen E, Haldorsen BC, Sundsfjord A, Simonsen GS, Ingebretsen A, Naseer U, Samuelsen ?. 2013. Large IncHI2-plasmids encode extended-spectrum β-lactamases (ESBLs) inspp. bloodstream isolates, and support ESBL-transfer to.19(11): E516-E518.

    Nimmo GR. 2012. USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant.18(8): 725-734.

    Parker D, Sniatynski MI, Mandrusiak D, Rubin JE. 2016. Extended-spectrum β-lactamase producingisolated from wild birds in Saskatoon, Canada.63(1): 11-15.

    Partridge SR. 2015. Resistance mechanisms in.47(3): 276-284.

    Pietsch M, Eller C, Wendt C, Holfelder M, Falgenhauer L, Fruth A, Gr?ssl T, Leistner R, Valenza G, Werner G, Pfeifer Y, the RESET Study Group. 2017. Molecular characterisation of extended-spectrum β-lactamase (ESBL)-producingisolates from hospital and ambulatory patients in Germany.200: 130-137, doi: 10.1016/j.vetmic.2015.11.028.

    Pilo P, Vogt D, Origgi FC, Endimiani A, Peterson S, Perreten V. 2015. First report of a multidrug-resistantof sequence type 11 causing sepsis in a free-ranging beaver ().7(2): 351-353.

    Pinto L, Radhouani H, Coelho C, Costa PMD, Sim?es R, Brand?o RML, Torres C, Igrejas G, Poeta P. 2010. Genetic detection of extended-spectrum β-lactamase-containingisolates from birds of prey from Serra da Estrela natural reserve in Portugal.76(12): 4118-4120.

    Platell JL, Cobbold RN, Johnson JR, Heisig A, Heisig P, Clabots C, Kuskowski MA, Trott DJ. 2011. Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinalisolates from humans and companion animals in Australia.55(8): 3782-3787.

    Poeta P, Radhouani H, Igrejas G, Gon?alves A, Carvalho C, Rodrigues J, Vinué L, Somalo S, Torres C. 2008. Seagulls of the Berlengas natural reserve of Portugal as carriers of fecalharboring CTX-M and TEM extended-spectrum beta-lactamases.74(23): 7439-7441.

    Poeta P, Radhouani H, Pinto L, Martinho A, Rego V, Rodrigues R, Gon?alves A, Rodrigues J, Estepa V, Torres C, Igrejas G. 2009. Wild boars as reservoirs of extended-spectrum beta-lactamase (ESBL) producingof different phylogenetic groups.49(6): 584-588.

    Poirel L, Potron A, De La Cuesta C, Cleary T, Nordmann P, Munoz-Price LS. 2012. Wild

    coastline birds as reservoirs of broad-spectrum-β-lactamase-producingin Miami Beach, Florida.56(5): 2756-2758.

    Porrero MC, Valverde A, Fernándezllario P, Díezguerrier A, Mateos A, Lavín S, Cantón R, Domínguez L. 2014.carryingC gene in animals and urban wastewater, Spain.20(5): 899-901.

    Qin SS, Fu Y, Zhang QJ, Qi H, Wen JG, Xu H, Xu LJ, Zeng L, Tian H, Rong LJ, Li YH, Shan LH, Xu HD, Yu YS, Feng XJ, Liu HM. 2014. High incidence and endemic spread of NDM-1-positivein Henan Province, China.58(8): 4275-4282.

    Radhouani H, Pinto L, Coelho C, Gon?alves A, Sargo R, Torres C, Igrejas G, Poeta P. 2010. Detection ofharbouring extended-spectrum β-lactamases of the CTX-M classes in faecal samples of common buzzards ().65(1): 171-173.

    Radhouani H, Igrejas G, Gon?alves A, Estepa V, Sargo R, Torres C, Poeta P. 2013. Molecular characterization of extended-spectrum-beta-lactamase-producingisolates from red foxes in Portugal.195(2): 141-144.

    Rashid M, Rakib MM, Hasan B. 2015. Antimicrobial-resistant and ESBL-producingin different ecological niches in Bangladesh.5(1): 26712, doi: 10.3402/iee.v5.26712.

    Ruzauskas M, Vaskeviciute L. 2016. Detection of thegene inprevalent in the migratory bird species.71(8): 2333-2334.

