蔣芝華,李鵬程,孫駿威,丁艷菲,朱 誠
(中國計(jì)量大學(xué) 生命科學(xué)學(xué)院 浙江省海洋食品品質(zhì)及危害物控制技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310018)
入侵植物刺莧對水稻化感效應(yīng)及抗氧化系統(tǒng)的影響
蔣芝華,李鵬程,孫駿威,丁艷菲,朱 誠
(中國計(jì)量大學(xué) 生命科學(xué)學(xué)院 浙江省海洋食品品質(zhì)及危害物控制技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310018)
化感作用在外來植物入侵的過程中起著重要作用,是入侵植物與本地植物競爭的新式武器.本研究以入侵植物刺莧為研究對象,探究了刺莧水浸提液及刺莧潛在化感物質(zhì)水溶對水稻種子萌發(fā)、幼苗生長和幼苗抗氧化系統(tǒng)的影響.結(jié)果表明,刺莧水浸提液對水稻種子萌發(fā)有顯著抑制作用,潛在化感物質(zhì)對水稻幼苗根的生長有明顯抑制作用,其中,齊墩果酸和β-谷甾醇可能在造成水稻幼苗氧化脅迫過程中起著積極作用.
刺莧;化感效應(yīng);水稻生長;抗氧化代謝
刺莧(AmaranthusspinosusL.),原產(chǎn)美洲,作為一種外來入侵植物,現(xiàn)已成為我國熱帶地區(qū)常見雜草,對糧食作物及蔬菜具有危害作用.其化感作用對周圍生物的生長產(chǎn)生抑制,對自身種群的擴(kuò)散起著促進(jìn)作用[1-2].本土植物群落種群間由于長期的協(xié)同進(jìn)化,形成了一定程度上的化感平衡,刺莧的入侵打破了它們之間的平衡[3].防范刺莧的擴(kuò)散工作應(yīng)當(dāng)引起重視[4].盡管刺莧已被列入外來物種入侵生物安全遺傳資源[5],但目前尚未見刺莧化感作用的相關(guān)報(bào)道.
水稻(OryzasativaL.)是我國重要的糧食作物,前期野外調(diào)查發(fā)現(xiàn)刺莧在稻田里存在,因此以水稻作為受試農(nóng)作物研究刺莧對水稻的化感效應(yīng)有著積極意義.本文探究刺莧水浸提液及刺莧潛在化感物質(zhì)對水稻種子萌發(fā)、幼苗生長和幼苗抗氧化系統(tǒng)的影響,以此來探究刺莧入侵的作用特點(diǎn)、方式和機(jī)理,為防控和管理刺莧的入侵及其潛在化感物質(zhì)的利用提供科學(xué)依據(jù).
1.1 植物材料
刺莧成熟期植株于2014年8月中旬采自衢州市開化縣.供試水稻品種為內(nèi)5優(yōu)8015,由浙江省農(nóng)業(yè)科學(xué)院提供.
1.2 刺莧水浸提液及潛在化感物質(zhì)水溶液的制備
選取刺莧健康植株剪成小段,按20 g∶100 mL的比例用蒸餾水在常溫下浸泡48 h,然后4層紗布過濾得到200 μg·mL-1的刺莧鮮樣浸提液母液,加蒸餾水分別稀釋成25、50、100 μg·mL-1浸提液.潛在化感物質(zhì)水溶液的制備方法如下:將齊墩果酸和β-谷甾醇用適量甲醇溶解后,分別用無菌雙蒸水配制成質(zhì)量濃度梯度為25、100、200 μg·mL-1的溶液,4 ℃?zhèn)溆?
1.3 種子萌發(fā)及幼苗生長試驗(yàn)
采用培養(yǎng)皿濾紙法進(jìn)行水稻種子萌發(fā)試驗(yàn)[6].用不同質(zhì)量濃度刺莧水浸提液和潛在化感物質(zhì)水溶液進(jìn)行處理.分別統(tǒng)計(jì)第5 d、14 d的水稻種子發(fā)芽數(shù),計(jì)算各個處理的發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù).發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)、綜合抑制效應(yīng)的計(jì)算方法如下:
發(fā)芽率(GR%)=(正常發(fā)芽的種子總數(shù)/供試種子總數(shù))×100%;
發(fā)芽勢(GE%)=(規(guī)定天數(shù)內(nèi)正常發(fā)芽種子數(shù)/供試種子總數(shù))×100%;
發(fā)芽指數(shù)GI=∑(Gt/Dt)式中Gt表示在第t天種子的發(fā)芽數(shù),Dt代表相應(yīng)的發(fā)芽天數(shù);
發(fā)芽率化感效應(yīng)指數(shù)RI=(Ti-T0)/T0×100%式中,Ti為處理值,T0為對照值.
