王中魁 黃旭升
伴胸腺瘤重癥肌無力發(fā)病機(jī)制研究進(jìn)展
王中魁 黃旭升
重癥肌無力(myasthenia gravis,MG)是以胸腺為靶器官的器官特異性自身免疫性疾病,伴胸腺瘤MG與不伴胸腺瘤MG發(fā)病機(jī)制不同。近年來發(fā)現(xiàn)伴胸腺瘤MG在T細(xì)胞數(shù)量和功能、自身抗體的種類以及遺傳學(xué)等方面與不伴胸腺瘤MG存在差異。本文旨在結(jié)合文獻(xiàn)從胸腺微環(huán)境、T細(xì)胞發(fā)育、自身抗體及遺傳學(xué)等方面在伴胸腺瘤MG發(fā)病機(jī)制中作用進(jìn)行綜述。
重癥肌無力;胸腺瘤;發(fā)病機(jī)制
重癥肌無力(myasthenia gravis,MG)是T細(xì)胞輔助、乙酰膽堿受體抗體(AChR-Ab)介導(dǎo)的神經(jīng)肌肉接頭傳遞障礙的自身免疫性疾病,也是一種以胸腺為靶器官的自身免疫性疾病[1]。MG多伴有胸腺病變,包括胸腺瘤、胸腺增生和胸腺萎縮[2],其中約15%為胸腺瘤。胸腺瘤是一種來源于胸腺上皮細(xì)胞的良性或低度惡性腫瘤,是成年人最常見的前縱隔腫瘤。流行病學(xué)結(jié)果顯示大約20%~25%胸腺瘤伴發(fā)MG,大約10%~20% MG患者伴發(fā)胸腺瘤[3]。胸腺瘤與MG關(guān)系最為密切,也是伴發(fā)自身免疫病最多的人類腫瘤[4]。伴胸腺瘤MG與不伴胸腺瘤MG比較,臨床特點、治療反應(yīng)及預(yù)后均不盡相同,提示伴/不伴胸腺瘤MG發(fā)病機(jī)制不同。本文對胸腺瘤在MG發(fā)病中的免疫學(xué)機(jī)制進(jìn)行綜述。
胸腺是重要的免疫器官,初始T細(xì)胞在胸腺內(nèi)經(jīng)歷陽性選擇和陰性選擇發(fā)育、分化為成熟T細(xì)胞[5]。胸腺瘤是來源于胸腺上皮的腫瘤,根據(jù)淋巴細(xì)胞和上皮細(xì)胞的比例,胸腺瘤分為A、AB、B型(包括B1、B2、B3三型)和C型[6]。以髓質(zhì)成分為主的A型胸腺瘤很少伴發(fā)MG[7],B型胸腺瘤髓質(zhì)區(qū)域內(nèi)缺乏髓質(zhì)特征,取而代之以混亂的皮質(zhì)結(jié)構(gòu),其中B1型為皮質(zhì)優(yōu)勢型、富含淋巴細(xì)胞,胸腺細(xì)胞含量高,伴有胸腺髓質(zhì)分化,部分腫瘤區(qū)域內(nèi)可有正常的Hassall小體結(jié)構(gòu);B2、B3胸腺瘤中Hassall小體結(jié)構(gòu)極少[6]。B型胸腺瘤最常伴發(fā)MG。C型胸腺瘤侵襲性強(qiáng),惡性程度高,卻極少伴發(fā)MG。與胸腺增生相比,胸腺瘤缺乏髓質(zhì)和生發(fā)中心,皮髓質(zhì)區(qū)域分界不清[8],皮髓質(zhì)結(jié)構(gòu)異常引起T細(xì)胞分化、發(fā)育紊亂和功能障礙,參與MG發(fā)病。與不伴MG胸腺瘤相比,伴胸腺瘤MG胸腺瘤組織可產(chǎn)生并向外周血遷移大量成熟CD4+CD45RA+細(xì)胞[9-11],而正常AChR抗體反應(yīng)性的成熟T細(xì)胞再循環(huán)到胸腺瘤中后可能被激活并大量釋放至外周免疫系統(tǒng)發(fā)揮致病作用[12]。Belharazem等[13]發(fā)現(xiàn)伴胸腺瘤MG患者外周血及胸腺瘤組織中凋亡抑制蛋白——類FLICE抑制蛋白(c-FLIP)表達(dá)量顯著升高,c-FLIP可促進(jìn)CD4+T細(xì)胞的分化發(fā)育,提示伴胸腺瘤MG發(fā)病可能與中樞及外周淋巴系統(tǒng)免疫耐受功能障礙有關(guān)。