    Sato G, Oka C, Asagi M, Ishiguro N. 1978. Detection of conjugative R plasmids conferring chloramphenicol resistance inisolated from domestic and feral pigeons and crows.,,..241(4): 407-417.

    Sauget M, Cholley P, Vannier A, Thouverez M, Nicolas-Chanoine MH, Hocquet D, Bertrand X. 2016. Trends of extended-spectrum β-lactamase-producingsequence type 131 and its H30 subclone in a French hospital over a 15-year period.48(6): 744-747.

    Schaufler K, Semmler T, Wieler LH, W?hrmann M, Baddam R, Ahmed N, Müller K, Kola A, Fruth A, Ewers C, Guenther S. 2016. Clonal spread and interspecies transmission of clinically relevant ESBL-producingof ST410-another successful pandemic clone?92(1): fiv155, doi: 10.1093/femsec/fiv155.

    Sellin M, Palmgren H, Broman T, Bergstr?m S, Olsen B. 2000. Involving ornithologists in the surveillance of vancomycin-resistant enterococci.6(1): 87-88.

    Sennati S, Santella G, Di Conza J, Pallecchi L, Pino M, Ghiglione B, Rossolini GM, Radice M, Gutkind G. 2012. Changing epidemiology of extended-spectrum β-lactamases in Argentina: emergence of CTX-M-15.56(11): 6003-6005.

    Sidjabat HE, Seah KY, Coleman L, Sartor A, Derrington P, Heney C, Faoagali J, Nimmo GR, Paterson DL. 2014. Expansive spread of IncI1 plasmids carryingCMY-2amongst.44(3): 203-208.

    Sidjabat HE, Townell N, Nimmo GR, George NM, Robson J, Vohra R, Davis L, Heney C, Paterson DL. 2015. Dominance of IMP-4-producingamong carbapenemase-producingin Australia.59(7): 4059-4066.

    Silva N, Igrejas G, Rodrigues P, Rodrigues T, Gon?alves A, Felgar AC, Pacheco R, Gon?alves D, Cunha R, Poeta P. 2011. Molecular characterization of vancomycin-resistant enterococci and extended-spectrum β-lactamase-containingisolates in wild birds from the Azores Archipelago.40(5): 473-479.

    Sim?es RR, Poirel L, Costa PMD, Nordmann P. 2010. Seagulls and beaches as reservoirs for multidrug- resistant.16(1): 110-112.

    Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, Haesebrouck F, Butaye P. 2010. Broad-spectrum β-lactamases amongof animal origin: molecular aspects, mobility and impact on public health.34(3): 295-316.

    So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim SK, Yong HP, Lee K. 2012. Dissemination of multidrug-resistantin Korean veterinary hospitals.73(2): 195-199.

    Sousa M, Torres C, Barros J, Somalo S, Igrejas G, Poeta P. 2011. Gilthead seabream () as carriers of SHV-12 and TEM-52 extended-spectrum beta-lactamases-containingisolates.8(10): 1139-1141.

    Stedt J, Bonnedahl J, Hernandez J, Waldenstr?m J, McMahon BJ, Tolf C, Olsen B, Drobni M. 2015. Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe.57: 74, doi: 10.1186/s13028-015-0166-3.

    Stephan R, H?chler H. 2012. Discovery of extended-spectrum beta-lactamase producingamong hunted deer, chamois and ibex.154(11): 475-478.

    Su YC, Yu CY, Tsai Y, Wang SH, Lee C, Chu C. 2016. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producingfrom the milk of cows with clinical mastitis in Southern Taiwan.,49(6): 892-901.

    Tamang MD, Gurung M, Nam HM, Moon DC, Kim SR, Jang GC, Jung DY, Jung SC, Park YH, Lim SK. 2015. Prevalence and characterization ofin pigs from conventional and organic farms and first report of.1, 4, [5], 12: i: - from Korea.178(1-2): 119-124.

    Tausova D, Dolejska M, Cizek A, Hanusova L, Hrusakova J, Svoboda O, Camlik G, Literak I. 2012.with extended-spectrum β-lactamase and plasmid-mediated quinolone resistance genes in great cormorants and mallards in Central Europe.67(5): 1103-1107.

