• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drought sensitivity ofbeech on a shallow chalk soilin northeastern Germany – a comparative study

    2017-04-18 05:15:56MariekevanderMaatenTheunissenHannammerstedeJanetteIwanowskiTobiasScharnweberMartinWilmkingandErnstvanderMaaten
    Forest Ecosystems 2017年1期

    Marieke van der Maaten-Theunissen,Hanna Bümmerstede,Janette Iwanowski,Tobias Scharnweber, Martin Wilmking and Ernstvan der Maaten

    Drought sensitivity ofbeech on a shallow chalk soilin northeastern Germany – a comparative study

    Marieke van der Maaten-Theunissen*,Hanna Bümmerstede,Janette Iwanowski,Tobias Scharnweber, Martin Wilmking and Ernstvan der Maaten

    Background:We compare the climate sensitivity of European beech(Fagus sylvatica L.)in two forest nature reserves in northeastern Germany.The one reserve,Schlossberg,is characterized by shallow chalk soils,whereas in the other reserve,Eldena,soils are deeper and more developed.Little is known about the drought sensitivity of beech on shallow chalk soils.

    Climate-growth relationships,Dendroecology,Inter-tree variability,Temporalstability,Drought stress

    Background

    European beech(Fagus sylvatica L.)is a tree species that naturally dominates over large parts of Central Europe due to a high competitiveness and physiologicaltolerance (Ellenberg 1996).The species thrives over broad environmental gradients and on many different bedrock types (Leuschner et al.2006),but does not grow on extremely dry sites,on sites prone to flooding,on sites with high groundwater tables,or on stagnic soils(Ellenberg 1996). Next to being ecologically important,e.g.,for biodiversity(Moning and Müller 2009),beech is a major economic tree species in European silviculture(Ge?ler et al.2007).

    The climate sensitivity of beech has been investigated in many tree-ring based studies throughout the species distribution area(e.g.Chen et al.2015;Friedrichs et al. 2009;García-Suárez et al.2009;Lebourgeois et al.2005; Scharnweber et al.2011;van der Maaten 2012).These studies identified drought,in the previous and(or) current year,as a major growth-limiting factor.Despite its drought sensitivity,the resilience of beech to drought seems high.Van der Werf et al.(2007),for example,observed that growth of beech ceased during the extreme dry year 2003,but that it quickly recovered thereafter.In a future warmer climate,drought impacts are likely to become more severe,and may be particularlypronounced in the core of the species range as suggested by Cavin and Jump(2016).In their recent network study on beech,highest sensitivity and low resistance to drought is namely reported in the core of the species range,while dry range edge populations were characterized by particularly high drought resistance.Similarly, recent climate warming and increasing drought have impacted growth of beech more heavily on mesic sites compared to better adapted stands under marginal conditions(Weber et al.2013).Although provenance may be a factor in explaining these differences as well,i.e.different provenances may exhibit different adaptive behavior(Bolte et al.2007),the aforementioned studies show an important influence oflocalsoilconditions on reaction and adaptation of beech to drought and emphasize the need for detailed evaluations of drought sensitivity in dependence of wideranging climatic and environmentalconditions.

    In investigating climate-growth relationships,tree-ring based studies mostly analyzed site chronologies that contain a maximized climate signal obtained by averaging tree-ring series of individual trees into one chronology (Fritts 1976).Variability in growth responses of individual trees,however,is ignored,and only general insights on how tree populations respond to climate fluctuations can be obtained.More recently,dendroecological studies started to explore the full range of tree-growth responses within sites by using individual-tree based approaches(e.g. Carrer 2011;Galván et al.2014;Scharnweber et al.2013; Zang et al.2014).In a climate change context,such studies are particularly important as the responses of individual trees willto a large degree determine how forest ecosystems may be affected by anticipated changes in climate.

    In this study,we investigate the climate sensitivity of beech on a site with a shallow chalk soil in northeastern Germany.The water availability at such sites is assumed to be limited,and little is known on how these conditions translate into a drought signal in the growth record of beech.We compare the climate sensitivity of beech from a site with a shallow chalk soil with the sensitivity from a“typical”site in the same region,which has a deeper,more developed soil and a high water holding capacity.We hypothesize to find distinctively higher drought sensitivity for beech from the shallow chalk soil site.In analyzing climate-growth relationships,we not only consider mean stand chronologies,but also use tree-growth series from individual trees in linear mixed-effect models to explore the inter-tree variability in climate responses.

    Methods

    Site description

    Fig.1(a)Location ofthe study sites;the inset map shows the study area within Europe as wellas the approximate naturaldistribution ofbeech in green according to EUFORGEN(2016).Climate diagrams display(b)mean monthly courses oftemperature(in °C)and precipitation sums(mm) forsite Schlossberg(calculated over the period 1902–2009),and(c)annualtime series of mean annualtemperature(MAT)and annual precipitation sum(MAP).Climate data originate from ClimateEU(fordetails see section'Climate data’)

    This study was conducted in two old-growth beech forests in northeastern Germany,named Schlossberg and Eldena(Fig.1a).Both forests are nature reserves that were unmanaged for over 50 years.The nature reserve Schlossberg(54.5307°N,13.6515°E,elevation:135 m)is located on Rugia Island and lies within the borders ofJasmund National Park,of which part is declared UNESCO World Heritage Site('Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany’).The forest nature reserve of Eldena (54.0788°N,13.4787°E,elevation:17 m)is located near the city of Greifswald,and,as Schlossberg,in close vicinity to the Baltic coast.

    Both studied forests are situated in a Young Drift morainic landscape,but differ in their pedological characteristics.Typical for the Schlossberg site is a shallow chalk soil.Depending upon the soil depth,which can be highly variable at short distance(presence of chalky parent material ranging between a few centimeters and>1 m),soils can be characterized as leptosols(rendzinas),cambisols and luvisols(reference soil groups after the World Reference Base for Soil Resources;IUSS Working Group WRB 2015).According to the Dunham classification for carbonate sedimentary rocks(Dunham 1962),the chalk at Schlossberg can be characterized as a soft,weakly cemented biomicritic mudstone to wackestone,and only occasionally as floatstone with over 10%>2 mm grains(Schnick 2002).At Eldena the parent material is sandy-loamy glacial till.Further,soils are deeper and more developed(i.e.no presence of leptosols,but only cambisols and luvisols),and locally there is influence of stagnating water and groundwater.