由于胸腺瘤缺乏髓質(zhì)成分,經(jīng)歷了陽性選擇的T細(xì)胞不能充分與樹突狀細(xì)胞(DC)和巨噬細(xì)胞接觸、經(jīng)歷有效的陰性選擇。Inoue等[15]的研究表明了胸腺瘤中HLA-DR(MHCⅡ類分子)的重要調(diào)控因子二類轉(zhuǎn)化活化因子(class Ⅱ transactivator,CⅡTA)表達(dá)降低,而胸腺瘤中CD4+CD8-T細(xì)胞亞群中CD3+細(xì)胞的比例與HLA-DR和CⅡTA顯著相關(guān)[18]。由此推測胸腺瘤上皮細(xì)胞HLA-DR表達(dá)減少引起了胸腺瘤組織中CD4+CD8-單陽性T細(xì)胞分化中陰性選擇功能障礙。自身免疫調(diào)控因子(autoimmune regulator,AIRE)是表達(dá)在胸腺髓質(zhì)上皮細(xì)胞上的轉(zhuǎn)錄因子,調(diào)控胸腺中CHRNA基因位點的AChRα亞單位的表達(dá)[19],對于自身反應(yīng)性T細(xì)胞陰性選擇和中樞性耐受形成具有重要意義。伴胸腺瘤MG患者胸腺瘤髓質(zhì)上皮細(xì)胞AIRE表達(dá)降低,同時胸腺瘤細(xì)胞與正常胸腺細(xì)胞表達(dá)的包括titin抗原表型的多種抗原表型[20]、HLA-Ⅱ類分子[21-23]以及多種AChR亞單位[24-25]均發(fā)生改變,這些異常表達(dá)的免疫調(diào)節(jié)因子及抗原表型可能導(dǎo)致針對表達(dá)AChRα亞單位受體的T細(xì)胞的陽性選擇或陰性選擇發(fā)生偏倚或功能障礙,這些針對AChRα亞單位自身反應(yīng)性T細(xì)胞進(jìn)入外周免疫系統(tǒng),攻擊神經(jīng)肌肉接頭處AChRα亞單位,引起MG發(fā)病[26-27]。
除去作用機(jī)制研究最清楚的MG自身抗體——AChRAb外,伴胸腺瘤MG患者體內(nèi)還存在多種其他自身抗體,這些抗體可能也參與了伴胸腺瘤MG的發(fā)病。
3.1 抗骨骼肌抗原抗體 連接素(titin)和蘭尼堿受體 (ryanodine receptor,RyR)是最主要的自身抗體攻擊的靶點。約90%的伴胸腺瘤MG患者Titin抗體或RyR抗體陽性,其中Titin抗體是胸腺瘤的標(biāo)記性抗體[28-29]。
3.2 抗細(xì)胞因子抗體 抗細(xì)胞因子抗體是伴胸腺瘤MG常見的血清抗體。體外試驗發(fā)現(xiàn)抗細(xì)胞因子抗體由胸腺瘤細(xì)胞產(chǎn)生[30],伴胸腺瘤MG中70%和單純胸腺瘤患者中30%體內(nèi)存在針對IFN-α和IFN-ω的中和抗體, 伴胸腺瘤MG中約50%有IL-12的中和抗體[31]。最近一項研究表明伴胸腺瘤MG患者高表達(dá)Ⅰ型IFN分子,包括IFN-α2、IFN-α8、IFN-ω和IFN-β[32]。極少部分胸腺瘤患者體內(nèi)存在針對Th17細(xì)胞相關(guān)細(xì)胞因子的中和抗體,尤其是與控制念珠菌感染相關(guān)的IL-17F和IL-22的中和抗體[33]。
HLA 6p21位點雜合缺失是發(fā)生在所有病理類型胸腺瘤的一種遺傳學(xué)改變,該改變可引起HLAⅡ類分子表達(dá)下調(diào)[23,34],非HLA基因多態(tài)性可以影響CTLA4和蛋白酪氨酸磷酸酶22(PTPN22)[35]等T細(xì)胞受體信號通路分子,這些信號分子表達(dá)改變可以引起陰性選擇功能障礙、自身反應(yīng)性T細(xì)胞的增殖,參與伴胸腺瘤MG發(fā)病。Christopoulos等[36]研究發(fā)現(xiàn)胸腺瘤患者存在CD3 zeta鏈(CD247)基因缺陷,胸腺瘤患者γδ和αβT細(xì)胞的TCR復(fù)合體中CD247數(shù)量減少,初始T細(xì)胞和低反應(yīng)性γδT細(xì)胞、αβT細(xì)胞數(shù)量增高,引起T細(xì)胞免疫功能缺陷,增加了對于感染的易感性。