    Toleman MA, Bugert JJ, Nizam SA. 2015. Extensively drug-resistant New Delhi metallo-β-lactamase-encoding bacteria in the environment, Dhaka, Bangladesh, 2012.21(6): 1027-1030.

    Veldman K, van Tulden P, Kant A, Testerink J, Mevius D. 2013. Characteristics of cefotaxime-resistantfrom wild birds in the Netherlands.79(24): 7556-7561.

    Villa L, Guerra B, Schmoger S, Fischer J, Helmuth R, Zong Z, García-Fernández A, Carattoli A. 2015. IncA/C plasmid carryingNDM-1,CMY-16, andin aSerovar Corvallis strain isolated from a migratory wild bird in Germany.59(10): 6597-6600.

    Vogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. 2014. Occurrence and genetic characteristics of third-generation cephalosporin-resistantin Swiss retail meat.20(5): 485-494.

    Voulgari E, Poulou A, Dimitroulia E, Politi L, Ranellou K, Gennimata V, Markou F, Pournaras S, Tsakris A. 2016. Emergence of OXA-162 carbapenemase- and DHA-1 AmpC cephalosporinase-producing sequence type 11causing community-onset infection in Greece., 60(3): 1862-1864.

    Wallensten A, Hernandez J, Ardiles K, González-Acu?a D, Drobni M, Olsen B. 2011. Extended spectrum beta-lactamases detected infrom gulls in Stockholm, Sweden.1: 7030, doi: 10.3402/iee.v1i0.7030.

    Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, Guo XK, Ni YX, Han LZ. 2016. Antimicrobial resistance and molecular epidemiology ofcausing bloodstream

    infections in three hospitals in Shanghai, China.11(1): e0147740, doi: 10.1371/

    journal.pone.0147740.

    Weis AM, Storey DB, Taff CC, Townsend AK, Huang BC, Kong NT, Clothier KA, Spinner A, Byrne BA, Weimer BC. 2016. Genomic comparison ofspp. and their potential for zoonotic transmission between birds, primates, and livestock.82(24): 7165-7175.

    Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP. 2013. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria.13(2): 155-165.

    WHO. 2014. Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organization 2014.

    Wu HY, Wang Y, Wu Y, Qiao J, Li H, Zheng SJ, Xia XD, Cui SH, Wang X, Xi ML, Meng JH, Yang BW. 2015. Emergence of β-lactamases and extended-spectrum β-lactamases (ESBLs) producingin retail raw chicken in China.12(3): 228-234.

    Xavier BB, Lammens C, Butaye P, Goossens H, Malhotra-Kumar S. 2016. Complete sequence of an IncFII plasmid harbouring the colistin resistance geneisolated from Belgian pig farms.71(8): 2342-2344.

    Yaici L, Haenni M, Saras E, Boudehouche W, Touati A, Madec JY. 2016.NDM-5-carrying IncX3 plasmid inST1284 isolated from raw milk collected in a dairy farm in Algeria.71(9): 2671-2672.

    Yang YQ, Zhang AY, Ma SZ, Kong LH, Li YX, Liu JX, Davis MA, Guo XY, Liu BH, Lei CW, Wang HN. 2016. Co-occurrence ofand ESBL on a single plasmid in.71(8): 2336-2338.

    Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-β-lactamase gene,NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure insequence type 14 from India.53(12): 5046-5054.

    Zhang XF, Doi Y, Huang X, Li HY, Zhong LL, Zeng KJ, Zhang YF, Patil S, Tian GB. 2016. Possible transmission of-harboringbetween companion animals and human.22(9): 1679-1681.

    Zurfluh K, Glier M, H?chler H, Stephan R. 2015. Replicon typing of plasmids carryingCTX-M-15amongisolated at the environment, livestock and human interface.521-522: 75-78.

    Zurfluh K, Klumpp J, Nüesch-Inderbinen M, Stephan R. 2016. Full-length nucleotide sequences of-harboring plasmids isolated from extended-spectrum-β-lactamase-producingisolates of different origins.60(9): 5589-5591.