RI>0表示有促進(jìn)作用,RI<0表示具有抑制效應(yīng).
綜合抑制效應(yīng)(SE):是指同一處理濃度對同一個受試各個測試項(xiàng)目(發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)、根長、苗高)的對照抑制百分率的算術(shù)平均數(shù).
幼苗培養(yǎng):選取培養(yǎng)至露白的水稻種子20粒,加入相應(yīng)處理溶液,培養(yǎng)條件同種子萌發(fā)培養(yǎng),重復(fù)4次,以蒸餾水為對照.7 d后用直尺(精確度為0.1 cm)測定幼苗的莖長和根長.
1.4 生理生化指標(biāo)測定
經(jīng)Hoagland營養(yǎng)液培養(yǎng)水稻幼苗30 d后,用各個質(zhì)量濃度梯度處理液處理水稻,以蒸餾水為對照.試驗(yàn)過程中,每7天更換一次營養(yǎng)液,同時每次加處理液100 mL,處理兩次,取處理后的水稻葉片進(jìn)行各指標(biāo)的測定.
1.5 數(shù)據(jù)處理
采用Excel 2013計(jì)算平均數(shù)±標(biāo)準(zhǔn)偏差.采用SPSS13.0進(jìn)行差異顯著性檢驗(yàn),顯著性水平為P<0.05.采用GraphPad Prism5.01軟件作圖.
2.1 刺莧水浸提液對水稻的化感效應(yīng)
2.1.1 刺莧水浸提液對水稻種子萌發(fā)和幼苗生長的影響
隨刺莧水浸提液處理質(zhì)量濃度的升高,水稻種子萌發(fā)受抑制作用增強(qiáng),在100 μg·mL-1質(zhì)量濃度處理下水稻發(fā)芽率與對照組相比降低了12.82%(表1).水稻發(fā)芽勢受抑制作用趨勢同發(fā)芽率一致.從發(fā)芽指數(shù)和化感效應(yīng)指數(shù)可以看出,隨著處理質(zhì)量濃度的升高,水稻種子萌發(fā)的抑制作用加強(qiáng).
表1 刺莧水浸提液對水稻種子萌發(fā)及幼苗生長的影響
注:表中數(shù)值為平均值±標(biāo)準(zhǔn)差(n=4),同一行中相同字母表示在P≥0.05時差異不顯著.
而刺莧水浸提液對水稻幼苗根長和莖長的生長抑制作用不明顯.
2.1.2 刺莧水浸提液對水稻幼苗抗氧化代謝的影響
2.1.2.1 刺莧水浸提液對水稻幼苗MDA含量的影響
刺莧水浸提液處理后水稻幼苗MDA含量變化如圖1,當(dāng)刺莧水浸提液質(zhì)量濃度低于100 μg·mL-1時,水稻幼苗MDA含量沒有受到顯著影響(P>0.05),但質(zhì)量濃度達(dá)到200 μg·mL-1時,MDA含量顯著上升,相比對照增加了85.51%.
圖1 刺莧水浸提液處理下水稻幼苗MDA含量Figure 1 Effect of aqueous extract of A. spinosus on the MDA content of rice seedlings
2.1.2.2 刺莧水浸提液對水稻幼苗活性氧(ROS)產(chǎn)生量的影響
圖2 刺莧水浸提液處理下水稻幼苗.產(chǎn)生速率變化Figure 2 The effect of aqueous extract of A. spinosus . generation in rice seedlings
2.1.2.3 刺莧水浸提液對水稻幼苗抗氧化酶活性和GSH含量的影響
刺莧水浸提液對水稻幼苗SOD、POD、CAT酶活性和GSH含量的影響均表現(xiàn)為隨刺莧水浸提液質(zhì)量濃度升高而上升(圖3).當(dāng)刺莧水浸提液質(zhì)量濃度為200 μg·mL-1時,對四種物質(zhì)的影響相比對照組差異顯著.