Yang等[37]的研究發(fā)現(xiàn)HLA DQ等位基因中DQA1*0401和DQB1*0604兩種基因型在伴胸腺瘤MG中出現(xiàn)頻率高,DQA1*0501和DQB1*0301在不伴MG胸腺瘤中出現(xiàn)頻率高。該結(jié)果提示HLA DQA和DQB位點突變引起的基因多態(tài)性與MG發(fā)病的易感性有關(guān),但是具體作用機(jī)制仍不清楚。此外,Xu等[38]通過分析T細(xì)胞免疫球蛋白和黏蛋白結(jié)構(gòu)域-3(Tim-3)574位點多態(tài)性,發(fā)現(xiàn)伴胸腺瘤MG的GT+TT基因型出現(xiàn)率及T等位基因出現(xiàn)率顯著高于不伴MG胸腺瘤。然而該基因多態(tài)性導(dǎo)致MG的具體機(jī)制仍需進(jìn)一步研究。
近年來輔助性T細(xì)胞,包括調(diào)節(jié)性T細(xì)胞(Treg)和Th17輔助細(xì)胞(T helper type 17 cells,Th17細(xì)胞)在MG及胸腺瘤發(fā)病機(jī)制中的作用成為研究熱點。Treg細(xì)胞是一群具有免疫抑制功能的負(fù)調(diào)控細(xì)胞,可與免疫應(yīng)答中多種細(xì)胞如DC、B細(xì)胞等相互作用,通過與免疫效應(yīng)細(xì)胞直接接觸的方式抑制效應(yīng)細(xì)胞的功能,發(fā)揮免疫抑制作用。Masuda等[39]發(fā)現(xiàn)MG患者外周血Treg細(xì)胞比例減少,且治療前后Treg細(xì)胞比例變化與MG臨床評分變化呈正相關(guān)。Scarpino等[40]發(fā)現(xiàn)正常胸腺及增生胸腺中CD4+CD25+FoxP3+Treg較多,主要集中在Hassall小體周圍,Treg細(xì)胞數(shù)量與是否合并MG無關(guān);胸腺瘤中CD4+CD25+FoxP3+Treg細(xì)胞明顯減少,在B1型髓質(zhì)中Treg細(xì)胞相對較多。Wang等[41]發(fā)現(xiàn)伴胸腺瘤MG的胸腺瘤組織中FoxP3+Treg細(xì)胞較正常胸腺顯著減少,F(xiàn)oxP3mRNA轉(zhuǎn)錄水平下降,其中B1型轉(zhuǎn)錄水平最高,B3型最低,提示FoxP3轉(zhuǎn)錄和表達(dá)可能與胸腺瘤類型和腫瘤上皮細(xì)胞功能有關(guān),胸腺瘤FoxP3mRNA轉(zhuǎn)錄水平異??赡軐?dǎo)致Treg細(xì)胞減少,引起自身免疫耐受紊亂,造成MG的發(fā)病。
Th17細(xì)胞是近年新發(fā)現(xiàn)的特征性表達(dá)促炎因子IL-17的功能性CD4+T輔助細(xì)胞亞群[42]。Wang等[43]發(fā)現(xiàn)伴胸腺瘤MG患者外周血的IL-17、IL-1β、IL-23等促炎細(xì)胞因子表達(dá)量增加,伴胸腺瘤MG患者外周血Th17細(xì)胞的比例與血清AChRAb濃度正相關(guān),且伴胸腺瘤MG組QMG評分與Th17細(xì)胞比例呈正相關(guān)。 胸腺間質(zhì)淋巴細(xì)胞生成素(TSLP)是一種IL-7樣細(xì)胞因子,由胸腺髓質(zhì)Hassall小體上皮細(xì)胞分泌,是淋巴細(xì)胞發(fā)育分化的重要調(diào)節(jié)因子。Watanabe等[44]發(fā)現(xiàn)TSLP可以大量活化cDC,cDC誘導(dǎo)CD4+CD8-CD25-細(xì)胞增殖后,約50%的增殖細(xì)胞分化為CD4+CD8-CD25-FoxP3+Treg細(xì)胞。Salomon等[45]發(fā)現(xiàn)CD28是Treg細(xì)胞發(fā)育必不可少的共刺激信號分子。TSLP是目前所知的惟一可以活化DC表達(dá)CD28配體-CD80/CD86的生理信號[46]。Wang等[47]發(fā)現(xiàn)miR-19b-5p通過轉(zhuǎn)錄后調(diào)控機(jī)制降低TSLP的表達(dá),證實了miR-19b-5p在胸腺瘤中的異常上調(diào)可能是TSLP減少的關(guān)鍵機(jī)制,證實miR-19b-5p/TSLP調(diào)控通路參與Treg細(xì)胞生成減少、Th17細(xì)胞增多過程的調(diào)控。