    10.24272/j.issn.2095-8137.2017.003

    15 December 2016; Accepted: 27February 2017

    This study was supported in part by grants from the National Key Basic Research Program of China (2013CB127200) and the National Natural Science Foundation of China (81661138002)

    E-mail: jhliu@scau.edu.cn

    卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区国产| 久久精品国产a三级三级三级| 日韩成人伦理影院| 街头女战士在线观看网站| 色哟哟·www| 人妻人人澡人人爽人人| av在线app专区| 亚洲欧美成人精品一区二区| 日韩av在线免费看完整版不卡| 各种免费的搞黄视频| 久久精品久久精品一区二区三区| 欧美成人精品欧美一级黄| 人妻 亚洲 视频| 欧美三级亚洲精品| 少妇的逼好多水| 成人无遮挡网站| 高清毛片免费看| 九草在线视频观看| 国产一区二区在线观看日韩| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 久久鲁丝午夜福利片| 一区二区三区精品91| 亚州av有码| 18禁在线无遮挡免费观看视频| 亚洲精品456在线播放app| 18+在线观看网站| 天天操日日干夜夜撸| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 极品少妇高潮喷水抽搐| 久久精品熟女亚洲av麻豆精品| 五月开心婷婷网| 一区二区三区精品91| 制服人妻中文乱码| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 97在线人人人人妻| 久久人妻熟女aⅴ| 成人国语在线视频| 久久久久网色| 久久毛片免费看一区二区三区| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 国产亚洲一区二区精品| 日韩在线高清观看一区二区三区| 国产黄频视频在线观看| 一级二级三级毛片免费看| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 国产免费一级a男人的天堂| 18禁裸乳无遮挡动漫免费视频| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久v下载方式| 五月开心婷婷网| 日韩不卡一区二区三区视频在线| 亚洲欧美清纯卡通| 精品视频人人做人人爽| 高清黄色对白视频在线免费看| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 老女人水多毛片| 插逼视频在线观看| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影小说| 国产色婷婷99| 欧美日韩成人在线一区二区| 国精品久久久久久国模美| 欧美 日韩 精品 国产| 久久久久久久久久成人| 日本与韩国留学比较| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| 国产成人午夜福利电影在线观看| 亚洲精品日韩av片在线观看| 高清不卡的av网站| 亚洲精品国产av蜜桃| 精品酒店卫生间| 日本wwww免费看| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 美女脱内裤让男人舔精品视频| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 人妻一区二区av| 欧美日韩在线观看h| 天美传媒精品一区二区| 女的被弄到高潮叫床怎么办| 一级毛片黄色毛片免费观看视频| 黑人猛操日本美女一级片| 亚洲人与动物交配视频| 国产成人精品福利久久| 精品一区二区免费观看| 简卡轻食公司| 一个人看视频在线观看www免费| 26uuu在线亚洲综合色| 精品少妇内射三级| 国产淫语在线视频| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 国产深夜福利视频在线观看| 高清黄色对白视频在线免费看| 97在线视频观看| 人妻系列 视频| 亚洲欧美成人精品一区二区| 少妇人妻久久综合中文| 亚洲欧美一区二区三区国产| 日韩熟女老妇一区二区性免费视频| 少妇人妻 视频| 成人无遮挡网站| 黄色欧美视频在线观看| 一区在线观看完整版| 18禁在线无遮挡免费观看视频| 国产一区有黄有色的免费视频| 两个人的视频大全免费| 综合色丁香网| av在线老鸭窝| 免费高清在线观看视频在线观看| 好男人视频免费观看在线| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 中国三级夫妇交换| av女优亚洲男人天堂| 蜜桃在线观看..