    The regional climate can be characterized as temperate humid with a mean annual air temperature and precipitation sum of 7.5 °C/576 mm and 8.1 °C/562 mm at Schlossberg and Eldena,respectively.A climate diagram characterizing the general climate at Schlossberg (Fig.1b)shows that precipitation sums are highest in summer.For Eldena,seasonal courses of temperature and precipitation are highly similar(see the difference plot of Additional file 1:Figure S1).In the second half of the twentieth century,increases in air temperature are evident,whereas no clear trends can be observed for precipitation(Fig.1c).

    Tree-ring data

    We selected co-/dominant beech trees at Schlossberg (n=25)and Eldena(n=12),and extracted two increment cores at breast height from these trees.After air-drying,cores were either mounted on wooden holders and sanded with progressively finer grit sandpaper to highlight annual rings,or prepared for scanning in an ITRAX multiscanner(Cox Analytical Systems,Sweden).In both cases,tree-ring widths(TRW)were measured optically, and TRW-series for individualtrees were obtained by averaging the measurements of the two cores.Visual and statistical crossdating of the tree-ring series was done using the CooRecorder/CDendro software package(Cybis Elektronik and Data AB,Sweden).

    Ring-width series of individual trees were detrended by fitting a cubic smoothing spline with a 50%frequency cut-off at 30 years.This procedure accentuates climate-induced growth fluctuations while removing longer-term trends that may,for example,reflect tree ageing or disturbance(Cook and Peters 1981).Tree-ring indices were then calculated by dividing the observed by the predicted values.To characterize the developed index chronologies and to assess their quality,we report the common chronology statistics Gleichl?ufigkeit(glk), inter-series correlation(RBAR),mean sensitivity(MS), first-order autocorrelation(AC)and expressed population signal(EPS).Glk is the percentage of sign agreement in year-to-year ring-width changes,RBAR is the average correlation coefficient between all tree-ring series,MS is the average relative difference in tree growth between consecutive years,and AC is a measure of previous-year influence on current-year growth.EPS is a statistic used to assess the adequacy of the replication in a site chronology.We built chronologies and calculated chronology statistics using dplR(Bunn 2008).

    Climate data

    We obtained site-specific climate data using the software package ClimateEU(Hamann et al.2013;Wang et al. 2012;available for download at http://tinyurl.com/Cli mateEU).This software front-end for interpolated climate databases,generated with the Parameter-elevation Regressions on Independent Slopes Model(PRISM) (Daly et al.2008),allows to query 84 historical monthly, seasonal and annual climate variables for the years 1901-2009.An overview of all queried variables is provided as supplementary material(Additionalfile 1:Table S1).

    Statisticalanalyses

    We calculated bootstrapped correlation coefficients between site chronologies and climate data to identify climatic factors responsible for the observed growth variation.In these correlation analyses,we included monthly temperature(minimum,mean and maximum) and precipitation over a 16-month window from June of the previous year to September of the current year, as well as previous-and current-year seasonal and annual climate variables.Climate-growth relationships were established over the common period 1902-2009 using treeclim(Zang and Biondi 2015).

    As the aforementioned climate-growth correlation analyses disregard inter-tree variability in climate responses(i.e.these standard analyses are based on average tree-growth indices of all sampled trees within a stand),we also employed linear mixed-effect models.By fitting these models on individual tree-growth indices with tree as random factor and climate variables as fixed effects,we could account for possible differences inclimate response of single trees.The model can be formulated as follows:

    where RWIirepresents the growth index for tree i,α the intercept,Climithe fixed-effects matrix(i.e.climate variables), β and bivectors of fixed and random effects,and εia vector with random errors.We used the restricted maximum likelihood(REML)to determine the optimal random effects structure of our models(i.e.random intercept,random slope,or both random intercept and random slope),and maximum likelihood(ML)estimation to compare models with different fixed effects.We considered all climate variables from the climate-growth correlation analyses as fixed effects,but standardized them prior to model development(with a mean of 0 and a standard deviation of 1)to allow for direct comparison of modelcoefficients.

    Linear mixed-effect models were built sequentially with up to three climate parameters.First,we tested all one-parameter models and compared their performance using the Akaike information criterion(AIC;Akaike 1974)corrected for small sample sizes(AICc).AIC penalizes complex models with more parameters;smaller values indicate a more parsimonious model.We used the difference in AICcbetween the nullmodeland allcandidate models(ΔAICc)to indicate the extent to which candidate models explain the variation in tree growth.In a second step,we added a second climate variable to the three best-performing one-parameter models.Similarly,a third climate variable was added to the three bestperforming two-parameter models.In adding a second and third climate variable,we excluded models with highly correlated explanatory variables(criterion:r ≥ 0.5;cf. Ettinger et al.(2011)who used a 0.6-threshold).Next to model coefficients and ΔAICcvalues,we report the marginal R2(the variance explained by the fixed factors;calculated after Nakagawa and Schielzeth (2013)for all candidate models.In building and testing our linear mixed-effect models,we used the R packages nlme(Pinheiro et al.2014)and piecewiseSEM(Lefcheck 2016).

    To evaluate if climatic drivers of beech growth changed through time,we fitted linear mixed-effect models not only over the full climate data period(1902–2009), but also over an early and late sub-period(1902–1955 and 1956–2009,respectively).

    Results

    Metadata and chronology statistics for the study sites are provided in Table 1,site chronologies in Fig.2.Remarkable is a higher tree age at Schlossberg(indicated by the mean segment length:236 versus 200 years),but lower mean ring width.Chronology statistics for thedeveloped index chronologies,however,are highly similar. High values for glk and RBAR indicate that trees show similar growth patterns within the individual sites.Also between sites similarities in growth patterns are evident; index chronologies are strongly correlated(r=0.72;period 1902–2009).MS values of 0.33 point to high year-to-year variability in growth.Finally,EPS-values beyond the commonly used threshold of 0.85 indicate a coherent standlevelsignal.