2.2 潛在化感物質(zhì)對水稻的化感效應(yīng)
2.2.1 刺莧潛在化感物質(zhì)對水稻種子萌發(fā)和幼苗生長的影響
由表2和表3可以看出,不同質(zhì)量濃度齊墩果酸水溶液和β-谷甾醇水溶液均對水稻種子發(fā)芽率、發(fā)芽勢和發(fā)芽指數(shù)基本無影響,對水稻種子萌發(fā)化感作用不顯著.二者顯著抑制水稻幼苗根的生長,表現(xiàn)為隨著處理的質(zhì)量液濃度上升抑制作用增強(qiáng).在水溶質(zhì)量液濃度為200 μg·mL-1時根長受抑制作用最強(qiáng),齊墩果酸水溶液處理比對照組顯著降低75.63%,β-谷甾醇水溶液處理比對照組顯著降低19.22%.從水稻綜合抑制效應(yīng)來看,化感物質(zhì)在高質(zhì)量濃度時對水稻根有顯著的抑制作用.
表2 齊墩果酸對水稻種子萌發(fā)及幼苗生長的影響
注:表中數(shù)值為平均值±標(biāo)準(zhǔn)差(n=4),同一行中相同字母表示在P≥0.05時差異不顯著.
表3 β-谷甾醇對水稻種子萌發(fā)及幼苗生長的影響
注:表中數(shù)值為平均值±標(biāo)準(zhǔn)差(n=4),同一行中相同字母表示在P≥0.05時差異不顯著.
2.2.2 潛在化感物質(zhì)對水稻抗氧化代謝的影響
2.2.2.1 潛在化感物質(zhì)對水稻幼苗MDA積累量的影響
不同質(zhì)量濃度齊墩果酸處理下水稻幼苗MDA含量均增加,在100 μg·mL-1時MDA含量達(dá)到最大(圖4).β-谷甾醇對水稻幼苗MDA含量影響表現(xiàn)為隨β-谷甾醇質(zhì)量濃度增大而上升,MDA含量比對照組提高了39.85%~75%.
圖4 潛在化感物質(zhì)對水稻幼苗MDA含量的影響Figure 4 The effect of potential allelochemicals on MDA content of rice seedling
2.2.2.2 刺莧體內(nèi)潛在化感物質(zhì)對水稻幼苗ROS產(chǎn)生量的影響
2.2.2.3 刺莧體內(nèi)潛在化感物質(zhì)對水稻幼苗抗氧化物酶和GSH含量的影響
在不同質(zhì)量濃度的齊墩果酸溶液處理下,水稻幼苗SOD、POD和CAT的活性均提高(圖6a、b、c).在100 μg·mL-1齊墩果酸處理時SOD和CAT活性最大,分別比對照組增加48.57%和55.11%.200 μg·mL-1處理下POD活性比對照組增加60.46%.不同質(zhì)量濃度β-谷甾醇處理下,水稻幼苗中POD和CAT活性提高,而SOD活性隨β-谷甾醇質(zhì)量濃度增大而降低,但各處理組間比較差異不顯著.由圖6(d)可知,齊墩果酸溶液和β-谷甾醇溶液處理下水稻幼苗GSH含量有明顯上升,且在100 μg·mL-1處理時含量達(dá)到最高.
圖5 潛在化感物質(zhì)對水稻幼苗.產(chǎn)生速率的影響Figure 5 The effect of potential allelochemicals on . generation of rice seedling
圖6 潛在化感物質(zhì)對水稻幼苗抗氧化酶活性和GSH含量的影響Figure 6 Effect of potential allelochemicals on antioxidant enzyme activities and GSH content of rice seedling
刺莧作為一種外來入侵植物,2003年1月列入中國外來入侵植物名錄.目前關(guān)于刺莧的研究主要集中在化學(xué)成分的研究[9],在生物入侵方面也多是對其分布狀況的統(tǒng)計(jì)[10],然而有關(guān)刺莧化感作用的研究相對較少.本論文以水稻作為受試農(nóng)作物,研究刺莧水浸提液及刺莧潛在化感物質(zhì)對水稻種子萌發(fā)、幼苗生長和幼苗抗氧化系統(tǒng)的影響,以探究刺莧對水稻的化感效應(yīng).發(fā)現(xiàn)刺莧釋放的化感物質(zhì)通過影響水稻的抗氧化代謝,抑制水稻種子萌發(fā)和幼苗生長,進(jìn)而產(chǎn)生化感效應(yīng).