濾泡輔助性T細(xì)胞(T follicular helper cells,TFH)表型是CD4+CXCR5+,是CD4+T輔助細(xì)胞的一個亞群。TFH可以遷移到生發(fā)中心內(nèi),為B細(xì)胞提供刺激信號,促進(jìn)B細(xì)胞分化發(fā)育成長期存活的漿細(xì)胞和記憶B細(xì)胞。TFH細(xì)胞引導(dǎo)效應(yīng)B細(xì)胞和記憶B細(xì)胞產(chǎn)生自身抗體進(jìn)而在MG發(fā)病中發(fā)揮重要作用。TFH高表達(dá)可誘導(dǎo)共刺激分子(ICOS),程序性死亡1(PD-1)及其配體,轉(zhuǎn)錄因子B細(xì)胞淋巴瘤6(Bcl-6)和調(diào)控因子等分子。Song等[48]的研究亦發(fā)現(xiàn)伴胸腺瘤MG患者胸腺瘤組織中TFH細(xì)胞比例升高,而且TFH相關(guān)分子ICOS,PD-1及其配體,Bcl-6表達(dá)量顯著升高。
綜上,近年來的研究表明胸腺自身免疫耐受機(jī)制的破壞可能是胸腺瘤發(fā)生以及包括MG在內(nèi)的自身免疫性疾病發(fā)生的重要原因。闡明這些可能的機(jī)制,有助于提高對于MG等自身免疫性疾病的認(rèn)識,促進(jìn)此類疾病預(yù)防和治療水平的提高。
[1]Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity[J]. Lancet Neurol,2009,8 (5): 475-490.
[2]Str?bel P, Chuang WY, Marx A. Thymoma-associated paraneoplastic myasthenia gravis. In: Kaminski HJ. Myasthenia gravis and related disorders [M]. Second edition. New York: Humana Press, 2009.105-117.
[3]Lucchi M, Ricciard R, Melfi F, et al. Association of thymoma and myasthenia gravis: oncological and neurological results of the surgical treatment[J]. Eur J Cardiothorac Surg,2009,35(5):812-816.
[4]Müller-Hermelink HK, Marx A. Thymoma[J]. Curr Opin Oncol,2000,12(5): 426-433.
[5]Kurd N, Robey EA. T-cell selection in the thymus: a spatial and temporal perspective[J]. Immunol Rev,2016,271(1):114-126.
[6]Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization Classification of Lung Tumors: impact of genetic, clinical and radiologic advances since the 2004 Classification[J]. J Thorac Oncol,2015,10(9):1243-1260.