| 欧美日韩在线观看h| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| 日韩av不卡免费在线播放| 国产日韩一区二区三区精品不卡 | 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 精品人妻熟女av久视频| 国产在线免费精品| 国产男女内射视频| 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 欧美另类一区| 亚洲美女搞黄在线观看| 亚洲精品视频女| 亚洲欧美日韩卡通动漫| 大又大粗又爽又黄少妇毛片口| 久久免费观看电影| 国产精品久久久久久av不卡| 久久久国产欧美日韩av| 久久99蜜桃精品久久| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 街头女战士在线观看网站| 精品少妇内射三级| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 婷婷色综合www| 秋霞伦理黄片| 精品国产一区二区久久| 97精品久久久久久久久久精品| 国产精品99久久久久久久久| 大码成人一级视频| 久热久热在线精品观看| 黑丝袜美女国产一区| 五月玫瑰六月丁香| 熟妇人妻不卡中文字幕| 亚洲精品视频女| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| 午夜免费观看性视频| av免费观看日本| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 日本黄大片高清| 久久午夜综合久久蜜桃| 国产高清三级在线| 18在线观看网站| 高清不卡的av网站| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 黑人高潮一二区| 亚洲精品第二区| 国产在线免费精品| 精品一区在线观看国产| 99久久人妻综合| 久久免费观看电影| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 成人黄色视频免费在线看| 一级毛片我不卡| 80岁老熟妇乱子伦牲交| 久久久久久伊人网av| 下体分泌物呈黄色| 免费av不卡在线播放| 免费久久久久久久精品成人欧美视频 | a级毛片在线看网站| 天美传媒精品一区二区| 国产av一区二区精品久久| 国产一区二区在线观看日韩| 欧美精品亚洲一区二区| 最近中文字幕2019免费版| 欧美国产精品一级二级三级| 狠狠精品人妻久久久久久综合| 大话2 男鬼变身卡| 国产成人av激情在线播放 | 观看av在线不卡| 免费日韩欧美在线观看| 夫妻性生交免费视频一级片| 男女国产视频网站| 欧美精品高潮呻吟av久久| 蜜臀久久99精品久久宅男| 亚洲成人手机| 人妻一区二区av| 日韩三级伦理在线观看| 久久精品久久久久久久性| 免费观看在线日韩| 国产精品久久久久久av不卡| 中国美白少妇内射xxxbb| 国产成人91sexporn| 午夜激情福利司机影院| 精品熟女少妇av免费看| 国产免费一区二区三区四区乱码| 日韩,欧美,国产一区二区三区| 大码成人一级视频| 97在线人人人人妻| 国产欧美日韩综合在线一区二区| 51国产日韩欧美| 国产精品一区二区在线观看99| 免费av中文字幕在线| 成年av动漫网址| 22中文网久久字幕| 在现免费观看毛片| 亚洲av二区三区四区| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 免费高清在线观看视频在线观看| 婷婷色综合www| 不卡视频在线观看欧美| 亚洲精品国产色婷婷电影| videos熟女内射| 中文欧美无线码| 成年人午夜在线观看视频| 久久久久国产网址| 人人澡人人妻人| 一级爰片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 91精品一卡2卡3卡4卡| 97超视频在线观看视频| 老熟女久久久| 久久久久精品久久久久真实原创| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 少妇人妻精品综合一区二区| 国产成人精品无人区| 大片免费播放器 马上看| 午夜福利,免费看| 国产亚洲欧美精品永久| 午夜福利视频在线观看免费| 少妇人妻 视频| 久久精品久久久久久久性| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区成人| h视频一区二区三区| 亚洲国产av影院在线观看| 麻豆精品久久久久久蜜桃| 在线看a的网站| 免费观看无遮挡的男女| 成年人免费黄色播放视频| 多毛熟女@视频| 老女人水多毛片| 国产极品粉嫩免费观看在线 | 边亲边吃奶的免费视频| 国产精品熟女久久久久浪| 国产免费现黄频在线看| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 多毛熟女@视频| 午夜影院在线不卡| 日日撸夜夜添| 国产深夜福利视频在线观看| 