    Table 1 Characteristics ofthe study trees

    The climate-growth correlation analyses indicate that previous-year summer temperature is a significant negative determinant of beech growth at both sites(Fig.3). At the same time,previous-year summer precipitation positively affects beech growth,pointing to possible drought stress.Correlations with annual climate variables substantiate the importance of previous-year drought for current-year’s growth(Additional file 1: Figure S2).Also for the current year,a drought signal is suggested by positive correlations with spring and June precipitation as well as negative correlations with mean June temperature.Although there are some differences in correlation strengths for individual climate parameters,general correlation patterns are remarkably similar for Schlossberg and Eldena.

    At the individual tree level,random intercept linear mixed-effect models revealed previous-year drought conditions as an important growth-limiting factor as well.At the Schlossberg site,this is illustrated by negative effects of previous-year July maximum temperature (pTmax07)and positive effects of previous-year August precipitation(pPPT08)in numerous best-fit models (Table 2).For Eldena,the previous-year climate moisturedeficit(pCMD)was found as a major growth determinant(Table 3).For the one-parameter models,climate response patterns are consistent with the results of the correlation analysis(Additional file 1:Figures S3–S6).

    Fig.2(a)Raw tree-ring width and(b)detrended index chronologies for Schlossberg(black)and Eldena(gray)

    Fig.3 Results of the bootstrapped correlation analysis between tree-growth indices and monthly and seasonalclimate data for(a)Schlossberg and(b)Eldena.Bars indicate correlations forprecipitation,lines fortemperature(dotted line:mimimum temperature;solid line:average temperature; dashed line:maximum temperature).Significant correlations(P < 0.05)are indicated by dark gray bars(for precipitation)and filled circles(for temperature).Months and seasons are abbreviated with lower-and uppercase letters for the previous-and current-year growing season, respectively.WT winter(December(previous year)-February),SP spring(March-May),SM summer(June-August),AT autumn (September-November)

    Table 2 Statisticalparameters of the three best-performing linear mixed-effect models of tree-ring indices with one,two or three climate variables for site Schlossberg

    In the two sub-periods 1902–1955 and 1956–2009, drought signals are evident as well,but are expressed through different climate predictors.In the early period, current-year climate parameters prevail(Schlossberg: PPT_sp;Eldena:Tmax06 and PPT_sp),whereas carryover effects of drought seem less important(i.e.expressed by relatively few previous-year drought parameters).In the late period,on the other hand,previous-year climate parameters prevail with previous July and summer(maximum)temperature as the most frequent climate determinants(pTmax07/pTave07 and pTmax_sm)at Schlossberg and Eldena,respectively.

    The explained variance of all best-fit one-to threeparameter models ranged between 4.9 and 22.1%,with marginal R2-values being consistently higher for the early and late sub-period compared to the full period.Further,the explained variance for Schlossberg is higher than for Eldena,which implies that drought parameters better explain the observed growth variation,suggesting a(slightly)higher drought sensitivity of beech at Schlossberg.Overall,the inter-tree variability in climatic responses was low with variance components for the random tree effect approaching zero.

    Table 3 Statisticalparameters of the best-performing linear mixed-effect models for site Eldena.See further the table legend and footnotes of Table 2

    Discussion

    Individual trees showed strong common growth signals at our research sites as evidenced by high values for glk,RBAR and EPS(Table 1),as well as by a low intertree variability observed in our climate-driven linear mixed-effect models of tree-growth indices.These results underline that the investigated trees are affected by a common climatic factor,i.e.drought,and that our sampling of co-/dominant trees resulted in a uniform dataset without much inter-tree variability.On the contrary,studies that not only sampled dominant trees but also intermediate and(or)suppressed trees(e.g.Cescatti and Piutti 1998;Martín-Benito et al.2008)report intertree variability.Larger beech trees(like we sampled in our study)were found to be more sensitive to summer drought than smaller trees(e.g.Mérian and Lebourgeois2011),which likely relates to higher evaporative water losses that large trees face because of their large crowns (St?elcováet al.2002).

    Both in the classical climate-growth correlation analyses(Fig.3 and Additional file 1:Figure S2)as well as in our linear mixed-effect models(Tables 2 and 3, Additional file 1:Figures S3–S6)drought signals prevailed at Schlossberg and Eldena.Although climate response patterns were highly similar,a higher explained variance of the models for Schlossberg suggests that this site is slightly more drought sensitive.As a possible explanation for the lower-than-expected drought sensitivity of beech at Schlossberg,we hypothesize that adaptations in tree architecture safeguarded the beech trees from severe drought problems at the site (Kahle 1994;van der Maaten et al.2013).This hypothesis is supported by our metadata showing that,although trees at Schlossberg are older than at Eldena, tree height and DBH are lower(Table 1),which likely results in a lower demand for water.As an alternative explanation,we propose that the water holding capacity of the shallow chalk soils might be higher than assumed.Although the available water capacity of the upper soil is lower at Schlossberg(i.e.soils are shallow),the localchalk bedrock shows a fine texture with relatively high silt and clay contents and is fullof fissures.This probably contributes to relatively good water storage capacities of the bedrock,which is plant available if the trees are able to penetrate the parent material with their roots.That shallow chalk soils can supply enough water for plant growth is also suggested by a study on the productivity of agricultural crops in England,which reports that even the shallowest chalk soils(23 cm)provide enough water to sustain good yields(Burnham and Mutter 1993).

    We found drought signals in our models for Schlossberg and Eldena for both the full climate data period (1902–2009),as well as for the early and late sub-periods(1902–1955 and 1956–2009,respectively).Although climate response patterns remained relatively stable over time,a shift in importance from current to previous-year drought influences was observed from the early to the late sub-period.Next to possible effects of ageing,this shift might relate to a co-occurring temperature increase in the second half of the twentieth century(Fig.1c).Namely, higher temperatures may increase evaporative water losses,thereby making last years’water status more important.Next to direct effects of the previous-year water budget on the current-year growth,previous-year drought effects may also be explained over floral induction(Di Filippo et al.2007).Various studies showed that hot and dry summer conditions stimulate masting in beech in the following year(Piovesan and Adams 2001;Schmidt 2006), thereby negatively affecting growth(Dittmar et al.2003; Drobyshev et al.2010).In line with these results,Hacket-Pain et al.(2015)showed that regression models explained growth of beech equally well when replacing previousyear maximum temperature by current-year seed production.Although there is no data available on beech masting at Schlossberg and Eldena,a general observation of more frequent and intense fructification in Germany over recent decades(Paar et al.2011)suggests that masting may also be a likely cause for the shift from current-to previousyear drought parameters in our models.