[7]Strobel P, Bauer A, Puppe B, et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis[J]. J Clin Oncol, 2004,22(8):1501-1509.
[8]Willcox N, Leite MI, Kadota Y, et al. Autoimmunizing mechanisms in thymoma and thymus[J]. Ann NY Acad Sci,2008,1132:163-173.
[9]Strobel P, Helmreich M, Meniouda kis G, et al. Paraneoplastic myasthenia gravis correlates with generation of matur e na?ve CD4(+) T cells in thymomas[J]. Blood,2002,100(1):159 -166.
[10]Hoffacker V, Schultz A, Tiesinga JJ, et al. Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease[J]. Blood,2000,96(12): 3872-3879.
[11]Buckley C, Douek D, Newsom-Davis J, et al. Mature, long-lived CD4+and CD8+T cells are generated by the thymoma in myasthenia gravis[J]. Ann Neurol,2001,50(1):64-72.
[12]Marx A, Willcox N, Leite MI, et al. Thymoma and paraneoplastic myasthenia gravis[J]. Autoimmunity, 2010,43(5-6):413-427.
[13]Belharazem D, Schalke B, Gold R, et al. cFLIP overexpression in T cells in thymoma-associated myasthenia gravis[J]. Ann Clin Transl Neurol,2015, 2(9): 894-905.
[14]Weksler B, Lu B. Alterations of the immune system in thymic malignancies[J]. J Thorac Oncol,2014,9(9Suppl 2): S137-S142.
[15]Inoue M, Okumura M, Miyoshi S, et al. Impaired expression of MHC class Ⅱ molecules in response to interferon-gamma (IFN-γ) on human thymoma neoplastic epithelial cells[J]. Clin Exp Immunol,1999,117(1):1-7.
[16]Inoue M, Fujii Y, Okumura M, et al. T-cell development in human thymoma[J]. Pathol Res Pract, 1999,195(8):541-547.
[17]Fujii Y, Okumura M, Yamamoto S. Flow cytometric study of lymphocytes associated with thymoma and other thymic tumors[J]. J Surg Res,1999,82(2):312-318.
[18]Kadota Y, Okumura M, Miyoshi S, et al. Altered T cell development in human thymoma is related to impairment of MHC class Ⅱ transactivator expression induced by interferon-gamma (IFN-γ) [J]. Clin Exp Immunol,2000,121(1):59-68.
[19]Giraud M, Taubert R, Vandiedonck C, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus[J]. Nature,2007,448(7156): 934-937.
[20]Dardenne M, Savino W, Bach JF. Thymomatous epithelial cells and skeletal muscle share a common epitope defined by a monoclonal antibody[J]. Am J Pathol,1987,126(1):194-198.
[21]Willcox N, Schluep M, Ritter MA, et al. Myasthenic and nonmyasthenic thymoma. An expansion of a minor cortical epithelial cell subset? [J]. Am J Pathol,1987,127(3):447-460.
[22]Savino W, Manganella G, Verley JM, et al. Thymoma epithelial cells secrete thymic hormone but do not express class Ⅱ antigens of the major histocompatibility complex[J]. J Clin Invest,1985,76(3):1140-1146.
[23]Strobel P, Chuang WY, Chuvpilo S, et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class Ⅱ and AIRE genes and genetic polymorphisms[J]. Ann N Y Acad Sci,2008,1132:143-156.
[24]Maclennan CA, Vincent A, Marx A, et al. Preferential expression of AChR epsilon-subunit in thymomas from patients with myasthenia gravis[J]. J Neuroimmunol,2008,201-202:28-32.
[25]Kirchner T, Hoppe F, Muller-Hermelink HK, et al. Acetylcholine receptor epitopes on epithelial cells of thymoma in myastheni a gravis[J]. Lancet,1987,1(8526):218.
[26]Kisand K, Lilic D, Casanova JL, et al. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications[J]. Eur J Immunol,2011,41(6):1517-1527.
[27]Willcox N, Leite MI, Kadota Y, et al. Autoimmunizing mechanisms in thymoma and thymus[J]. Ann N Y Acad Sci,2008,1132:163-173.