国产国语露脸激情在线看| 丰满饥渴人妻一区二区三| 人妻夜夜爽99麻豆av| 热re99久久国产66热| 精品少妇黑人巨大在线播放| 视频中文字幕在线观看| 久热这里只有精品99| 亚州av有码| 乱人伦中国视频| 国产精品一国产av| 青春草国产在线视频| 国产成人精品无人区| 最后的刺客免费高清国语| 精品少妇黑人巨大在线播放| 日韩成人av中文字幕在线观看| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 极品人妻少妇av视频| 欧美亚洲日本最大视频资源| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 高清黄色对白视频在线免费看| 性色avwww在线观看| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 伦精品一区二区三区| 国国产精品蜜臀av免费| 日本欧美视频一区| 一本色道久久久久久精品综合| 韩国高清视频一区二区三区| 免费av不卡在线播放| 高清不卡的av网站| 五月开心婷婷网| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 中文字幕最新亚洲高清| 日韩成人伦理影院| 久久ye,这里只有精品| 午夜免费观看性视频| 一级片'在线观看视频| 亚洲少妇的诱惑av| 日本wwww免费看| 中文字幕免费在线视频6| 男人操女人黄网站| 免费看av在线观看网站| 午夜日本视频在线| 国产日韩欧美视频二区| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 永久网站在线| 久久国内精品自在自线图片| 欧美日韩一区二区视频在线观看视频在线| 99久久精品国产国产毛片| 精品国产露脸久久av麻豆| 久久午夜福利片| 伦理电影大哥的女人| 一区二区三区四区激情视频| 性高湖久久久久久久久免费观看| 岛国毛片在线播放| 久久 成人 亚洲| 麻豆成人av视频| 国产高清国产精品国产三级| 国产精品不卡视频一区二区| 天堂8中文在线网| 男人添女人高潮全过程视频| 亚洲av男天堂| 亚洲少妇的诱惑av| 各种免费的搞黄视频| 日本91视频免费播放| 欧美bdsm另类| 免费黄网站久久成人精品| 亚洲精品乱码久久久久久按摩| 亚洲国产色片| 午夜日本视频在线| 啦啦啦啦在线视频资源| 午夜日本视频在线| 啦啦啦啦在线视频资源| av福利片在线| 99热这里只有是精品在线观看| 男女边摸边吃奶| 国产片特级美女逼逼视频| 人体艺术视频欧美日本| 一本一本综合久久| 人妻夜夜爽99麻豆av| 美女国产高潮福利片在线看| 久久久亚洲精品成人影院| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 丝袜脚勾引网站| 美女大奶头黄色视频| 人妻人人澡人人爽人人| 男女免费视频国产| 美女国产高潮福利片在线看| 亚洲av中文av极速乱| a级毛色黄片| 黄片无遮挡物在线观看| 妹子高潮喷水视频| av在线观看视频网站免费| 欧美丝袜亚洲另类| 欧美人与性动交α欧美精品济南到 | 精品久久久久久久久亚洲| 特大巨黑吊av在线直播| 亚洲伊人久久精品综合| 亚洲第一av免费看| a级毛片免费高清观看在线播放| 国产色婷婷99| 成人影院久久| 在线精品无人区一区二区三| 毛片一级片免费看久久久久| 最近中文字幕2019免费版| 一区二区三区四区激情视频| 大又大粗又爽又黄少妇毛片口| 欧美精品一区二区免费开放| 黄色毛片三级朝国网站| 国产视频内射| 成人亚洲欧美一区二区av| 久久久国产一区二区| 特大巨黑吊av在线直播| 午夜日本视频在线| 国产免费视频播放在线视频| 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 久久久欧美国产精品| 成人国产av品久久久| 亚洲欧美成人综合另类久久久| a级毛片黄视频| 伊人久久精品亚洲午夜| 夫妻午夜视频| 久久精品国产a三级三级三级| 国产精品 国内视频| 热re99久久国产66热| 中国美白少妇内射xxxbb| 午夜激情久久久久久久| 伊人久久国产一区二区| 国产午夜精品久久久久久一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 久久精品久久久久久久性| 精品国产露脸久久av麻豆| 男女高潮啪啪啪动态图| videos熟女内射| 日本av免费视频播放| 日本欧美国产在线视频| 国产毛片在线视频| 国产精品人妻久久久影院| 亚洲av综合色区一区| 天天操日日干夜夜撸| 18禁在线无遮挡免费观看视频| 少妇被粗大的猛进出69影院 | 国产黄频视频在线观看| 国产片特级美女逼逼视频| av有码第一页| 亚洲av电影在线观看一区二区三区| 老女人水多毛片| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 在线观看三级黄色| 亚洲精华国产精华液的使用体验| 黄色毛片三级朝国网站| 永久网站在线| 天堂俺去俺来也www色官网| 亚洲天堂av无毛| 