    In contrast to classical dendroecological studies that aim for strong climatic signals by averaging individual tree-growth series into a site chronology(Fritts 1976), we employed an additional linear mixed-effect modeling exercise.Rather than filtering-out tree-specific signals by averaging over multiple trees,which is a process that might be beneficial for climate reconstructions,linear mixed-effect models use the growth series of all trees while estimating a model true for the whole population. The models provide insight into the variability in growth responses ofindividualtrees to climate,thereby providing essentialinformation on the range of tree species responses to climate,and consequently on how they may respond to future climate changes.Even though inter-tree variability was low in our tree-ring dataset(i.e.variance components for the random tree effect were approaching zero),we support Carrer(2011)in advocating an increased focus on climate responses of individual trees in the future.From recent individual tree-based studies,we learned,amongst others, that growth sensitivity may increase with age(Linares et al. 2013),or that the variability in individual-tree responses during and after drought events may be high(Zang et al.2014). Such insights are of upmost importance in the face of climate change,as it willnot be the averaged responses of forest stands,but the growth responses of individual trees that willdetermine how forests may be affected in the future.

    Conclusion

    We compared the climate sensitivity of European beech on a shallow chalk soil in northeastern Germany with beech trees on a site with deeper and more developed soils,and found that beech is only slightly more drought sensitive on the shallow chalk soil.

    Additional file

    Additional file 1:Supplementary figures and table.(PDF 193 kb)

    Acknowledgments

    We thank the Jasmund NationalPark and the forest service ofthe University of Greifswald forsupporting ourfieldwork.

    Funding

    MMT and EM acknowledge support by a research grant of the Eva Mayr-Stihl Foundation.MMT and MW are participating researchers of the research training group RESPONSE,funded by the German Research Council(DFG GRK2010).

    Authors’contributions

    Conceived and designed the study:MMT and EM.Performed the field-and lab-work:MMT,HB,JI,TS,EM.Analyzed the data:MMT and EM.Wrote the manuscript:MMT,TS,MW,EM.Allauthors read and approved the final

    manuscript.

    Author’s information

    MMT,EM and TS are postdoctoralforestecologists mainly working in

    European forests.They have a specialinterest in understanding the role of plasticity and adaptation of tree species in assessing potentialimpacts of

    climate change.Professor MW is a geo-ecologistworking on the ecosystem dynamics oftrees and shrubs in temperate and borealregions,as wellas the arctic tundra.HB and JIare graduate studentsthatwrote their Bachelortheses on the ecology ofbeech in Jasmund nationalpark.Allauthors are working at (or associated to)the Institute of Botany and Landscape Ecology atthe

    University of Greifswald,Germany.

    Competing interests

    The authors declare that they have no competing interests.

    Field permits

    Research permissions to sample European beech trees at Schlossberg and Eldena were provided by the Jasmund National Park and the lower nature conservation authority Vorpommern-Greifswald,respectively.

    R

    Akaike H(1974)A new look atthe statisticalmodelidentification.IEEE Trans Autom Control19:716–723

    Bolte A,CzajkowskiT,Kompa T(2007)The north-eastern distribution range of European beech-A review.Forestry 80:413–429

    Bunn AG(2008)A dendrochronology program library in R(dplR). Dendrochronologia 26:115–124

    Burnham CP,Mutter GM(1993)The depth and productivity ofchalky soils.Soil Use Manage 9:1–8

    Carrer M(2011)Individualistic and time-varying tree-ring growth to climate sensitivity.PLoS ONE 6:e22813

    Cavin L,Jump AS(2016)Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. notthe equatorialrange edge.GlobalChange Bioldoi:10.1111/gcb.13366

    Cescatti A,PiuttiE(1998)Silviculturalalternatives,competition regime and sensitivity to climate in a European beech forest.Forest Ecol Manage 102: 213–223

    Chen K,Dorado-Linan I,Akhmetzyanov L,Gea-Izquierdo G,Zlatanov T,MenzellA (2015)Influence ofclimate drivers and the North Atlantic Oscillation on beech growth atmarginalsites across the Mediterranean.Clim Res 66:229–242

    Cook ER,Peters K(1981)The smoothing spline:a new approach to standardizing forestinteriortree-ring width series fordendroclimatic studies.Tree-Ring Bull 41:45–53

    Daly C,Halbleib M,Smith JI,Gibson WP,Doggett MK,Taylor GH,Curtis J,Pasteris PP (2008)Physiographically sensitive mapping ofclimatologicaltemperature and precipitation acrossthe conterminous United States.IntJClim 28:2031–2064

    Di Filippo A,BiondiF,?ufar K,De Luis M,Grabner M,Maugeri M,Presutti Saba E, Schirone B,Piovesan G(2007)Bioclimatology of beech(Fagus sylvatica L.)in the Eastern Alps:spatialand altitudinalclimatic signals identified through a tree-ring network.JBiogeogr34:1873–1892

    Dittmar C,Zech W,Elling W(2003)Growth variations of common beech(Fagus sylvatica L.)under different climatic and environmentalconditions in Europe -A dendroecologicalstudy.Forest EcolManage 173:63–78

    Drobyshev I,?vergaard R,Saygin I,Niklasson M,Hickler T,Karlsson M,Sykes MT (2010)Masting behavior and dendrochronology of European beech(Fagus sylvatica L.)in southern Sweden.Forest Ecol Manage 259:2160–2171

    Dunham RJ(1962)Classification ofcarbonate rocks according to depositional texture.In:Ham WE(ed)Classification ofCarbonate Rocks,American Association of Petroleum Geologists Memoir 1,pp 108-121

    Ellenberg H(1996)Vegetation Mitteleuropas mit den Alpen in ?kologischer, dynamischerund historischer Sicht.Ulmer,Stuttgart,Germany

    Ettinger AK,Ford KR,HilleRisLambers J(2011)Climate determines upper,butnot lower,altitudinalrange limits ofPacific Northwest conifers.Ecology 92:1323–1331 EUFORGEN(2016)Distribution maps-Fagus sylvatica L.www.euforgen.org. Accessed 20 June 2016.