常見的化感物質(zhì)主要包括十六烷酸、十八烷酸、羽扇豆醇、齊墩果酸、β-谷甾醇、豆甾醇和松醇等[11-12].前期我們采用高效液相色譜分析了刺莧水浸提液中的有關(guān)成分,發(fā)現(xiàn)刺莧水浸液中存在齊墩果酸和β-谷甾醇.水稻的綜合抑制效應(yīng)顯示這兩種物質(zhì)對供試農(nóng)作物種子萌發(fā)與幼苗生長的抑制作用與水浸液的結(jié)果基本相一致,暗示齊墩果酸和β-谷甾醇是刺莧釋放的主要化感物質(zhì).付磊磊等研究表明外來植物無患子(SapindusmukorossiGaertn)釋放的化感物質(zhì)中也有齊墩果酸和β-谷甾醇[13],這與我們的研究相一致.本文中刺莧體內(nèi)潛在化感物質(zhì)齊墩果酸和β-谷甾醇對水稻種子萌發(fā)和幼苗生長的抑制作用與其質(zhì)量濃度密切相關(guān).低質(zhì)量濃度下抑制作用不明顯,但高質(zhì)量濃度下抑制作用明顯,這和已有的研究結(jié)果類似[14-15].
本文中刺莧水浸提液及潛在化感物質(zhì)水溶液通過促進(jìn)水稻幼苗體內(nèi)ROS積累及MDA的產(chǎn)生,導(dǎo)致幼苗受到氧化脅迫,進(jìn)而影響其生長.試驗(yàn)表明齊墩果酸和β-谷甾醇可能在刺莧水浸提液對水稻幼苗造成氧化脅迫過程中起著積極作用.研究表明化感物質(zhì)可以通過對植物生理代謝過程的不同方面而發(fā)揮作用,對于保護(hù)酶系統(tǒng)的影響只是其中的一部分,其還可以通過影響礦質(zhì)元素的吸收[31]和光合作用[32]等其他方面最終對植物的生長發(fā)育產(chǎn)生影響.僅通過研究保護(hù)酶系統(tǒng)的變化尚不足以解釋這一復(fù)雜的情況.另外,復(fù)雜的外界環(huán)境因素會導(dǎo)致化感物質(zhì)的降解[33-35],因此對化感物質(zhì)在實(shí)際入侵過程中的生態(tài)學(xué)功能仍難以考量,需進(jìn)一步的探討.
[1] HIERRO J L, CALLAWAY R M. Allelopathy and exotic plant invasion[J].Plant Soil,2003,256(1):29-39.
[2] MULLER C H. Allelopathy as a factor in ecological process[J].Vegetatio,1969,18(1):348-357.
[3] SHANNON-FIRESTONE S, FIRESTONE J. Allelopathic potential of invasive species is determined by plant and soil community context[J].Plant Ecology,2015,216(3):1-12.
[4] 鄭卉,何興金.莧屬4種外來有害雜草在中國的適生區(qū)預(yù)測[J].植物保護(hù),2011,37(2):81-86. ZHENG H,HE X J. Prediction of potential distribution of four alien invasive Amaranthus weeds in China[J].Plant Protection,2011,37(2):81-86.
[5] 徐海根,王健民,強(qiáng)勝,等.外來物種入侵生物安全遺傳資源[M].北京:科學(xué)出版社,2004:40-75.
[6] 曾任森.化感作用研究中的生物測定方法綜述[J].應(yīng)用生態(tài)學(xué)報(bào),1999,10(1):123-126. ZENG R S. Review on bioassay methods for allelopathy research[J].Chinese Journal of Apple Ecology,1999,10(1):123-126.
[7] 蔡沖.植物生物學(xué)實(shí)驗(yàn)[M].北京:北京師范大學(xué)出版社.2013:125-137.
[8] GURI A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone[J].Canadian Journal of Plant Science,1983,63(3):733-737.