亚洲精品一区蜜桃| 亚洲av福利一区| 久久久精品免费免费高清| 国产成人av激情在线播放 | 黄色怎么调成土黄色| 久久精品人人爽人人爽视色| 成年人午夜在线观看视频| 超色免费av| 嘟嘟电影网在线观看| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 精品午夜福利在线看| 18+在线观看网站| 国产av国产精品国产| 国产男女超爽视频在线观看| 久久久久网色| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| 九色成人免费人妻av| 日韩在线高清观看一区二区三区| 中文天堂在线官网| 啦啦啦啦在线视频资源| 七月丁香在线播放| 免费看不卡的av| 91久久精品国产一区二区成人| 亚洲第一区二区三区不卡| 久久人人爽人人片av| 最新中文字幕久久久久| 免费人成在线观看视频色| 亚洲av电影在线观看一区二区三区| 国产精品.久久久| 日韩亚洲欧美综合| 日本与韩国留学比较| 亚洲精品一区蜜桃| 久久久精品94久久精品| 国产精品.久久久| 亚洲精品日本国产第一区| 欧美精品一区二区免费开放| 国产亚洲精品第一综合不卡 | 国产乱来视频区| 精品国产一区二区久久| 一区二区日韩欧美中文字幕 | 在现免费观看毛片| 街头女战士在线观看网站| av黄色大香蕉| 国产片内射在线| 十八禁网站网址无遮挡| 日本欧美国产在线视频| 亚洲色图 男人天堂 中文字幕 | 欧美变态另类bdsm刘玥| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 日韩一区二区三区影片| 亚洲av成人精品一二三区| 久久婷婷青草| 黄色毛片三级朝国网站| 男的添女的下面高潮视频| 如何舔出高潮| 2018国产大陆天天弄谢| 人妻一区二区av| av电影中文网址| 日产精品乱码卡一卡2卡三| 国产在线一区二区三区精| 一级毛片电影观看| 波野结衣二区三区在线| 九色亚洲精品在线播放| 久久精品国产自在天天线| 亚洲三级黄色毛片| 欧美性感艳星| 欧美三级亚洲精品| 蜜桃国产av成人99| 国产男人的电影天堂91| 亚洲精品美女久久av网站| av电影中文网址| 一区二区三区精品91| 涩涩av久久男人的天堂| 99九九线精品视频在线观看视频| .国产精品久久| 99热6这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼水好多| 精品卡一卡二卡四卡免费| 日韩av在线免费看完整版不卡| 亚洲不卡免费看| av一本久久久久| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 美女国产视频在线观看| 亚洲无线观看免费| 国产精品久久久久成人av| 亚洲精品乱码久久久久久按摩| 亚洲图色成人| 国产精品一区二区在线不卡| 少妇高潮的动态图| 亚洲国产色片| 亚洲av成人精品一二三区| 少妇被粗大的猛进出69影院 | 狂野欧美白嫩少妇大欣赏| 日本wwww免费看| kizo精华| 午夜91福利影院| 免费人妻精品一区二区三区视频| av在线老鸭窝| 久久青草综合色| 亚洲国产精品一区二区三区在线| 国产精品一二三区在线看| 精品一区二区免费观看| 国产伦理片在线播放av一区| 大香蕉97超碰在线| 欧美日韩在线观看h| 欧美97在线视频| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 狠狠精品人妻久久久久久综合| 免费av中文字幕在线| 黑丝袜美女国产一区| 在线观看www视频免费| 国产一区亚洲一区在线观看| 国产欧美亚洲国产| 久久久久国产精品人妻一区二区| 国产成人免费观看mmmm| 一个人看视频在线观看www免费| 亚洲精品日本国产第一区| 国产极品粉嫩免费观看在线 | 大片电影免费在线观看免费| 蜜桃在线观看..| 久久国内精品自在自线图片| av福利片在线| 18+在线观看网站| 久久国内精品自在自线图片| 国产一区二区在线观看日韩| 另类亚洲欧美激情| 高清欧美精品videossex| 精品久久久久久久久亚洲| 赤兔流量卡办理| 春色校园在线视频观看| 看非洲黑人一级黄片| 国产精品人妻久久久久久| 久久国内精品自在自线图片| 少妇被粗大猛烈的视频| 国产成人午夜福利电影在线观看| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 国产精品国产av在线观看| 高清欧美精品videossex| 欧美bdsm另类| 91精品一卡2卡3卡4卡| 色婷婷久久久亚洲欧美| 亚洲美女视频黄频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人爽人人添夜夜欢视频| 2021少妇久久久久久久久久久| 免费播放大片免费观看视频在线观看| 91精品一卡2卡3卡4卡| 一本一本综合久久| 国产精品秋霞免费鲁丝片| 国产精品99久久久久久久久| 精品人妻熟女av久视频| 中国三级夫妇交换| 女人久久www免费人成看片| 久久99热6这里只有精品| 国产男女内射视频|