    Friedrichs DA,Trouet V,Büntgen U,Frank DC,Esper J,Neuwirth B,L?ffler J(2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–739

    Fritts HC(1976)Tree rings and climate.Academic,London

    Galván JD,Camarero JJ,Gutiérrez E,Zuidema P(2014)Seeing the trees for the forest:drivers of individualgrowth responses to climate in Pinus uncinata mountain forests.JEcol102:1244–1257

    García-Suárez AM,Butler CJ,Baillie MGL(2009)Climate signalin tree-ring chronologies in a temperate climate:a multi-species approach. Dendrochronologia 27:183–198

    Ge?ler A,KeitelC,Kreuzwieser J,Matyssek R,Seiler W,Rennenberg H(2007) Potentialrisks for European beech(Fagus sylvatica L.)in a changing climate. Trees 21:1–11

    Hacket-Pain AJ,Friend AD,Lageard JGA,Thomas PA(2015)The influence of masting phenomenon on growth-climate relationships in trees:explaining the influence ofprevious summers'climate on ring width.Tree Physiol35: 319–330

    Hamann A,Wang T,Spittlehouse DL,Murdock TQ(2013)A comprehensive,highresolution database ofhistoricaland projected climate surfaces for Western North America.BullAm MeteorolSoc 94:1307–1309

    IUSS Working Group WRB(2015)World Reference Base for SoilResources 2014, update 2015 Internationalsoilclassification system fornaming soilsand creating legends forsoilmaps.World SoilResources Reports,vol106.FAO,Rome.

    Kahle H(1994)Modellierung der Zusammenh?nge zwischen der Variation von klimatischen Elementen des Wasserhaushalts und dem Radialzuwachs von Fichten(Picea abies(L.)Karst.)aus Hochlagen des Südschwarzwalds:eine standortbezogene dendro?kologische Untersuchung unter besonderer Berücksichtigung von Trockenstre?.Institute for Forest Growth,Albert-Ludwigs-University,Freiburg,p 184

    Lebourgeois F,Bréda N,Ulrich E,Granier A(2005)Climate-tree-growth relationships of European beech(Fagus sylvatica L.)in the French Permanent Plot Network(RENECOFOR).Trees 19:385–401

    Lefcheck JS(2016)piecewiseSEM:Piecewise structuralequation modelling in R for ecology,evolution,and systematics.Methods Ecol Evol7:573–579

    Leuschner C,Meier IC,HertelD(2006)On the niche breadth of Fagus sylvatica: soilnutrient status in 50 Central European beech stands on a broad range of bedrock types.Ann For Sci63:355–368

    Linares JC,Ta?qui L,Sangüesa-Barreda G,Seco JI,Camarero JJ(2013)Age-related drought sensitivity of Atlas cedar(Cedrus atlantica)in the Moroccan Middle Atlas forests.Dendrochronologia 31:88 –96

    Martín-Benito D,CherubiniP,delRío M,Ca?ellas I(2008)Growth response to climate and droughtin Pinusnigra Arn.trees ofdifferentcrown classes. Trees 22:363–373

    Mérian P,Lebourgeois F(2011)Size-mediated climate-growth relationshipsin temperate forests:a multi-species analysis.Forest EcolManage 261:1382–1391

    Moning C,Müller J(2009)Criticalforest age thresholds for the diversity of lichens,molluscs and birds in beech(Fagus sylvatica L.)dominated forests. Ecol Indic 9:922–932

    Nakagawa S,Schielzeth H(2013)A generaland simple method for obtaining R2from generalized linear mixed-effects models.Methods Ecol Evol4:133–142

    Paar U,Guckland A,Dammann I,Albrecht M,Eichhorn J(2011)H?ufigkeit und Intensit?t der Fruktifikation der Buche.AFZ-Der Wald 6:26–29

    Pinheiro J,Bates D,DebRoy S,Sarkar D(2014)nlme:linear and nonlinear mixed effects models.R package version 3.1–125.

    Piovesan G,Adams JM(2001)Masting behaviour in beech:linking reproduction and climatic variation.Can J Bot 79:1039–1047

    Scharnweber T,Manthey M,Criegee C,Bauwe A,Schr?der C,Wilmking M(2011) Drought matters-Declining precipitation influences growth of Fagus sylvatica L.and Quercus robur L.in north-eastern Germany.Forest Ecol Manage 262:947–961

    Scharnweber T,Manthey M,Wilmking M(2013)Differential radial growth patterns between beech(Fagus sylvatica L.)and oak(Quercus robur L.) on periodically waterlogged soils.Tree Physiol 33:425–437

    Schmidt W(2006)Temporalvariation in beech masting(Fagus sylvatica L.) in a limestone beech forest(1981–2004).Allg Forst Jagdztg 177:9–19 Schnick HH(2002)The Jasmund cliff section.Greifswalder Geographische Arbeiten 27:69–73

    St?elcováK,Matejka F,Mindá?J(2002)Estimation ofbeech tree transpiration in relation to theirsocialstatus in forest stand.J For Sci(Prague)48:130–140

    van der Maaten E(2012)Climate sensitivity of radialgrowth in European beech (Fagussylvatica L.)atdifferentaspects in southwestern Germany.Trees 26: 777–788

    van der Maaten E,Bouriaud O,van der Maaten-Theunissen M,Mayer H,Spiecker H (2013)Meteorologicalforcing ofday-to-day stem radius variations ofbeech is highly synchronic on opposing aspectsofa valley.Agric ForMeteorol181:85–93

    van der Werf GW,Sass-Klaassen UGW,Mohren GMJ(2007)The impact ofthe 2003 summerdrought on the intra-annualgrowth pattern of beech(Fagus sylvatica L.)and oak(Quercus robur L.)on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Wang T,Hamann A,Spittlehouse DL,Murdock TQ(2012)ClimateWNA-Highresolution spatialclimate data for Western North America.J ApplMeteorol Climatol51:16–29

    WeberP,Bugmann H,Pluess AR,Walthert L,Rigling A(2013)Droughtresponse and changing mean sensitivity of European beech close to the dry distribution limit.Trees 27:171–181

    Zang C,BiondiF(2015)treeclim:an R package for the numericalcalibration of proxy-climate relationships.Ecography 38:431–436

    Zang C,Hartl-Meier C,Dittmar C,Rothe A,Menzel A(2014)Patterns of drought tolerance in major European temperate forest trees:climatic drivers and levels ofvariability.GlobalChang Biol20:3767–3779

    *Correspondence:marieke.theunissen@uni-greifswald.de;

    marieketheunissen@gmail.com

    Institute of Botany and Landscape Ecology,University of Greifswald, Soldmannstr.15,17487 Greifswald,Germany

    Methods:We collected increment cores at both research sites and established climate-growth relationships.Intertree variability was assessed by employing linear mixed-effect models.