[9] 李潔,陳全成,林挺,等.刺莧的化學(xué)成分研究[J].中草藥,2013,44(3):272-276. LI J, CHEN Q C, LIN T, et al. Chemical constituents in Amaranthus spinosus[J].Chinese Traditional and Herbal Drugs,2013,44(3):272-276.
[10] 呂玉峰,付嵐,張勁林,等.莧屬入侵植物在北京的分布狀況及風(fēng)險(xiǎn)評估[J].北京農(nóng)學(xué)院學(xué)報(bào),2015,30(2):20-23. LYU Y F, FU L, ZHANG J L, et al. Distribution and risk assessment of Amaranthus invasive plant in Beijing[J].Journal of Beijing University of Agriculture,2015,30(2):20-23.
[11] GRISI P U, RANAL M A, SANTANA D G D. Phytotoxic activity of crude aqueous extracts and fractions of young leaves ofSapindussaponariaL. (Sapindaceae)[J].Acta Botanica Brasilica,2013,27(1):62-70.
[12] TATIANA G B, ANNE C C G, LUDGER W, et al. Phytochemical and allelopathic studies ofTerminaliacatappaL.(Combretaceae)[J].Biochemical Systematics & Ecology,2012,41(41):119-125.
[13] 付磊磊.無患子(SapindusmukorossiGaertn)除草活性研究[D].咸陽:西北農(nóng)林科技大學(xué),2016. FU L L.Study on the Herbicide Activities ofSapindusmukorossiGaertn[D].Xianyang: North West Agriculture and Forestry University,2016.
[14] CHEN S, ZHOU B, LIN S, et al. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle[J].African Journal of Biotechnology,2015,10(14):2659-2665.
[15] AHRABI F, ENTESHARI S, MORADSHAHI A, et al. Allelopathic potential of para-hydroxybenzoic acid and coumarin on canola: Talaieh cultivar[J].Journal of Medicinal Plants Research, 2011,5(20):5104-5109.
[16] TUKEY H B. Leaching of metabolites from above-ground plant parts and its implications[J].Bulletin of the Torrey Botanical Club,1966,93(6):385-401.
[17] 彭瑜,胡進(jìn)耀,蘇智先.外來物種紅花醉漿草的化感作用研究[J].草業(yè)學(xué)報(bào),2007,16(5):90-95. PENG Y, HU J Y, SU Z X. Research on allelopathic effects of Oxalis corymbosa - an invasive species[J].Acta Prataculturae Sinica,2007,16(5):90-95.
[18] TURK M A, TAWAHA A M. Allelopathic effect of black mustard (BrassicanigraL.) on germination and growth of wild oat (AvenafatuaL.)[J].Crop Protection,2003,22(4):673-677.
[19] THORPE A S, CALLAWAY R M. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis[J].Journal of Ecology,2009,97(4):641-645.
[20] RONG T, ETO M.Lightactivated plant growth inhibitory activity of cis-dehydromatricaria ester, rose bengal and fluoren-9-one on lettuce (LactucasalivaL.)[J].Chemosphere,1996,32(7):1307-1317.
[21] RICE E L. Allelopathy[M].2nd ed. Orlando, USA: Academic Press, 1984: 490-501.
[22] LIN C C, KAO C H. Effect of NaCl stress on H2O2metabolism in rice leaves[J].Plant Growth Regulation,2000,30(2):151-155.
[23] SCANDALIOS J G.Oxygen stress and superoxide dismutases[J].Plant Physiology,1993,101(1):7-12.
[24] NEILL S J, DESIKAN R, CLARKE A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J].Journal of Experimental Botany,2002,53(372):1237-1247.
[25] 張巍巍,鄭飛翔,王效科,等.臭氧對水稻根系活力、可溶性蛋白含量與抗氧化系統(tǒng)的影響[J].植物生態(tài)學(xué)報(bào),2009,33(3):425-432. ZHANG W W, ZHENG F X, WANG X K, et al. Effects of ozone on root activity, soluble protein content and antioxidant system in Oryza Sativa roots[J].Chinese Journal of Plant Ecology,2009,33(3):425-432.
[26] 孫海燕,王炎.辣椒根系分泌的潛力化感物質(zhì)對生菜幼苗抗氧化代謝的影響[J].植物生理學(xué)報(bào),2012(9):887-894. SUN H Y, WANG Y. Effect of root exudated potential allelochemicals in hot pepper (CapsicumannummL.) on antioxidative metabolism for lettuce(LactucasativaL.)[J].Plant Physiology Journal,2012(9):887-894.