[28]Romi F, Skeie GO, Gilhus NE, et al. Striational antibodies in myasthenia gravis: reactivity and possible clinical signi ficance[J]. Arch Neurol,2005,62:442-446.
[29]Romi F. Thymoma in myasthenia gravis: from diagnosis to treatment[J]. Autoimmun Dis,2011, 2011:474512.
[30]Shiono H, Wong YL, Matthews I, et al. Spontaneous production of anti-IFN-alpha and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor[J]. Int Immunol,2003,15(8): 903-913.
[31]Meager A, Wadhwa M, Dilger P, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis[J]. Clin Exp Immunol 2003,132(1):128-136.
[32]Cufi P, Soussan P, Truffault F, et al. Thymoma-associated myasthenia gravis: on the search for a pathogen signature[J]. J Autoimmun,2014,52:29-35.
[33]Kisand K, Boe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines[J]. J Exp Med,2010,207(2):299-308.
[34]Zettl A, Strobel P, Wagner K, et al. Recurrent genetic aberrations in thymoma and thymic carcinoma[J]. Am J Pathol,2000,157(1):257-266.
[35]Gianchecchi E, Palombi M, Fierabracci A. The putative role of the C1858T polymor-phism of protein tyrosine phosphatase PTPN22 gene in autoimmunity[J].Autoimmun Rev,2013, 12(7):717- 725.
[36]Christopoulos P, Dopfer EP, Malkovsky M, et al. A novel thymoma-associated immunodeficiency with increased naive T cells and reduced CD247 expression[J]. J Immunol,2015,194(7):3045 -3053.
[37]Yang H, Hao J, Peng X, et al. The association of HLA-DQA1*0401 and DQB1*0604 with thymomatous myasthenia gravis in northern Chinese patients[J]. J Neurol Sci,2012,312 (1-2):57-61.
[38]Xu G, Zheng K, Lu X, et al. Association between polymorphisms in the promoter region of T cell immunoglobulin and mucin domain-3 and myasthenia gravis-associated thymoma[J]. Oncol Lett,2015,9(3):1470-1474.
[39]Masuda M, Matsumoto M, Tanaka S, et al. Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients[J]. J Neuroimmunol,2010,225 (1-2):123-131.
[40]Scarpino S, Di Napoli A, Stoppacciaro A, et al. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas[J]. Clin Exp Immunol,2007,149(3):504-512.
[41]Wang Zhongkui, Wang Jinghua, Deng Benqiang, et al. Reduction of natural regulatory T cells in thymomas accompanying myasthenia gravis and its possible association with Foxp3 and thymic stromal lymphopoietin[J]. Journal of Medical Colleges of People's Liberation Army of China,2009,24(1):50-55.
[42]Spolski R, Leonard WJ. Cytokine mediators of Th17 function[J]. Eur J Immunol,2009,39(3): 658-661.
[43]Wang Z, Wang W, Chen Y, et al. T helper type 17 cells expand in patients with myasthenia-associated thymoma[J]. Scand J Immunol,2012,76(1):54-61.
[44]Watanabe N, Wang YH, Lee HK, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+regulatory T cells in human thymus[J]. Nature,2005, 436:1181-1185.
[45]Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+immunoregulatory T cells that control autoimmune diabetes[J]. Immunity, 2000,12:431-440.
[46]Marx A, Willcox N, Leite MI, et al. Thymoma and paraneoplastic myasthenia gravis[J]. Autoimmunity, 2010,43(5-6):413-427.
[47]Wang Z, Chen Y, Xu S, et al. Aberrant decrease of microRNA19b regulates TSLP expression and contributes to Th17 cells development in myasthenia gravis related thymomas[J]. J Neuroimmunol, 2015,288 (15):34-39.
[48]Song Y, Zhou L, Miao F, et al. Increased frequency of thymic T follicular helper cells in myasthenia gravis patients with thymoma[J]. J Thorac Dis,2016,8(3):314-322.
(本文編輯:鄒晨雙)
10.3969/j.issn.1006-2963.2017.02.015
100853 中國人民解放軍總醫(yī)院神經(jīng)科
黃旭升,Email:lewish301@sina.com
R746.1
A
1006-2963(2017)02-0139-05
2016-08-03)