    Results:We expected to find distinctively higherdrought sensitivity at Schlossberg due to limited wateravailability,but find only marginaldifferences in growth responses.Atboth sites,drought is the major climatic factordriving tree growth. Adaptations in tree architecture and an underestimation ofthe waterholding capacity ofshallow chalk soils are discussed as possible reasons for not finding more distinctclimate responses.In analyzing climate-growth relationships,we specifically focused on growth responses ofindividualtrees but observed only low inter-tree variability at both sites. Evidentis a shift in climate response patterns from the first to the second halfofthe twentieth century with previous-year droughtconditions becoming more important than current-year drought.This shift is discussed in relation to a warming trend overthatsame period,as wellas possible trends in masting behaviorofbeech.

    Conclusion:The investigated beech trees on the shallow chalk soilare only slightly more drought sensitive than beech trees on the reference site with deeperand more developed soils.

    尾随美女入室| 色综合站精品国产| 欧美成人午夜免费资源| 欧美成人a在线观看| h日本视频在线播放| 男女啪啪激烈高潮av片| 精品不卡国产一区二区三区| 国产成人freesex在线| 十八禁网站网址无遮挡 | a级毛色黄片| 青春草国产在线视频| 嘟嘟电影网在线观看| 天堂俺去俺来也www色官网 | 日韩av不卡免费在线播放| 热99在线观看视频| 嫩草影院新地址| 简卡轻食公司| 亚洲av中文字字幕乱码综合| 亚洲av日韩在线播放| 久久精品久久久久久噜噜老黄| 一级二级三级毛片免费看| 午夜精品在线福利| 日本一本二区三区精品| 欧美区成人在线视频| 久久精品久久久久久噜噜老黄| 听说在线观看完整版免费高清| 亚洲最大成人手机在线| 在线观看人妻少妇| 高清午夜精品一区二区三区| 亚州av有码| videossex国产| 男人狂女人下面高潮的视频| 九草在线视频观看| 亚洲美女视频黄频| 欧美日韩国产mv在线观看视频 | a级毛色黄片| 成人午夜精彩视频在线观看| 久久久久性生活片| 亚洲av成人精品一区久久| 久久久久国产网址| 日本午夜av视频| 听说在线观看完整版免费高清| 欧美xxxx性猛交bbbb| 亚洲av在线观看美女高潮| 精品酒店卫生间| 国产av在哪里看| 丰满乱子伦码专区| 在线免费观看不下载黄p国产| 色视频www国产| 亚洲国产成人一精品久久久| 少妇熟女aⅴ在线视频| 18+在线观看网站| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美精品专区久久| 欧美性猛交╳xxx乱大交人| 国产美女午夜福利| 天堂av国产一区二区熟女人妻| 免费观看av网站的网址| 国产成人福利小说| 一级黄片播放器| 国产午夜精品一二区理论片| 自拍偷自拍亚洲精品老妇| 成人特级av手机在线观看| 亚洲精品日本国产第一区| 亚洲在线观看片| 全区人妻精品视频| 久久久久久国产a免费观看| 国内精品宾馆在线| 国产在线男女| 国产黄色免费在线视频| 校园人妻丝袜中文字幕| 精品亚洲乱码少妇综合久久| 黄色日韩在线| 亚洲伊人久久精品综合| 亚洲av免费高清在线观看| 免费黄频网站在线观看国产| 国产高潮美女av| 亚洲18禁久久av| 亚洲最大成人手机在线| 18+在线观看网站| 午夜福利在线在线| 日日干狠狠操夜夜爽| 超碰97精品在线观看| 国产精品99久久久久久久久| 久久这里只有精品中国| 能在线免费看毛片的网站| 欧美成人午夜免费资源| 日本-黄色视频高清免费观看| 日韩欧美三级三区| 亚洲精品国产av成人精品| 伊人久久国产一区二区| 国产精品1区2区在线观看.| 又大又黄又爽视频免费| 久久97久久精品| 中文字幕免费在线视频6| 麻豆成人av视频| 亚洲精品久久久久久婷婷小说| 97在线视频观看| 国产精品美女特级片免费视频播放器| 亚洲无线观看免费| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 色综合色国产| 色吧在线观看| 国产淫片久久久久久久久| 国产色婷婷99| 国内精品美女久久久久久| 97超视频在线观看视频| 免费观看的影片在线观看| 亚洲在线自拍视频| 欧美xxⅹ黑人| 久久久精品欧美日韩精品| 一级黄片播放器| 亚洲国产日韩欧美精品在线观看| 国产不卡一卡二| 亚洲精品久久午夜乱码| 又爽又黄a免费视频| 国产av码专区亚洲av| 国产精品国产三级国产av玫瑰| 能在线免费看毛片的网站| 精品人妻一区二区三区麻豆| 国产av码专区亚洲av| 国产成人免费观看mmmm| 亚洲va在线va天堂va国产| 精品久久久久久久久久久久久| 亚洲经典国产精华液单| 婷婷六月久久综合丁香| av女优亚洲男人天堂| 亚洲丝袜综合中文字幕| 97人妻精品一区二区三区麻豆| 啦啦啦中文免费视频观看日本| 18禁动态无遮挡网站| 人妻制服诱惑在线中文字幕| 亚洲欧美成人综合另类久久久| 91精品伊人久久大香线蕉| 午夜久久久久精精品| 美女脱内裤让男人舔精品视频| av免费在线看不卡| 国产麻豆成人av免费视频| 18+在线观看网站| 国产精品无大码| 亚洲av一区综合| 99久国产av精品| 国产精品一区二区三区四区免费观看| 少妇丰满av| 久久午夜福利片| 十八禁国产超污无遮挡网站| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 国产爱豆传媒在线观看| 中国国产av一级| 干丝袜人妻中文字幕| 国内精品一区二区在线观看| 亚洲精品乱久久久久久| 国产美女午夜福利| 亚洲成色77777| xxx大片免费视频| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 