[27] WILLEKENS H, LANGEBARTELS C, TIRE C, et al. Differential expression of catalase genes in Nicotianaplumbaginifolia L[J].Proceedings of the National Academy of Sciences of the United States of America,1981,91(22),10450-10454.
[28] 李元,王煥校,吳玉樹.Cd,Fe及其復(fù)合污染對煙草葉片幾項(xiàng)生理指標(biāo)的影響[J].生態(tài)學(xué)報(bào),1992,12(2):147-154. LI Y, WANG H X, WU Y S. Effects of cadmium and iron on the some physiological indicators in leaves of tobacco[J].Acta Ecologica Sinica,1992,12(2):147-154.[29] EATERBAUER H, GRILL D. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies[J].Plant Physiology,1978,61(1):119-121.
[30] AONO M, SAJI H, SAKAMOTO A, et al. Paraquat tolerance of transgenicNicotianatabacumwith enhanced activities of glutathione reductase and superoxide dismutase[J].Plant and Cell Physiology,1995,36(8):1687-1691.
[31] 呂衛(wèi)光,張春蘭,袁飛,等.化感物質(zhì)抑制連作黃瓜生長的作用機(jī)理[J].中國農(nóng)學(xué)通報(bào),2002,35(1):106-109. LYU W G, ZHANG C L, YUAN F, et al. Mechanism of allelochemicals inhibiting continuous cropping cucumber Growth[J].Scientia Agricultura Sinica,2002,35(1):106-109.
[32] YANG C M, LEE C N, CHOU C H. Effects of three allelopathicphenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings:I.Inhibition of supply-orientation[J].Botanical Bulletin- Academia Sinica Taipei,2002,43(4):119-125.
[33] KOBAYASHI K, KOYAMA H, SHIM I S. Relationship between behavior of dehydromatricaria ester in soil and the allelopathic activity of Solida goaltissima L. in the laboratory[J].Plant and Soil,2004,259(1):97-102.
[34] BLAIR A C, NISSEN S J, BRUNK G R, et al. A lack of evidence for an ecological role of the putative allelochemical (+/-)-catechin in spotted knapweed invasion success[J].Journal of Chemical Ecology,2006,32(10):2327-2331.
[35] WEIDENHAMER J D, ROMEO J T. Allelochemicals of Polygonella myriophylla: chemistry and soil degradation[J].Journal of Chemical Ecology,2004,30(5):1067-1082.
Effect of invasive plantAmaranthusspinosusL. on rice allelopathy and antioxidant system
JIANG Zhihua, LI Pengcheng, SUN Junwei, DING Yanfei, ZHU Cheng
(Key Laboratory of Ocean Food Quality and Hazard Controlling Technology of Zhejiang Province,College of Life Sciences, China Jiliang University, Hangzhou 310018, China)
Allelopath, a new weapon in the competition between invasive plants and native plants, plays an active role in the invasion of alien plants. In this study, the effect of the aqueous extracts and the potential allelopathy chemicals ofAmaranthusspinosusL. on rice seed germination, seedling growth and antioxidant system were studied. The results showed that the aqueous extracts imposed strong inhibition on rice seed germination. The potential allelochemicals inhibited the root growth of rice seedlings significantly. The oleanolic acid andβ-sitosterol might have played an essential role in the process of oxidation stress in rice seedlings caused by aqueous extracts.
AmaranthusspinosusL.; allelopathy; rice growth; antioxidant metabolis
2096-2835(2017)01-0068-08
10.3969/j.issn.2096-2835.2017.01.012
2016-11-29 《中國計(jì)量大學(xué)學(xué)報(bào)》網(wǎng)址:zgjl.cbpt.cnki.net
質(zhì)檢公益性行業(yè)科研專項(xiàng)(No.201410014).
蔣芝華(1990- ),女,河南省永城人,碩士研究生,主要研究方向?yàn)槭称焚|(zhì)量與安全技術(shù).E-mail:Y92626@126.com. 通信聯(lián)系人:朱誠,男,教授.E-mail:pzhch@cjlu.edu.cn.
Q945.79
A