• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    類比思想在立體幾何中的應(yīng)用

    2017-04-28 06:38:16鄭州市第十一中學(xué)1805班趙晨思
    關(guān)鍵詞:三棱錐三者夾角

    ■鄭州市第十一中學(xué)1805班 趙晨思

    類比思想在數(shù)學(xué)中有著重要的應(yīng)用,下面舉例分析它在立體幾何中的應(yīng)用。

    圖1

    截正方形ABCD的一個(gè)角得△ABC,由勾股定理知c2=a2+b2。如圖1,把正方形換成正方體,截線AC換成截面ABC,得三棱錐V-ABC,設(shè) △VAB,△VBC,△VAC,△ABC面積分別為S1,S2,S3,S,則在棱錐V-ABC中有結(jié)論:S2=。

    引用例1中的三棱錐V-ABC,VA、VB、VC與平面ABC所成的角分別為α、β、γ,三者有何關(guān)系?平面ABC與平面VAB、平面VAC、平面VAB的夾角分別為α1、β1、γ1,三者有何關(guān)系?

    所以cos2α+cos2β+cos2γ=2。

    那么,猜想sin2α1+sin2β1+sin2γ1=2。

    證明如下:設(shè)△VAB邊AB上的高為VD,△VBC邊BC上的高為VE,△VAC邊AC上的高為VF。所以·AB=得VD2

    所 以 sin2α1+sin2β1+sin2γ1=2。

    在長(zhǎng)方體A1B1C1D1-ABCD中,A1B1=a,B1B=h,B1C1=b,體對(duì)角線B1D與從B1點(diǎn)發(fā)出的三條棱B1A1,B1B,B1C1的夾角分別為α、β、γ,三者之間有何關(guān)系?B1D與平面A1B1C1D1的夾角為α1,B1D與平面B1C1CB的夾角為β1,B1D與平面A1B1BA夾角為γ1,探究α1、β1、γ1的關(guān)系。

    解析:猜 想 cos2α+cos2β+cos2γ=1,cos2α1+cos2β1+cos2γ1=2。

    同理,猜想sin2α1+sin2β1+sin2γ1=1,cos2α1+cos2β1+cos2γ1=2。

    通過(guò)這三道例題,我們能夠深刻體會(huì)到類比思想在立體幾何中的應(yīng)用。

    猜你喜歡
    三棱錐三者夾角
    怎樣用補(bǔ)形法求三棱錐的外接球半徑
    怎樣用補(bǔ)形法求三棱錐的外接球半徑
    探究鐘表上的夾角
    求解異面直線夾角問(wèn)題的兩個(gè)路徑
    讀 書
    三棱錐中的一個(gè)不等式
    任意夾角交叉封閉邊界內(nèi)平面流線計(jì)算及應(yīng)用
    踏上“四有”“三者”好老師之路
    速讀·下旬(2017年7期)2017-08-03 20:09:44
    立“三者”,提升“兩學(xué)一做”實(shí)效
    人間(2016年28期)2016-11-10 22:59:54
    直線轉(zhuǎn)角塔L形絕緣子串夾角取值分析
    廣西電力(2016年5期)2016-07-10 09:16:44
    新河县| 南华县| 丰镇市| 嘉荫县| 调兵山市| 黄骅市| 肃北| 黄浦区| 隆回县| 洛宁县| 土默特左旗| 信丰县| 江西省| 太湖县| 青冈县| 鹰潭市| 松原市| 宝山区| 西乌珠穆沁旗| 盘锦市| 晋中市| 通州区| 道孚县| 南昌县| 锡林郭勒盟| 东乡| 金坛市| 浪卡子县| 北安市| 仁怀市| 长泰县| 平谷区| 隆昌县| 盘山县| 吉水县| 定州市| 法库县| 揭东县| 鄂伦春自治旗| 噶尔县| 晋宁县|