草草在线视频免费看| 丰满少妇做爰视频| 亚洲国产日韩欧美精品在线观看| eeuss影院久久| 一级毛片我不卡| 国产乱人偷精品视频| 天堂中文最新版在线下载 | 99九九线精品视频在线观看视频| videos熟女内射| av在线蜜桃| 亚洲av福利一区| 97精品久久久久久久久久精品| 久久亚洲国产成人精品v| 久久国产乱子免费精品| 一级毛片我不卡| 观看免费一级毛片| 91久久精品电影网| 久久精品久久精品一区二区三区| 乱码一卡2卡4卡精品| 日韩人妻高清精品专区| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| 亚洲精品日韩av片在线观看| 日韩亚洲欧美综合| 特级一级黄色大片| 草草在线视频免费看| 成年人午夜在线观看视频 | 国产亚洲91精品色在线| 极品教师在线视频| 日韩人妻高清精品专区| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 精品欧美国产一区二区三| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| 午夜爱爱视频在线播放| 免费无遮挡裸体视频| 免费不卡的大黄色大毛片视频在线观看 | 男人狂女人下面高潮的视频| 国产成人精品久久久久久| 国产高清国产精品国产三级 | 国产麻豆成人av免费视频| 成人高潮视频无遮挡免费网站| 亚洲一级一片aⅴ在线观看| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 亚洲内射少妇av| 欧美 日韩 精品 国产| 在线天堂最新版资源| 夫妻午夜视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品综合久久久久久久免费| 亚洲国产精品成人综合色| 国产色婷婷99| 亚洲伊人久久精品综合| 成年免费大片在线观看| 成年女人看的毛片在线观看| 搡老妇女老女人老熟妇| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 男人爽女人下面视频在线观看| 国产伦精品一区二区三区四那| 亚洲精品成人久久久久久| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 午夜爱爱视频在线播放| 精品不卡国产一区二区三区| 视频中文字幕在线观看| 免费观看精品视频网站| 成人国产麻豆网| 午夜爱爱视频在线播放| 欧美日韩综合久久久久久| 淫秽高清视频在线观看| 国产 一区 欧美 日韩| 成人亚洲欧美一区二区av| 久久久久久久久大av| 青春草亚洲视频在线观看| 99久国产av精品国产电影| av专区在线播放| 国内揄拍国产精品人妻在线| 日韩一区二区三区影片| 精品一区二区三区人妻视频| 七月丁香在线播放| 一本一本综合久久| 久久久久久久久久成人| 九色成人免费人妻av| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 欧美一区二区亚洲| 精品久久久噜噜| 亚洲精品成人久久久久久| 亚洲国产精品成人久久小说| 熟女电影av网| 欧美激情在线99| 看黄色毛片网站| 免费av毛片视频| 麻豆av噜噜一区二区三区| av.在线天堂| 综合色丁香网| 联通29元200g的流量卡| 最新中文字幕久久久久| 国产单亲对白刺激| 午夜福利在线在线| 能在线免费观看的黄片| 午夜福利网站1000一区二区三区| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 精品久久久久久久久av| 国产高清三级在线| 26uuu在线亚洲综合色| 国产淫片久久久久久久久| 日韩电影二区| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 亚洲av中文字字幕乱码综合| 又大又黄又爽视频免费| 国产v大片淫在线免费观看| 久久久亚洲精品成人影院| 一级毛片我不卡| 日韩国内少妇激情av| 夫妻午夜视频| 成人美女网站在线观看视频| 亚洲伊人久久精品综合| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 水蜜桃什么品种好| 国产熟女欧美一区二区| 日本av手机在线免费观看| 美女被艹到高潮喷水动态| 精品一区二区免费观看| 成年av动漫网址| 日本与韩国留学比较| 成年人午夜在线观看视频 | 亚洲av电影在线观看一区二区三区 | 成年女人在线观看亚洲视频 | 春色校园在线视频观看| 老司机影院毛片| 青青草视频在线视频观看| 免费人成在线观看视频色| 七月丁香在线播放| 国产乱人偷精品视频| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产| 三级国产精品欧美在线观看| 男插女下体视频免费在线播放| www.av在线官网国产| 激情五月婷婷亚洲| 午夜免费观看性视频| 美女黄网站色视频| 乱码一卡2卡4卡精品| 日韩不卡一区二区三区视频在线| 男人狂女人下面高潮的视频| 国产av在哪里看| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 午夜福利在线观看吧| 免费看光身美女| 成人特级av手机在线观看| 国产淫语在线视频| 国产黄a三级三级三级人| 丝袜喷水一区| 高清日韩中文字幕在线| 直男gayav资源| av国产免费在线观看| 成年免费大片在线观看| 日本与韩国留学比较| 亚洲人与动物交配视频| 永久免费av网站大全| 男插女下体视频免费在线播放| 人人妻人人澡人人爽人人夜夜 | 小蜜桃在线观看免费完整版高清| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 五月伊人婷婷丁香| 亚洲成人一二三区av| 国产av在哪里看| 97精品久久久久久久久久精品| 1000部很黄的大片| 久久久色成人| 人体艺术视频欧美日本| 国模一区二区三区四区视频| .国产精品久久| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 国产在线一区二区三区精| 久久国产乱子免费精品| 又爽又黄无遮挡网站| 婷婷色麻豆天堂久久| 97热精品久久久久久| 最近最新中文字幕大全电影3| 黄片wwwwww| 秋霞在线观看毛片| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 亚洲国产日韩欧美精品在线观看| 26uuu在线亚洲综合色| 亚洲一区高清亚洲精品| 精品熟女少妇av免费看| 色哟哟·www| 成人美女网站在线观看视频| 亚洲av福利一区| 观看免费一级毛片| 国产欧美另类精品又又久久亚洲欧美| 日本一本二区三区精品| 亚洲av福利一区| 中文字幕久久专区| 一级a做视频免费观看| 国产成人a区在线观看| 亚洲av.av天堂| 日日啪夜夜爽| 深夜a级毛片| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 亚洲av免费在线观看| 色尼玛亚洲综合影院| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 精品人妻视频免费看| a级毛色黄片| 蜜臀久久99精品久久宅男| 麻豆乱淫一区二区| 免费看a级黄色片| 天堂俺去俺来也www色官网 | 97精品久久久久久久久久精品| 22中文网久久字幕| 老司机影院成人| 色网站视频免费| 最近中文字幕高清免费大全6| av在线亚洲专区| 美女xxoo啪啪120秒动态图| a级一级毛片免费在线观看| 2018国产大陆天天弄谢| 日韩视频在线欧美| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆| 免费电影在线观看免费观看| 男女那种视频在线观看| 日韩欧美三级三区| 久久人人爽人人爽人人片va| 成人无遮挡网站| 精品人妻熟女av久视频| 一级毛片电影观看| 国产中年淑女户外野战色| 国产一区二区三区综合在线观看 | 亚洲av电影在线观看一区二区三区 | 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| av免费在线看不卡| 久久久久久久大尺度免费视频| 精品酒店卫生间| 夫妻午夜视频| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 国产黄片美女视频| 深爱激情五月婷婷| 免费观看精品视频网站| 久久久成人免费电影| 亚洲欧美清纯卡通| kizo精华| 亚洲欧洲日产国产| 精品亚洲乱码少妇综合久久| 久久精品人妻少妇| 综合色丁香网| 国产淫语在线视频| 免费播放大片免费观看视频在线观看| 老司机影院成人| 亚洲三级黄色毛片| 99久久精品热视频| 久99久视频精品免费| 国产精品1区2区在线观看.| 国产亚洲91精品色在线| 婷婷色av中文字幕| 大陆偷拍与自拍| 亚洲精品国产成人久久av| 成年免费大片在线观看| av在线蜜桃| 在线观看免费高清a一片| 赤兔流量卡办理| 在线免费观看的www视频| 欧美高清性xxxxhd video| 91午夜精品亚洲一区二区三区| 大片免费播放器 马上看| 欧美高清成人免费视频www| 亚洲自拍偷在线| 一本一本综合久久| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 国产高清有码在线观看视频| 黄色欧美视频在线观看| 精品国产三级普通话版| 免费黄色在线免费观看| 看十八女毛片水多多多| 国产精品日韩av在线免费观看| 国产在视频线在精品| 久久精品国产自在天天线| 国产视频内射| 两个人的视频大全免费| 日韩av在线大香蕉| 身体一侧抽搐| 麻豆av噜噜一区二区三区| 男女下面进入的视频免费午夜| 国产高清三级在线| 乱人视频在线观看| 国产精品一区二区三区四区免费观看| 国产亚洲精品久久久com| 亚洲精品日韩在线中文字幕| 中文字幕亚洲精品专区| 五月玫瑰六月丁香| 色5月婷婷丁香| 欧美成人a在线观看| 三级国产精品欧美在线观看| 成人鲁丝片一二三区免费| 亚洲国产av新网站| 秋霞伦理黄片| 在线观看美女被高潮喷水网站| 亚洲av二区三区四区| 久久久久九九精品影院| 国产免费福利视频在线观看| 国产精品久久久久久精品电影| 久久久久久国产a免费观看| 国产成人午夜福利电影在线观看| 国产熟女欧美一区二区| 超碰av人人做人人爽久久| 久久久久免费精品人妻一区二区| 舔av片在线| 欧美不卡视频在线免费观看| 久久久精品94久久精品| 欧美不卡视频在线免费观看| 人人妻人人澡欧美一区二区| 色尼玛亚洲综合影院| 亚洲激情五月婷婷啪啪| 中文字幕制服av| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| 亚洲一级一片aⅴ在线观看| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频 | 亚洲色图av天堂| 午夜精品在线福利| 97人妻精品一区二区三区麻豆| 三级毛片av免费| 精品国产三级普通话版| 久久这里有精品视频免费| 一级a做视频免费观看| 久久久久国产网址| 久久6这里有精品| 精品国产露脸久久av麻豆 | kizo精华| 亚洲高清免费不卡视频| 国产精品99久久久久久久久| 99久国产av精品国产电影| 亚洲成人精品中文字幕电影| 一级av片app| 国产欧美另类精品又又久久亚洲欧美| 欧美人与善性xxx| 观看美女的网站| 熟女电影av网| 日本一二三区视频观看| 亚洲精品自拍成人| 内地一区二区视频在线| 日韩不卡一区二区三区视频在线| 成人午夜精彩视频在线观看| 嫩草影院入口| 网址你懂的国产日韩在线| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 亚洲一区高清亚洲精品| av又黄又爽大尺度在线免费看| 国产综合懂色| 亚洲av电影在线观看一区二区三区 | 国产伦精品一区二区三区四那| 国产亚洲午夜精品一区二区久久 | av.在线天堂| 亚洲欧美清纯卡通| 欧美日韩在线观看h| 久久精品国产亚洲网站| 国产精品一及| 国产乱人偷精品视频| 中国国产av一级| 日韩一区二区视频免费看| 天天躁日日操中文字幕| 欧美不卡视频在线免费观看| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| 亚洲三级黄色毛片| 国产男人的电影天堂91| 精品酒店卫生间| 色播亚洲综合网| ponron亚洲| 亚洲国产精品成人久久小说| 亚洲欧美成人综合另类久久久| 伊人久久国产一区二区| 免费大片18禁| 最近最新中文字幕大全电影3| 一个人免费在线观看电影| 日韩电影二区| 免费观看性生交大片5| 22中文网久久字幕| 乱系列少妇在线播放| www.色视频.com| 成年av动漫网址| 国产亚洲最大av| 91精品一卡2卡3卡4卡| 18禁裸乳无遮挡免费网站照片| 老司机影院毛片| 啦啦啦啦在线视频资源| 午夜福利高清视频| 天堂影院成人在线观看| 99热网站在线观看| 亚洲在久久综合| 简卡轻食公司| 只有这里有精品99| 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 亚洲色图av天堂| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 综合色av麻豆| 国产精品人妻久久久久久| 一本久久精品| 欧美激情久久久久久爽电影| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 乱系列少妇在线播放| av免费在线看不卡| 免费人成在线观看视频色| 97热精品久久久久久| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 五月伊人婷婷丁香| 成人美女网站在线观看视频| av卡一久久| 国产精品1区2区在线观看.| 丰满少妇做爰视频| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 99久久中文字幕三级久久日本| 国产探花在线观看一区二区| 亚洲国产欧美在线一区| av线在线观看网站| 亚洲一级一片aⅴ在线观看| 99久久九九国产精品国产免费|